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ABSTRACT

The fluctuating properties of the scalar dissipation,
that are known to significantly affect turbulent com-
bustion processes, are modelled on the basis of the
Multiple Mapping Conditioning (MMC) method.

INTRODUCTION

The Multiple Mapping Conditioning (MMC) ap-
proach [1] to turbulent non-premixed combustion is
characterised by dividing all fluctuations of the reac-
tive species into major and minor. The major fluc-
tuations are treated with assistance of the stochas-
tic reference variables while the minor fluctuations
are either neglected (conditional MMC) or treated
by conventional mixing models (probabilistic MMC)
[1, 2]. In its treatment of the major fluctuations, the
MMC approach is compliant with all mixing crite-
ria (such as linearity, independence, localness, bound-
ness, etc). The major fluctuations are restricted to a
certain manifold whose dimension is determined by
the dimension of the reference space[3]. Generally,
the concept of MMC can be characterised as a com-
bination of Conditional Moment Closure (CMC) [4]
and the PDF (Probability Density Function) models
[5, 6]. The PDF models and closures involve Map-
ping Closure (MP) [7, 8, 9], EMST [10], IECM or
IEM (stands for Interactions by Exchange with the
Mean or with the Conditional Mean) [6], Curl’s [11]
and other PDF models.

The MMC reference variables may represent tur-
bulent fluctuations of different physical nature. In
simplified versions of MMC, the reference variables
simulate the mixture-fraction-type fluctuations (al-
though it should be noted that the reference vari-
ables are not identical to the actual variables that
represent the simulated mixture fractions). The two-
stream mixing has a single mixture fraction and
a single mixture-fraction-like reference variable; the
three-stream mixing problem involves two indepen-
dent mixture fractions and two independent mixture-
fraction-like reference variables and so on [1]. In or-
der to distinguish various versions of MMC models,

we can specify the version of the model as ”argu-
ments” of MMC. The symbol ”Z” is used to empha-
sise the use of the mixture-fraction-like reference vari-
ables (while 72Z” indicates the use of two mixture-
fraction-like reference variables and the bold ”Z” can
be used to indicate an unspecified number of multiple
mixture-fraction-like reference variables). In proba-
bilistic MMC [2], a conventional mixing model is used
to treat minor fluctuations and the type of the model
can also be added to the acronym MMC. Neglecting
the minor fluctuations (that is in line with the condi-
tional methods) is logical to indicate by the ”CMC”
argument. For example, performance MMC(2Z) is
evaluated in [1] for three-stream mixing; asymptotic
analysis of MMC(Z,IECM) is conducted in [12]. Per-
formance of MMC(Z,CMC) in a self-similar mixing
layer is investigated in [13].

In the present work, we consider the two-stream
(1Z) problem but explicitly introduce additional ref-
erence variables that simulate the fluctuations gen-
erated by the scalar dissipation (the idea of using
the scalar dissipation as a conditioning variable in
CMC equations was pioneered in [14]). This ver-
sion of MMC can be denoted by MMC(Z,IN,CMC)
or MMC(Z,x,CMC) depending on which variable is
used to denote the scalar dissipation but, in the rest of
the paper we abbreviate this notation to MMC(N).
Although this model is compliant with the general
MMC principles, a specific analysis is needed to en-
sure compliance of the model with the known proper-
ties of mixing and to determine the unknown param-
eters of the model related to the additional reference
variables.

GENERAL MMC FORMULATION

Deterministic Formulation

The conditional MMC is specified by the following
equations [1]
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where sums are taken over repeated indices; the small
indices 4,7, k,... = 0,1,...,

N, run over the refer-

ence variables {,&7,...; the capital indices I, J, ...
=0,1,...,n5 run over the variables modelling the re-
active species Yy, Y7,...; p models the average den-

sity and the joint PDF Pr = P(§;x,t) of the
stochastic reference variables £(,&7,... is required
to satisfy equation (2). Equation (1) is solved for
Y = Y7(&;x,t) while the stochastic values Y* =
Y[(£ X,t) represent a model for physical reactive
scalars whose joint PDF Py = P(Y;x,t) is shown

to satisfy the conventional scalar PDF equation [1]
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defining a consistent model for the conditional scalar
dissipation [V;; tensor, the conditional velocity uy
and the chemical reaction rate. The MMC methodol-
ogy allows for the PDF F¢ to be selected as standard
Gaussian provided the MMC coefficients are given by
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where ay,(x,t) =p~tV - (Z)U,(Cl))
Equations (1) and (2) allow for the conservative
formulation of the MMC equations given by
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Stochastic Formulation
The MMC model can be equivalently formulated in

