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Abstract

This work presents a direct and transparent interpretation of two concepts

for modelling turbulent combustion: generalised Multiple Mapping Condition-

ing (MMC) and sparse-Lagrangian Large Eddy Simulation (LES). The MMC

approach is presented as a hybrid between the probability density function

(PDF) method and approaches based on conditioning (e.g. Conditional Mo-

ment Closure, flamelet, etc.). The sparse-Lagrangian approach, which allows

for a dramatic reduction of computational cost, is viewed as an alternative

interpretation of the Filtered Density Function (FDF) methods. This work

presents simulations of several turbulent diffusion flame cases and discusses the

universality of the localness parameter between these cases and the universality

of sparse-Lagrangian FDF methods with MMC.
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1. Introduction

The complexities of modelling turbulent combustion, which involves non-

linear, multi-scale interactions between turbulent fluctuations and chemistry,

have been discussed in many publications [1, 2], and a number of approaches

to the problem have been suggested. These approaches can be divided into

two major categories: 1) those based on utilising the mixture fraction [3–5] in

one way or the other; and 2) those involving modelling of joint PDFs of re-

active scalars [6, 7]. The first category (fast chemistry, flamelet, Conditional

Moment Closure (CMC), etc.) is characterised by relatively low computational

cost, while the second category involves more general, albeit more computa-

tionally expensive methods. These two groups can be used in the context of

both Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulations

(LES) [8–15]. A third option — Direct Numerical Simulation (DNS) — is a

very useful tool but can hardly be used in complex practical applications due to

prohibitive computational costs. The universality of probability density function

(PDF) methods is based on the application of instantaneous non-linear chem-

ical reaction rates, which thus appear in the model in closed form. However,

the PDF equations contain unclosed conditional scalar dissipation terms, which

necessitate the involvement of mixing models; Interaction by Exchange with the

Mean (IEM) [16, 17], Curl’s [18], Modified Curl’s (MC) [19, 20] and Euclidean

Minimum Spanning Tree (EMST) [21] are noted to be the most popular choices

of mixing models.

The development of PDF methods in the last decade has resulted in the

formulation of hybrid PDF models that allow us to combine the advantages and

offset the disadvantages of the aforementioned categories. This development is

based on conditioning of the mixing operator, which due to historic reasons,

is called Multiple Mapping Conditioning (MMC). MMC allows us to use PDF
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methods flexibly with the possibility of reducing computational cost and/or

increasing quality of simulations by assigning useful properties introduced by

other models onto the PDF model. A wide deployment of MMC methods was,

to some extent, restricted by the complexity of the original MMC [22]. MMC

has since evolved into a more flexible, generalised form [23, 24] and has been

applied in many different ways [25–33]. We note here that original MMC is

a special case of generalised MMC. In addition to properties considered later

in this work, original MMC has some specific features that are discussed in

the Appendix. It appears that more general forms of MMC allow for relatively

simple and transparent interpretations of the model. This work does not present

the chronological development of MMC and its various forms, but rather, a

simpler, direct (and more efficient) generalised version of the MMC approach

with illustrative flame cases.

The computationally economical versions of MMC are linked to the devel-

opment of sparse methods [12, 34–36], whose introduction is related to MMC

principles but generally represents an independent idea. For the MMC approach,

we present a transparent, physical explanation of the sparse methods. We also

explain the application of sparse-Lagrangian MMC for three cases, including a

flamesheet [37], the Sandia D-F flame series [38] and the Cabra lifted hydrogen

flame in a vitiated coflow [39].

2. A simple approach to generalised MMC

This section takes an alternative, simpler approach to the introduction of

MMC in its generalised form. For the sake of consistency and completeness, the

original version of the MMC model is discussed in the Appendix. To maintain

a simple presentation of the equations, a case of constant density and constant

molecular diffusivity is considered, although MMC can of course be derived and
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used for variable density and/or non-constant diffusivities (with the possibility

of modelling the differential diffusion effects [40]).

2.1. Joint PDF equation

The primary requirement for every PDF model is consistency with the joint

PDF equation (for example, see [4]) which can be conventionally written in the

form,

∂PY

∂t
+∇ · (uY PY ) +

∂WIPY

∂yI
+

∂2NIJPY

∂yI∂yJ
= D∇

2PY . (1)

Here PY (y;x, t) is the joint PDF of reactive scalars Y1, ..., Yns
that satisfy the

conventional scalar transport equation,

∂YI

∂t
+∇ · (vYI)−D∇

2YI = WI , (2)

where the indices I, J = 1, ..., ns run over the reactive scalars, u = u(x, t) is

the fluid velocity, uY (y;x, t) = 〈u|Y = y,x, t〉 is its conditional expectation, D

is the diffusivity, which as noted above is assumed to be the same for all species,

WI = WI(Y) is the reaction rate for species I and

NIJ(y;x, t) ≡ 〈D∂YI

∂xk

∂YJ

∂xl
|Y = y,x, t〉 (3)

is the conditional scalar dissipation. In flows with high Reynolds numbers,

the last term in Equation (1) is small and can be neglected. In general, our

consideration is also applicable to joint scalar-velocity PDF transport equations

