CONTENTS

I. Technology — its past, present and future. . . . . . . . .  1

 

1. Five questions about engineering and technology . . . . . . . . . 2

  1.1. How old is the engineering profession? . . . . . . . . . . . . . . 2

  1.2. What is the difference between engineering and technology? . . . . 5

  1.3. Is engineering just science or industrial practice? . . . . . . . . 6

  1.4. Engineering obsolete and engineering advanced . . . . . . . . . 8

  1.5. Is technological development an evolutionary process? . . . . . 10

 

2. Technological revolutions . . . . . . . . .  13

  2.1. The Cultural (Upper Palaeolithic) Revolution . . . . . . . . . . 14

  2.2. The Agricultural (Neolithic) Revolution . . . . . . . . . . . . . 16

  2.3. The Urban (Bronze Age) Revolution and the rise of civilisations . . . . 17

  2.4. The Industrial Revolution . . . . . . . . . . . . . . . . . . . . . 22

  2.5. The Revolution of Knowledge . . . . . . . . . . . . . . . . . . . 24

  2.6. Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . 25

 

3. Five surges that changed the world . . . . . . . . .  27

  3.1. First Industrial Revolution (surges 1 and 2) . . . . . . . . . . . 28

  3.2. Second Industrial Revolution (surges 3 and 4) . . . . . . . . . . 30

  3.3. Postwar technological boom and digital revolution . . . . . . . 34

  3.4. Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . 36

 

4. Technology is on the move again . . . . . . . . .  37

  4.1. Maturity of the digital technologies . . . . . . . . . . . . . . . . 37

  4.2. Electric cars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

  4.3. Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

  4.4. Tight oil and gas . . . . . . . . . . . . . . . . . . . . . . . . . . 43

  4.5. Energy and renewables . . . . . . . . . . . . . . . . . . . . . . . 44

  4.6. A new space race . . . . . . . . . . . . . . . . . . . . . . . . . . 47

  4.7. Artificial intelligence (AI) and robotics . . . . . . . . . . . . . . 49

  4.8. Micro- and nanotechnologies . . . . . . . . . . . . . . . . . . . . 51

  4.9. Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . 53

 

5. Moving towards the knowledge society. . . . . . . . .  55

  5.1. The information revolution and its impact on technology . . . . 56

  5.2. Managing the change . . . . . . . . . . . . . . . . . . . . . . . . 58

  5.3. What is ahead for engineers? . . . . . . . . . . . . . . . . . . . 61

  5.4. The age of education . . . . . . . . . . . . . . . . . . . . . . . . 63

  5.5. Summary and analysis . . . . . . . . . . . . . . . . . . . . . . . 67

 

II. Understanding technological evolution. . . . . . . . .   69

 

6. Progress of technology is a non-genetic form of evolution . . . . . . . 71

  6.1. Non-genetic forms of evolution . . . . . . . . . . . . . . . . . . 71

  6.2. The Dawkins conjecture . . . . . . . . . . . . . . . . . . . . . . 72

  6.3. Common mistakes . . . . . . . . . . . . . . . . . . . . . . . . . 74

  6.4. Levels of evolutionary modelling . . . . . . . . . . . . . . . . . 76

  6.5. Two forms of non-genetic information . . . . . . . . . . . . . . 77

  6.6. Technological evolution . . . . . . . . . . . . . . . . . . . . . . 78

  6.7. Economics and evolution . . . . . . . . . . . . . . . . . . . . . . 82

 

7. Cycles in evolutionary systems . . . . . . 86

  7.1. Technological cycles . . . . . . . . . . . . . . . . . . . . . . . . 87

     7.1.1. Product life cycle . . . . . . . . . . . . . . . . . . . . . . 87

     7.1.2. Technological waves and surges . . . . . . . . . . . . . . 88

     7.1.3. Technological revolutions . . . . . . . . . . . . . . . . . 89

  7.2. The paradigm cycle . . . . . . . . . . . . . . . . . . . . . . . . . 90

  7.3. Historical cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

     7.3.1. History tends to repeat itself . . . . . . . . . . . . . . . 92

     7.3.2. Toynbee’s study of history . . . . . . . . . . . . . . . . . 93

     7.3.3. Gumilev’s ethnogenesis . . . . . . . . . . . . . . . . . . 95

     7.3.4. Systemic interpretation of the evolution of civilisations . . . . . .. 96

  7.4. Biological cycles . . . . . . . . . . . . . . . . . . . . . . . . . . 97

  7.5. The leaping (generic) cycle . . . . . . . . . . . . . . . . . . . . 100

  7.6. Correspondence between the cycles . . . . . . . . . . . . . . . . 102

 

 

8. Qualifications for the Dawkins conjecture . . . . . . 105

  8.1. Some basic constraints . . . . . . . . . . . . . . . . . . . . . . . 106

  8.2. Transitive and intransitive evolutions . . . . . . . . . . . . . . . 108

  8.3. Intransitivity and complexity . . . . . . . . . . . . . . . . . . . 111

  8.4. Example of intransitive simulations . . . . . . . . . . . . . . . . 114

 

 

III. Afterword 117

 

9. Concluding remarks and summary. . . . . .  118

  9.1. Technology on the move . . . . . . . . . . . . . . . . . . . . . . 118

     9.1.1. The uneven nature of technological progress . . . . . . . 118

     9.1.2. A new technological surge? . . . . . . . . . . . . . . . . 119

     9.1.3. Technological changes ahead of us . . . . . . . . . . . . 120

     9.1.4. Challenges for future engineers . . . . . . . . . . . . . . 120

  9.2. Technological change as a form of evolution . . . . . . . . . . . 121

     9.2.1. Evolution is a universal property of replicating information121

     9.2.2. The age of technological evolution . . . . . . . . . . . . 121

     9.2.3. The real world is intransitive . . . . . . . . . . . . . . . 122

     9.2.4. Complex evolutions are cyclic . . . . . . . . . . . . . . . 123

 

IV. Appendices . . . . . . . . .  125

 

A. Distinguished thinkers about cyclic evolutions . . . . . . . . .  126

 

B. Technological waves and technological progress . . . . . . . . .  131

  B.1. Counting the waves . . . . . . . . . . . . . . . . . . . . . . . . . 131

  B.2. Technological clusters and diffusion of technology . . . . . . . . 133

 

C. The outline of civilisations . . . . . . 138

 

D. Notes on evolutionary intransitivity. . . . . . . . .  143

  D.1. Intransitivity in biology . . . . . . . . . . . . . . . . . . . . . . 143

     D.1.1. Emergence of intransitivity among quasi-species . . . . 144

     D.1.2. Transitive finches . . . . . . . . . . . . . . . . . . . . . . 146

     D.1.3. Intransitive peacocks . . . . . . . . . . . . . . . . . . . . 147

  D.2. Intransitivity in economics . . . . . . . . . . . . . . . . . . . . . 148

  D.3. Intransitivity and artificial intelligence (AI) . . . . . . . . . . . 150

     D.3.1. DeepMind: emergence of effective learning algorithms . . . . . .151

     D.3.2. Transitive or intransitive? . . . . . . . . . . . . . . . . . 152

     D.3.3. Can the best machine learning algorithms be defeated? 153

 

E. The ups and downs of engineering education. . . . . . . . .   156

 

List of Figures . . . . . . . . .  162

 

Bibliography