terms of the stochastic Ito equations

dx* =U (&, x*,t) dt, (7)
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The link between the stochastic and deterministic
versions of the models is given by the relationship
Yi(€,x,t) = (Y7|€,x). It should be noted that in
conditional MMC (which is mainly considered in the
present work) Y7 is treated as a model for the scalars
while, in probabilistic MMC, Y} simulates the scalar
values [1, 2]. The operator Sy is an arbitrary opera-
tor that must satisfy (ST|€,x) = 0 and some other
conditions [1]. The purpose of this operator is to keep
Y} close to YI*.

Replacement of the Variables

The reference variables £€° can be replaced by a new
= £(&7,x,t) and the
MMC equations remain valid with the use of new

~ %
set of reference variables &

variables but the coefficients in the equations have
to take the new values [2]
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The replacement of the variables represents a math-
ematically equivalent transformation that does not
alter the actual closure: Py, N;; and equation (3)
remain the same.

DISSIPATION-LIKE REFERENCE VARIABLES
Modelling of the fluctuating properties of the scalar
dissipation can be performed within the MMC frame-
work. In this version of the model, MMC(N), we as-
sume that £, is a mixture-fraction-like variable and
specify the diffusion coefficients by

Boo = Boo(x,t)®(&;%,t), Boa = Bag =0
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where B,g = Bapg(xX,t) and the reference variables
éz {£1....§,,, } are used to simulate the fluctua-

tions of the scalar dissipation (E does not include
& which is used as a mixture-fraction-like variable).
The Greek indices run only over 1,2, ..., n, (while
2,J,k,... run over 0,1,2,...,m,). The variables é‘*
are assumed to be Gaussian to ensure that the distri-
bution of ®* is log-normal. Without restricting tbg
generality of our consideration, we can require that £
are standard Gaussian (uncorrelated with zero mean
and unit dispersion) since the new standard Gaussian
variables can be always introduced by replacing é’ by
their linear combinations and adjusting coefficients c,,
in ¢ = o, +co. We select cg = —¢4Cq /2 and nor-
malise ® so that the mean value of ®* = @(é* X, t)
is unity:

(®*) = exp (co + 0“20“) =1, (15)

<(<I>*)2> = exp (2¢o + 2¢aCq) = exp (caca) (16)

With unitary transformations of £, we can always
transform B,g into a diagonal form Bag = 0a3/7Tg
and preserve the standard Gaussian distribution for
& Here, we introduce characteristic times 73 for the
inverses of the diagonal values of B,g and also denote
To = 1/B00 and Tg = 1/B00. With the use of (5)

we obtain

A, :§a6a5/75+aa (17)

Each of the variables &
mode of the scalar dissipation fluctuations charac-

o represents a distinctive
terised by its characteristic time 7,. Note that the
term A;ﬁf 3 with an arbitrary antisymmetric matrix

A,s = —Agz, can be added to (17). This matrix
can be responsible for interactions of the modes and
for complex and repeated roots. Although we neglect
A_ 5 in the present consideration, A_; can be poten-
tially useful for more accurate modelling of the scalar
dissipation properties.

In order to investigate the major properties of
MMC(IN), it is convenient to introduce the new refer-
ence variables 20 =Yy, =27 and S o = &, Here and
further in the paper the zeroth scalar Y is denoted
by Z and assumed to represent the mixture fraction:
Wo = 0. The new diffusion and drift coefficients are
determined by (12)

The MMC equation takes the form
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where the equation coefficients should be expressed
as functions of Z, é, x and t. The value Nj; =
N§o(€7;x*,t) models the instantaneous Lagrangian
properties of the scalar dissipation while N§, is spec-
ified by
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COMPLIANCE WITH THE MAIJOR LIMITS

In this section, we examine compliance of the model
with the fast chemistry [15] and the flamelet [16] lim-
its.