[6], but in this work, we focus on investigating consistency of MMC models with

”scalars-only” PDF transport equations. An important attribute of the PDF

equation is that the chemical source terms appear in exact form and do not

require additional closures.
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2.2. Stochastic PDF models

Due to the large dimensionality of PDFs in reacting flows which usually in-

volve tens of chemical species in hundreds of chemical reactions, a direct solution

of PDF equations becomes extremely difficult and can practically be achieved

only by stochastic simulations. Consider a stochastic system specified by the

following differential equations of the Ito type:

dx∗ = U(ξ∗;x∗, t)dt+ (2D)
1/2

dω∗
x; (4)

dξ∗k = Ak(ξ
∗;x∗, t)dt+ bkl(ξ

∗;x∗, t)dω∗
l ; (5)

dY ∗
I = (WI(Y

∗) + S∗
I )dt. (6)

Most conventional PDF models [7] can be represented in the form of Equa-

tions (4)-(6). The velocities U∗ and positions x∗ in physical space evolve ac-

cording to the model represented by a Markov family, where the symbol ω is

used to denote Wiener processes. The evolution of the simulated reactive scalars

Y ∗
I depends on reaction rates WI and on a mixing operator, whose effect on Y ∗

I

is represented by S∗
I . The IEM, Curl’s (original and modified) and EMST mix-

ing models are common examples of conventional mixing operators. The values

ξ∗k can represent various physical quantities, such as velocities, accelerations,

dissipations, mixture fraction(s) or additional variables used to emulate these

quantities. In the context of MMC models, the variables ξ∗k are referred to as

reference variables. It is important to note that in MMC, the reference vari-

ables ξ∗k must not coincide with the variables Y ∗
I which simulate reacting scalars.

Hence, a typical MMC model has two distinct mixture fractions: simulated and

reference. As we wish to keep our consideration general, all these values are

denoted as nr stochastic variables ξ∗1, ..., ξ
∗
nr

.

The stochastic system of Equations (4)-(6) corresponds to the Fokker-Planck
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(direct Kolmogorov) equation,

∂PY ξ

∂t
+∇·(UPY ξ)+

∂WIPY ξ

∂yI
+
∂SIPY ξ

∂yI
+
∂AkPY ξ

∂ξk
−∂2BklPY ξ

∂ξkξl
= D∇

2PY ξ (7)

for the joint PDF PY ξ = PY ξ(y, ξ;x, t), where the diffusion coefficient in the

space of reference variables Bkl = bkibil/2 is introduced. In conventional mixing

models the mixing operator,

SI = S (yI , [PY (y)];x, t) , (8)

depends on the current value of reactive scalars and is a functional of the local

shape of the joint scalar PDF,

PY (y;x, t) =

∫

∞

PY ξ(y, ξ;x, t)dξ, (9)

and weakly depends on x and t.

The exact form of the functional depends on the mixing model. For example,

Equation (8) is specifically for IEM and Curl’s models. The mixing operator

depends (explicitly but weakly) on x and t due to changes in the characteristic

mixing time from point to point.

The equation for the modelled joint scalar PDF is easily obtained by inte-

grating Equation (7) over all reference variables resulting in equation,

∂PY

∂t
+∇ · (UY PY ) +

∂WIPY

∂yI
+

∂ (SI)Y PY

∂yI
= D∇

2PY , (10)

that must be consistent with Equation (1) to produce a valid model. U is a

model for the velocity, u, and here we introduce the conditional expectation of
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the velocity,

UY (y;x, t) =

∫
∞

U(ξ;x, t)PY ξ(y, ξ;x, t)dξ

PY (y;x, t)

= 〈U∗|Y∗ = y,x∗ = x, t〉 ∼= uY (y;x, t). (11)

The last equality in this equation indicates that UY is the model for uY . The

mixing operator,

(SI)Y =

∫
∞

SIPY ξ(y, ξ;x, t)dξ

PY (y;x, t)
= 〈S∗

I |Y∗ = y,x∗ = x, t〉, (12)

is not affected by the integration over the reference variables in Equation (12)

and (SI)Y = SI since SI specified by (8) does not depend on ξ. The princi-

pal condition for consistency of the model (10) and the PDF Equation (1) is

adequate modelling of dissipation by the mixing operator implying

(SI)Y PY = S(yI , [PY (y)])PY
∼= ∂NIJPY

∂yJ
. (13)

Integration of this equation over all y results in the following principal constraint

〈S∗
I |x∗ = x, t〉 =

∫

∞

S(yI , [PY (y)])PY dy = 0 (14)

since the right-hand side of Equation (14) is nullified after integration due to

PY → 0 as |y| → ∞. Integration of Equation (10) over all y after multiplying

this equation by yI , indicates that any consistent mixing operator S constrained

by Equation (14) can affect the variance of YI but preserves the mean values

〈YI〉 . This requires mixing to be performed locally in the physical space x. We

note that consistency of modelling is necessary but not sufficient for good mod-

elling of turbulent combustion — mixing should satisfy a number of additional
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conditions [21].

2.3. Generalised MMC and its consistency with the PDF equation

In the context of generalised MMC, a set of nc conditioning variables η1, ..., ηnc

is defined as a subset of the reference variables, that is η = η(ξ). The func-

tion η(ξ) is degenerate as the dimension of η is smaller than the dimension

of ξ and conditioning on these variables is not equivalent. A non-degenerate

replacement η′(η) of conditioning variables represents an equivalent condition

〈(·)|η′(η))〉 = 〈(·)|η〉. From this perspective, any smooth and non-degenerate

replacement of conditioning variables does not alter the model. This statement

is valid for a case of infinite resolution but, in practical simulations, the char-

acteristic mixing distance is always finite and rescaling of different directions

affects the outcome of conditioning of the mixing operator.

Here, we assume for the sake of simplicity that the first nc reference variables

are the same as the conditioning variables

ηi = ξi, i = 1, ..., nc (15)

i.e. the set of reference variables is given by

ξ =
{
η1, ..., ηnc

, ξnc+1, ..., ξnr

}
=




η1, ..., ηnc︸ ︷︷ ︸

η

, ζ1, ..., ζnr−nc︸ ︷︷ ︸
ζ





where the remaining reference variables ξnc+1, ..., ξnr

are denoted by ζ. There is

no loss of generality in this assumption, as we can always replace (or renumber)

the reference variables.

The MMC models do not change the mixing operator directly but only

require that mixing is performed locally in physical space x and in the space of

conditioning variables η. While this preserves the original features of the mixing
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model (linearity, independence, etc.), the mixing model is significantly enhanced

by enforcing localness. The MMC mixing operator SI is now represented by

SI = S
(
yI , [PY |η(y)];x, t

)
(16)

In MMC, SI is exactly the same functional of the conditional PDF PY |η =

PY η/Pη as SI is a functional of the PDF PY in conventional mixing models (8).

The PDF of the conditioning variables η is denoted by Pη = Pη(η;x, t). We

first examine if this change affects the consistency of the model and the PDF

equation. Since the form of the functional does not change, we can substitute

the function PY |η for the function PY in (13)

S(yI , [PY |η(y)])PY |η =
∂N◦

IJPY |η

∂yJ
. (17)

Here, N◦
IJ remains the same functional of the PDF but we use the ”◦” su-

perscript to indicate that N◦
IJ no longer corresponds to NIJ defined by (3) (at

least because the conditional variables ηi implicitly enter Equation (17) as addi-

tional parameters). We note that with (17) instead of (13) the mixing operation

satisfies the following constraint

〈S∗
I |η∗ = η,x∗ = x, t〉 =

∫

∞

S(yI , [PY |η(y)])PY |ηdy = 0 (18)

which is stronger than (14). Once again, the ”asterisk” superscript indicates

stochastic values of parameters and functions.

The modelling equation for PY is once again obtained by integration of (7)

over all ξ and is given by (10). For the mixing operator, we multiply (17) by
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Pη and obtain

(SI)Y PY =

∫

∞

SIPY ηdη =

∫

∞

S(yI , [PY |η])PY ηdη =

∫

∞

∂N◦
IJPY η

∂yJ
dη =

∂NIJPY

∂yJ

(19)

where

NIJPY =

∫

∞

N◦
IJPY ηdη (20)

is the MMC model for NIJ . Note that, according to (19), the MMC mixing

operation is still consistent with the dissipation term in the PDF equation.

This leads us to the following proposition:

Proposition 1. MMC modelling is consistent: conditioning of the mixing oper-
ation on reference variables (which can represent any modelled quantities) does
not alter the consistency of the mixing model with the PDF equation. Condi-
tioning of the mixing operator preserves linearity and independence provided the
original mixing model possesses these attributes.

2.4. The effect of conditioning on the mixing operator

As discussed in the previous section, consistency of MMCmodelling is impor-

tant but it does not tell us much about the actual effect of MMC conditioning.

We may note that conditioning does not compromise linearity, independence

and conservation of species and at the same time improves localness of mixing.

The main effect of MMC on the mixing operation can be expressed in terms

of the conditional quantity QI(η;x, t) = 〈Y ∗
I |η∗ = η〉 whose equation is ob-

tained after multiplying (7) by YI and integrating this equation over all y and

ζ yielding

∂QIPη

∂t
+∇ · (〈U∗Y ∗

I 〉η Pη) +
∂ 〈A∗

i Y
∗
I 〉η Pη

∂ηi
−

∂2
〈
B∗

ijY
∗
I

〉
η
Pη

∂ηi∂ηj

−D∇
2 (QIPη)− 〈W ∗

I 〉η Pη = 〈S∗
I 〉η Pη = 0

(21)
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where 〈...〉η denotes the conditional expectation 〈...|η∗ = η,x∗ = x, t〉. Here,

we take into account that 〈S∗
I 〉η = 0 in MMC mixing due to (18). This is not

valid in conventional mixing, where 〈S∗
I 〉 = 0 but 〈S∗

I 〉η 6= 0 and hence, under the

assumptions of a conventional mixing model, the term 〈S∗
I 〉η Pη would remain

on the right-hand side of equation (21). Therefore, the model for QI does not

depend on the mixing operator in MMC, while QI is directly affected by the

mixing operator in conventional models. MMC simulates only fluctuations with

respect to QI , which are called minor fluctuations (i.e. the minor fluctuations

can affect QI only through non-linear source terms WI). The implication of this

simple statement is profound and can be expressed by the following proposition:

Proposition 2. MMC generalises the PDF approach by combining it with con-
ditional combustion models based on the mixture fraction and other types of
reference variables; the conditional expectations QI do not directly depend on
mixing and are determined by the properties of the conditioning (reference) vari-
ables.