Fast Chemistry Limit

Assuming that the characteristic reaction time scale

Ty is much smaller than all of 7; (including, of
course, the characteristic dissipation time Tg), we
note that, to the leading order of the analysis, Y; =
Y7(Z) represents the chemical equilibrium state for
Y. Substitution of Y7 = Y;(Z) into (19) results in

%Yy
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Flamelet Limit

Derivation of the flamelet equation from (19) is also
not difficult. We assume that the width AZ of
the reaction zone is so small that the characteristic
time 7z = AZ2?/N§, is much smaller than any of
Tit Tz[Ti ~ e <« 1. Following [16], we can use
2 =(Z — Zs)/¢ in the reaction zone and retain the
unsteady term in the flamelet equation by introduc-
ing a very fast time t = t/Tz. The leading terms
result in
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COMPLIANCE WITH CMC
In the previous section, we demonstrated the con-
sistency of the MMC model with fast or small-scale
asymptotes — the fast chemistry and flamelet limits.
In this section, our goal is to examine the performance



of the model in the opposite case when the character-
istic observation time 7. is much longer compared to
the time scales 7, characterising the scalar dissipa-
tion. This case is studied in CMC and its analysis
is more difficult compared to the derivations of the
previous section. We assume that all of the times 7,
are small and can be represented by T, = €T, where
€ is a small parameter.

Asymptotic Evaluation of the Scalar Dissipation

In this section we analyse the equation for the simu-
lated mixture fraction and obtain a simplified asymp-
totic expression for the simulated mixture fraction
dissipation N,. The equation for the mixture frac-
tion takes the form
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This equation is obtained from (1) and, with W on
its right-hand side, is valid for any Y;. The solution
of this equation is given by

Z =27Z(y,x,t)+ O(e) (25)

Equations (20) and (20) specify the simulated dis-
sipation of the mixture fraction. The value of N7 ~
g2 / Ta ~ € can be neglected in comparison with
Ny ~ 1 while Ny is given by Ng = NQ(I)(E;X,t)
where Ny = No(fo,égx,t). If we take into account
(25), we can write No = No(&y; x,t) + O(€) or sub-
stitute £y = £o(Z;X,t) and obtain Ng = No(Z; %, t)
to the leading order. Hence,

Nso = No(Z:x,1)2(&;x,t) + O(e) (26)

and the leading order approximations (25) & (26) are
implied in the other equations presented below. Now
we need to assess the conditional mean and variance
of the scalar dissipation N§ = No(Z*, E* X, t) where
Z* = Z(£5,%,t) is stochastically independent of £,.
The averages of IV over all é‘* conditioned on Z* =
Z(&5,%,t) = Z are given by

<NS‘Z> :NO(Z7X7t) (27)

((N6)*12) = N(Z xt)exp (caca)  (28)

Thus, the sum cycy is determined by the level of
fluctuations of the scalar dissipation and depends on
the Reynolds number.

Asymptotic Expansions

In this subsection, we examine the equations for the
other species which are convenient to write in the

form of (19)
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Note that Bos ~ 1 due to (18) and 0Z/0¢, ~ e.
Since the equations for all species Y are the same we

omit the index ” I” and represent solution in the form
of the asymptotic expansion Y = Yy+¢€Y;+... . The
leading order term satisfies

1 Yy Y\
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and has a solution given by Yy = Y5(Z, x,t). Note
that the PDF P: — the standard Gaussian joint PDF

of {1,...,&,, — satisfies the equation
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By adding up equation (32) multiplied by Pé and
equation (31) multiplied by Y] we obtain
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Integrating the last equation over all £, yields the
solvability condition

/ UP:d€ =0 (34)

that results in
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Here we assume that U = U({y, x,t) and aq = 0. If
U is dependent on &, then another term with U((S)ga,
should be added to W. The analysis of this term is
not conducted in the present work but it is clear that,
since MMC is a fully PDF compliant method, the
velocity/scalar correlations should be modelled cor-
rectly provided uy represents an adequate model for
the physical velocity conditioned on all scalars. Equa-
tion (35) indicates consistency with the first order
CMC equation that is, generally, expected in MMC



but determining the coefficients of the model would
need examining the conditional variance.
Asymptotic Solution

The solution of (33) with W specified by (36) is given
by

SO = [ (bEE) - v o) d
@
where

v(E, ) = P(E-& ()

represents a standard Gaussian distribution shifted to
the point £ (£°) = ¢, exp(—1°/7,) (no sum is taken
over o). The location of the point depends on the
time-like parameter t° that should not be confused
with the time ¢. The solution f is written as f(E),
although f may depend on Z, X or t through the
parameters of (33). We note that