This proposition indicates that MMC is a hybrid model or, in more accurate

terms, a method for hybridisation of models that unifies conditional and PDF

approaches. MMC involves enforcing conditional properties, which are deter-

mined by the properties of the reference variables, on a mixing operation but

without corrupting the operator. This is considered in the following example.

The CMC model is an approximation for transport of reactive scalars in mix-

ture fraction space, which is consistent with the theory of the inertial interval

and has proven to be reasonably accurate in most conditions and is in theory

not restricted to the cases where conditional variances of reactive scalars are

small. However, practical application of first order CMC is generally confined

to these cases, since evaluation of chemical source terms expressed as functions

of conditional means becomes inaccurate for large conditional variance. This

can be remedied to some extent by solving equations for conditional variances

and covariances, but the system of second-order CMC equations quickly be-
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comes cumbersome and intractable even with a moderate number of reactive

scalars. In this case we would be better served by solving stochastic equations

of the PDF models. There is, however, another problem — conventional PDF

mixing models are generally not CMC-compliant. This indicates that the re-

active scalars are transported in the mixture fraction space with violations of

the relationships of the inertial interval, localness of the dissipative transport or

independence of reactive scalars. Practically, this means that, at least in some

cases where solutions are sensitive to transport in the mixture fraction space,

such mixing models can produce inaccurate results. Can this situation be reme-

died? Yes, MMC mixing allows for alteration of the mixing model in a way

that the resulting mixing model becomes CMC-compliant. This possibility of

CMC-compliant mixing was demonstrated in the original MMC [22, 25], where

conditional variables effectively represent the properties of the mixture fraction.

As mentioned previously the conditioning variables in MMC can represent

various properties of turbulent flows (note that any physical stochastic pro-

cess can be approximated by a Markov process of sufficiently high dimension).

Other known choices found to improve the quality of mixing models are velocity

components and shadow position variables [31]. The flamelet solutions, where

reactive species are parameterised by two parameters — mixture fraction and

scalar dissipation — indicate that the conditional variables representing scalar

dissipation can be useful in MMC [41]. It was found, however, that introducing

dissipation-like conditioning variables offers little improvement for MMC mod-

els [26]. Against our a priori expectations, DNS and models demonstrated a

lack of correlation between reactive scalars and the dissipation [26]. The lack

of correlations between reactive scalars jand conditioning variables does not in-

validate the MMC model but makes conditioning of mixing on dissipation prac-

tically useless, resulting in unnecessary computational expenses. While MMC
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mixing is conventionally applied to particle methods, conditioning of mixing is

also possible (at least in principle) for other implementations of PDF methods,

such as stochastic fields [14]. In the case of stochastic fields, MMC mixing be-

tween the scalar fields becomes conditional on the local value of the reference

fields.

2.5. Modelling micromixing and MMC

The physical process of diffusion of multiple scalars in turbulent flow is

chracterised by at least two main characteristic timescales. The first is the

characteristic time for dissipation of scalar fluctuations τd. While dissipation

physically occurs at small scales, the dissipation rate is controlled by the large-

scale transport. The dissipation time τd is similar to the integral time scale

and, at the leading order, does not depend on the Reynolds number. All mixing

models incorporate the time τd and matching the overall dissipation rate is

considered to be the key constraint imposed on all mixing models. The second

timescale is the characteristic time for generation of conditional fluctuations

τg. From a theoretical perspective, this time is linked to the characteristic

correlation time of the scalar dissipation, which is controlled by the processes

in the inertial interval of turbulence. Practically, the generation time τg is

significantly smaller than τd but noticeably larger than the time scale of the

smallest fluctuations τk (i.e. the Kolmogorov time scale) [23]. The generation

time τg can depend on the Reynolds number, although this dependence is weaker

than that of τk. The generation time becomes irrelevant when dissipation of a

single scalar or several linearly dependent scalars are considered. However, in

turbulent combustion, the time τg controls generation of conditional fluctuations

and extinction. In more complex combustion cases, where reaction rates are

relatively slow, it is important that mixing models match not only τd but also

τg.
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The term micromixing is often used as a synonym for ”mixing” emphasising

that, physically, mixing occurs at small scales [9]. It seems, however that the

use of micromixing modelling can be confusing in many cases as mixing models

are introduced to match only the dissipation time τd, which is a macro rather

than a micro-parameter. The term micromixing modelling seems to be justified

only when the mixing operation is introduced to model not only the large-scale

dissipation rate but also at least some more refined properties of mixing con-

trolled by smaller scales. Hence, our interpretation of modelling of micromixing

is aimed at matching at least the two time scales τd and τg. It should be noted

that micromixing modelling represents a goal and not the result: as any other

mixing model, a micromixing model can be good or bad.