(. _
/3%
and that d€. = —(£/74)dt° with no sum taken

over . Evaluation of the line integral between the
points O (given by £, = 0) and C (given by £, = ca)
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proves that ©f(€) represents a solution for Y1 P

Although the term 1/}(5, o0) = P§ (é) disappears in
this sequence of transformations, it is needed to en-
sure convergence of the integral in (37) at £° — 0.
Note that an arbitrary constant can be added to Y.
We determine this constant by the condition that

(Y{]Z) = 0, where (Y{'|Z) = <Y1(Z, & x, t)>. In-

tegration of (37) over all E demonstrates that this
conditions is satisfied by Y1 = O f(&)/ Py.
Evaluating the Generation Term

Since Yy = Yu(Z,%,t) and (Y{*|Z) = 0, we note
that Q = Yy and Y/ = €Y; in the decomposi-
tion Y = Q 4+ Y’ where Q@ = (Y*|Z) ("prime”
denotes the fluctuations with respect to the condi-
tional means). Since MMC is a fully PDF compli-
ant method, the conditional variance equation for
K = <(Y’)2\Z > should involve the generation terms

Gw = 2Y’'W'2Z), Gv = =2(Y'U'|Z) - VQ
and Gy = 2(NY'|Z)92Q/0Z? and the dissipa-
tion term (see [4, 17, 18, 19] for details). Here, we
focus on the term Gy whose analysis is most dif-
ficult. With asymptotic representations obtained in
the previous subsections, this term can be approxi-
mated by

Gy ~ 2/ Y’ Pyd€ = 2@/ U f(€)dE =
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the sum is taken over repeated o and a new time-
like variable t° = ¢£° is introduced. Since ¢ (t) =
co&r(t) + co represents a Gaussian process (while
®* = exp(¢”) in (14) is log-normal), the correlation
function of ®*(t) given by

R(AE) = (@¥ (£ (t+ At)) = (41)
(exp (¢7(t) + ¢"(t + At))) — 1 = exp(r(At)) —

where ®*/(t) = ®*(t) — 1 and another "logarithmic”
correlation function r(At) = (¢ (t)¢™ (t + At)),
" (t) = okl (t) are used in the equation. The cor-
relation r(At) can be easily evaluated since {Z(t)
represents a superposition of independent Orstein-
Ulhenbeck stochastic processes with the characteris-
tic times To: 7(t) = 2 exp(—t/74). The equation
for the generation term GGy takes the form

9*Q
Gy = 2NE <8Z2> ™~ (42)
where
= / @(0)%(#°)) d° (43)
0
and ®*(t) = N /No. Note that this value for G

coincides with the CMC theoretical prediction for this
term [17] obtained on the basis of the ”corrected”
Kolmogorov theory of turbulence.

SELECTING THE MMC(N) PARAMETERS

The parameters Np, ¢, and T, of the MMC(N)
model are to be selected to match the mean values
of the mixture fraction dissipation and its fluctuating
properties. The proper choice for the coefficients c,
and T, should match not only the variance of the dis-
sipation but also the Lagrangian correlations of the



dissipation. More reference dissipation-like variables
would allow for a better match of the required charac-
teristics. Note that the fluctuating properties of the
dissipation are Reynolds-dependent.

Although consistency with CMC conditional fluc-
tuations generations can be achieved by matching
only a single parameter, 7y, we can consider mix-
ing processes whose characteristic scales are 7,, are
within the range of 7. With respect to the fast dis-
sipation fluctuations 73 < T, the MMC(IN) model
would act as a CMC-like model while for the slow
fluctuations 7y > T, the MMC(IN) model would be-
have more like the Fast Chemistry or Flamelet mod-
els. Thus the consistency of the integral 7 should
also be provided for any selected group of the fast
modes. In other words, we require that the whole
Lagrangian correlation function should be matched
as closely as it possible for the given number of the
reference variables.

CONCLUSIONS

The present work introduces a more complex ver-
sion of MMC: MMC(N). In addition to the standard
MMC mixture-fraction-like reference variable(s), this
version of the model has several dissipation-like ref-
erence variables used to simulate the Lagrangian
stochastic properties of the scalar dissipation. In ad-
dition to the general properties of MMC models, the
model is shown to be consistent with the Fast Chem-
istry and Flamelet limits as well as the major fea-
tures of the first and second order CMC equations.
The model can be expected to simulate regimes with
intermediate time scales laying between the areas of
CMC and Flamelet applicability.
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