Most conventional mixing models match only one characteristic time — the

dissipation time τd. In this case, the dissipation time of the mixing operator τS

is linked to the dissipation macroscales: τS ∼ τd. The MMC models are aimed

at matching both the dissipation time and the conditional generation time (i.e.

the level of conditional fluctuations) [23]. Theoretical estimates indicate that

in this case τS ∼ (τdτg)
1/2 [42] which is significantly smaller than τd. The

fluctuations with respect to conditional means, which are directly treated by

the mixing operator emulate micromixing while the larger scales are controlled

by the MMC reference variables. In MMC, the timescale τS is called the micro

(or minor) dissipation time to distinguish it from the conventional macro (or

major) dissipation time τd. Practically, in many MMC models the parameter

Λ = τS/τd, which is known as a localness parameter, is noticeably smaller than

unity. In the MMC regime, large-scale transport is mostly controlled by the

reference variables matching the dissipation time τd. This understanding of

micromixing can be summarised by the following proposition:

Proposition 3. Micromixing models differ from conventional mixing models
by matching not only the macro-dissipation time but also at least some of the
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more refined characteristics of turbulent mixing at smaller scales. MMC is an
example of micromixing model in accordance with this definition.

MMC models are aimed at modelling micromixing and typically use Λ that

is noticeably less than unity. In general, MMC has two main effects: 1) better

simulation of mixing due to localisation; and 2) modelling of micromixing. The

IECM (interaction with conditional mean [43]), which is the velocity conditioned

version of IEM improves the quality of simulation of mixing (as compared to

IEM) but cannot model micromixing as we understand it here since the mi-

nor fluctuations in IECM are constrained by macroscopic transport properties.

Hence, IECM is not a (true) MMC model. It needs to be stated that the pos-

sibility of modelling micromixing is not limited to MMC models. For example,

EMST [21] can be modified to produce different generation times τg [23].

3. Sparse and MMC modelling in the the LES context

Our consideration of the previous section remains valid for LES conditions

but instead of ensemble averaging, the average 〈...〉 should be understood as

LES filtering [8]. Hence, the MMC method remains consistent with the FDF

transport equation. There are, however, a number of features that are specific

to LES conditions. These features are discussed below. A large part of this sec-

tion is dedicated to a simple explanation of sparse-Lagrangian methods. While

from a theoretical perspective the sparse methods represent a concept indepen-

dent of MMC, practical success of sparse methods in the dramatic reduction

of computational cost of LES-FDF simulations is linked to using MMC. These

simulations consist of an Eulerian LES for the simulation of velocity, pressure,

and reference mixture fraction and a Lagrangian formulation of the FDF for the

simulation of the reactive composition field.
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3.1. What are the sparse methods?

The sparse models, which have been conceived and deployed in recent years

are characterised by a relatively the small number of Lagrangian particles used

in simulations. In FDF methods, the chemical reaction rates are evaluated only

on the Lagrangian particles and this evaluation dominates the computational

cost of the simulations, especially when the number of reactive species is large.

A thousandfold reduction in particle numbers, which is accompanied by a sim-

ilar reduction of the computational cost, has been demonstrated with sparse

methods [34, 36, 44]. While the possibility of reducing computational cost by

deploying fewer particles is obvious, the conceptual possibility of a substantial

reduction in the number of particles is not trivial, requiring alternative under-

standing of principles used in FDF simulations. Thus, the reduction of particle

numbers is not the key idea behind the sparse methods but only a consequence of

a new interpretation of Lagrangian PDF modelling. In conventional approaches,

which we call intensive, the target is to reproduce the joint composition PDF

in every Eulerian cell. Hence, in intensive methods: 1) mixing is confined to be

between particles within the same Eulerian cells; and 2) many particles per cell

are required. In intensive methods, the characteristic mixing scale ∆m, which

characterises the average distance between particles subject to mixing, coincides

with the size of the Eulerian grid ∆g.

In sparse methods, the particles are not confined to representing an FDF

within Eulerian cells, but are allowed to mix across Eulerian cells, while ∆m,

which represents the characteristic distance associated with this mixing, can be

greater than ∆g. The sparse methods consider every Lagrangian particle as a

sample of scalar composition at its location while mixing between particles is not

restricted by the cell boundaries. This introduces a more efficient mixing since

two close particles separated by Eulerian grid boundaries are allowed to be mixed
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in sparse but not in intensive simulations. Effectively, sparse FDF simulations

use two grids: a conventional Eulerian grid, which is used to represent velocity,

pressure and some scalar fields, and a moving Lagrangian grid, which is used

to represent the reactive scalars. The Lagrangian and Eulerian representations

of physical quantities are similar but not exactly the same (for example, the

Eulerian and Lagrangian representations of the mixture fraction have a degree of

stochastic variations with respect to each other). These stochastic variations of

the Lagrangian representations are controlled to represent subgrid fluctuations

of the scalar fields [45].

In general, sparse FDF simulations are characterised by four characteristic

scales: the Eulerian filtering scale ∆E , the size of the Eulerian grid ∆g, the La-

grangian filtering scale ∆L and the distance between Lagrangian particles ∆p.

While scales do not necessarily coincide that obvious constraints that ∆E ≥ ∆g

and ∆L ≥ ∆p, which are discussed below. In conventional LES, the filtering

scale ∆E cannot be smaller than the grid size ∆g, which restricts the resolu-

tion of the evaluated fields. Methodologically, we might wish to distinguish

modelling and numerical errors. The numerical errors can be made negligible

by selecting ∆g ≪ ∆E , although this causes a substantial increase of compu-

tational expenses. Practically, if we have a refined grid with small ∆g, the

corresponding reduction of ∆E to ∆E ≈ ∆g would ensure a better quality sim-

ulations with a wider range of resolved scales. Thus, most practical simulations

are conducted under conditions ∆E ≈ ∆g while the case ∆g ≪ ∆E is deployed

only for analysis of methodological issues.

This consideration is mirrored on the Lagrangian side. The analysis of

mixing [46] indicates that, in sparse conditions, the characteristic Lagrangian

filtering scale ∆L is connected to the characteristic mixing scale ∆L ≈ ∆m,

since mixing induces numerical diffusion that preforms filtering of the scalar
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fields. Obviously, since the mixing distance ∆m is not the characteristic dis-

tance between the closest particles ∆p but the characteristic distance between

the particles that are allowed to be mixed, ∆m must be the same or larger than

characteristic distance between the particles: ∆m ≥ ∆p. Theoretically, as in

the case of Eulerian grid, we can have a very large number of particles that

ensures that ∆p ≪ ∆m ≈ ∆L, which, as discussed further in the next subsec-

tion, would reduce the stochastic errors in instantaneous representations of the

reactive scalar FDF. As in the case of the Eulerian grid, this is computationally

expensive but does not increase the resolution and can be useful for restrictive

methodological analysis. In practical simulations, modelling errors can be de-

creased by reducing ∆m as much as possible for given computational resources

so that ∆m ≈ ∆p.

The above considerations can be summarised by the following proposition:

Proposition 4. Unlike conventional intensive FDF methods, sparse simula-
tions are not aimed at reproducing complete joint FDFs of reactive scalars locally
and instantaneously within each Eulerian cell but, nevertheless, still account for
subgrid fluctuations of the reactive scalars. In sparse simulations, mixing is not
restricted by or connected to the Eulerian grid.

There is another constraint that needs to be mentioned here: ∆L ≥ ∆E . In-

deed since Eulerian subfilter scales are not resolved for the velocity field, these

scales cannot be resolved for the scalar fields. While sparse mixing algorithms

(which are based on distance between particles irrespective of the cell bound-

aries) can be applied for the case of many particles per Eulerian cell, this would

not lead to reduction of ∆L below ∆E even if ∆m = ∆p ≪ ∆g since transport

processes at the Eulerian subfilter scales are modelled by particle diffusion and

the resolution of the velocity field limits the maximum possible resolution of the

scalar fields. In principle MMC modelling can be performed within each cell,

further improving the localisation of mixing but this is not considered here. The

influence of the number of particles per cell on simulations is considered further
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in the next subsection.

3.2. Reducing the number of particles

First, we consider the case of many Lagrangian particles per Eulerian cell

(i.e. ∆p ≪ ∆g). The conventional algorithm, which is here called intensive,

implies that any two or more particles within the same cell can be mixed, that

is ∆m ≈ ∆E . The sparse algorithm, however, traces particle positions within

each cell and allows for mixing of closest particles, whether these particles are

currently located within the same cell or not (hence ∆m = ∆p). Although

∆p ≪ ∆g, the filtering scales ∆L ≈ ∆E are practically the same for both

algorithms, intensive and sparse, due to the effect of subgrid diffusion modelled

by the random motion of particles. For the case of many Lagrangian particles

per Eulerian cell, the intensive and sparse algorithms can be expected to produce

very similar results.

The number of particles per cell can be reduced. In the case of intensive

simulations, this reduction is constrained by the need of having at least sev-

eral particles per cell since, otherwise, mixing becomes impossible. The same

constraint applies to the FDF methods using stochastic fields [14], which are

also necessarily intensive as they must involve a sufficient number of stochastic

fields. This constraint, however, does not apply to sparse simulations, where

particles can be found in the neighbouring cells to form mixing groups. Initially,

when ∆p ≪ ∆g, the reduction of the number of particle per cell does not change

the filtering scales ∆L ≈ ∆E ; the main effect of the reduction is the increase of

stochastic errors in evaluation of average properties within each cell, which, at

the leading order, does not change the model. (Strictly speaking mixing models

are not fully invariant with respect to the number of particles and reduction of

particles may lead to loss of stochastic independence of the particles or to in-

creased probability of extinction events [47]; simulations often indicate existence
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of a degree of dependence of the results on the particle numbers [48]).

The sparse mixing algorithm can easily reach the characteristic case of having

approximately one Lagrangian particle per Eulerian cell, where all major scales

coincide ∆p ≈ ∆m ≈ ∆L ≈ ∆E ≈ ∆g. Up to this case, the main effect of a

reduction in the number of particles is not a significant change of the Lagrangian

filtering scale but an increase of stochastic errors in the FDF representation

and a reduction in computational cost. Any further reduction of the number of

particles must increase the distances ∆p, ∆m and ∆L above ∆g. This changes

the model by reducing localness of mixing. There is, however, a potential benefit

in having ∆m ≈ ∆L > ∆E ≈ ∆g due to a further reduction of the computational

cost associated with evaluating chemical species, which can be particularly high

for realistic kinetics.

3.3. Stochastic and biased errors in sparse simulations

The main implication of the reduction of the number of particles per cell

is the increase in the stochastic error for any average (filtered) quantity deter-

mined locally and instantaneously. This, however, does not necessarily mean

that reduction in the number of particles introduces additional bias into simu-

lations. In fact, if the mixing distances are kept the same, reducing the number

of particles does not change the model at the leading order. However, the char-

acteristic filtering distance ∆L cannot be smaller than the characteristic mixing

distance ∆m, which in its turn cannot be smaller than the distance between the

particles ∆p. Hence, a reduction of the number of Lagrangian particles below

the number of Eulerian grid points increases ∆L ≈ ∆m over ∆g and changes the

model due to the bias associated with diffusion induced by mixing [35, 46, 47].

Numerical convergence in LES is conventionally investigated by reducing

grid size ∆g while keeping the Eulerian filtering scale ∆E the same (reducing

∆E consistently with ∆g would change the model). In the same way, numerical
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convergence of PDF/FDF methods can be tested by increasing the number of

particles but keeping the characteristic mixing distances the same. In conven-

tional intensive methods, the mixing distance ∆m is linked to ∆g and does not

change with increasing the number of particles, and a similar effect of fixing

mixing distances can be achieved in sparse simulations. As in LES convergence

tests, this requires reducing ∆p while keeping ∆L = ∆m the same, which corre-

sponds to abandoning mixing of the closest particles. Theoretically, the number

of particles can be arbitrarily large while the model still remains sparse [46], but

practically the number of particles is limited by computational resources. We

note that convergence tests are useful only from a methodological perspective

but are inefficient from a practical perspective as they do not represent optimal

simulations (i.e. highest quality and resolution at minimal computational cost).

Most LES studies are conducted with the filter size being fixed to the grid size.

Results of a numerical convergence study for sparse-Lagrangian FDF simulation

are presented in Section 4.1.

Practical sparse simulations have to tolerate significant stochastic errors,

which must not be confused with other, regular errors present in the simulations.

Imagine particles distributed as one (or very few) particles per cell with the

values of species generated randomly according to an absolutely correct FDF.

In this case and assuming steady-state flow, we can easily evaluate the correct

FDF over larger volumes or longer periods of time, thereby reducing stochastic

error, but we cannot determine these FDFs locally and instantaneously [49]. In

combustion applications, when the overall production of pollutants is of interest,

we might not need detailed FDF distribution of all species in every cell at every

time moment. In this case reducing the number of particles is a good idea — this

is exactly the idea that is implemented in sparse methods. There are, however,

more subtle problems in such reduction that need to be considered.
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The main problem comes from the fact that combustion, which is governed

by highly non-linear kinetic equations, can be extinguished. If there are many

particles in every cell, a particle might occasionally acquire a low temperature

sufficient for extinction but this does not cause global extinction due to im-

mediate mixing with other particles which are burning. If, however, there are

very few particles in the cell and one of the particles occasionally acquires a low

temperature, then the whole cell can become extinct after mixing. Extinction in

one cell can propagate into other cells causing global extinction. A low number

of particles can increase the statistical significance of rare events. This effect is

exacerbated by the trend of the Curl’s and IEM models to over-produce extinc-

tions due to non-local mixing. In sparse conditions, mixing is often performed at

larger distances ∆m > ∆g, which reduces localness and also stimulates extinc-

tions. Hence, reducing the number of particles in sparse conditions is not likely

to work when mixing is modelled by conventional models and this expectation

corresponds to our experience (here we refer only to the IEM and Curl’s models

— it is quite possible that EMST [21], which has good localisation, can work

under sparse conditions but this has not been tested yet). Practically, sparse

methods require modelling of micromixing and the correction of conventional

mixing models by MMC.

3.4. MMC in LES conditions

The LES-MMC model allows for different interpretations. For example, one

might see the whole Eulerian LES as producing suitable conditioning variables

for generalised MMC. The simplest explanation of the LES-MMC approach is re-

lated to flamelet-type considerations. The key assumption of the flamelet model

[5] is a strong dependence of the reactive scalars on the mixture fraction, which

is expressed mathematically by asymptotic stretching of the variable associated

with the mixture fraction. In doing this asymptotic stretching, the conventional
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derivation of the flamelet model discriminates physical coordinates and, thus, is

not fully coordinate-invariant. The sparse-Lagrangian MMC approach in LES

conditions for non-premixed flames introduces a metric that defines the effective

distance between particles A and B by

d2AB =
3∑

i=1

(
√
3
x
(A)
i − x

(B)
i

rm

)2

+

(
f (A) − f (B)

fm

)2

(22)

where f (A) is the Eulerian value of the reference mixture fraction, evaluated at

the location of particle A, x
(A)
1 , x

(A)
2 and x

(A)
3 are the particle’s physical coordi-

nates and rm and fm are parameters whose ratio fm/rm controls the degree of

MMC localisation. This ratio is linked to the previously used localisation pa-

rameter of λ [34, 44], with fm/rm ≈ Lxλ/Lf where Lx and Lf are characteristic

physical and reference scales set to the jet nozzle radius and unity, respectively.

Here, fm is treated as a free parameter while the choice of rm is constrained

by theoretical considerations and discussed in previous work [49]. If fm is large

(more accurately fm/rm → ∞), then equation (22) defines the conventional

distance normalised by rm. If fm is sufficiently small, then the mixture fraction

term becomes very significant.

Conceptually, this corresponds to the coordinate-invariant version of the

flamelet model [50] which deploys a flamelet transformation without discrimi-

nating the physical coordinates, which is the same as the conventional flamelet

model at the leading order but possesses additional useful properties that are

important for our consideration. This procedure also corresponds to MMC con-

ditioning, assuming that the MMC reference variables are represented by f (...).

The Eulerian mixture fraction f should be distinguished from the Lagrangian

mixture fraction, which is evaluated from the simulated reactive scalars Y ∗
I —

MMC models with mixture fraction conditioning have two mixture fractions.

Let us consider in detail how the new definition of the distance, defined in
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Equation (22) affects mixing.

If simulations are conducted in multiple dimensions, the positions of different

particles never coincide and mixing has to be performed with some finite physical

distance between particles. This results in additional diffusion induced by the

mixing process [45, 47]. This diffusion performs filtering at distances ∆m ≈

∆L [34]. Hence, only particles which have minimal distance between them are

allowed to be mixed. Consider Curl’s mixing shown for the particles shown in

Figure 2 of several notional particles separated by some physical distance in a

mixture fraction field. If the conventional definition of distance (i.e. fm/rm =

∞) is adopted, particle A is to be mixed with particle B and this may cause an

extinction, while strong dependence of reactive scalars on f results in excessive

numerical fluxes across the surface of f = const due to a lack of localness in

this direction, as illustrated in Figure 2. This problem could be addressed by

increasing the number of particles and reducing ∆L, but this path would be

computationally expensive and MMC offers an alternative. If fm is sufficiently

small, then particle C is closest to the particle A according to the new definition

of distance (Equation (22)). This improves modelling by localising mixing in the

mixture fraction space, reducing excessive numerical fluxes across the surface of

f = const and, thus avoiding spurious extinctions.

The new definition of mixing also has a side-effect; the distance between

particles along the surfaces of f = const are increased. This results in in-

creased numerical diffusion along these surfaces. In most cases, this increase is

not crucial, since the evolution of conditional expectation QI = 〈YI |f〉 is not

sensitive to diffusional fluxes along the surfaces of f = const as shown for the

coordinate-invariant version of the flamelet model [50] (provided, of course, that

these fluxes do not become excessively large). Note that the MMC approach is

aimed at modelling both the conditional expectation Q and fluctuations with
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respect to Q.

It must be noted that the validity of the flamelet model is not needed and is

not assumed here or anywhere in MMC while the reactive scalars have signifi-

cant fluctuations with respect to any type of flamelet or equilibrium solutions.

It is important, however, that the reactive scalars in non-premixed cases have

a significant correlation with the mixture fraction, otherwise conditioning on

mixture fraction is formally correct but is much less useful from a practical per-

spective. This does not exclude the use of reference variables besides mixture

fraction. We thus do not expect that the dramatic thousandfold reduction of

the computational cost (which has been achieved in sparse MMC simulations) is

possible for complex flows, where the correlation between the mixture fraction

and the reactive scalars is less significant. With respect to LES of non-premixed

combustion, this correlation is exploited to our advantage as simpler cases al-

low us to use more economical setups for LES with MMC using relatively few

particles, but we note that more complex cases may demand an increased num-

ber of particles. The hybrid nature of the MMC approach is an opportunity

to have a single universal model that can perform both economical simulations

of relatively simple cases and expensive simulations of more complex cases and

leads to our fifth and final proposition:

Proposition 5. The key factors that allow for a reduction of computational
cost in sparse-Lagrangian large eddy simulations are the conceptual flexibility of
sparse models, the incorporation of a physical understanding of turbulent com-
bustion processes and the conditioning of mixing into PDF modelling achieved
by MMC hybridisation of the model. This approach is universal, in that it can
work under more sparse and more intensive conditions (without changing the
algorithm) as demanded by the complexity of the flame case.

4. Simulation results and evaluation of MMC parameters

We illustrate the performance of the generalised MMC model under sparse

conditions for three flame cases. In each case, MMC conditioning is enforced on
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Modified Curl’s model [19, 20]. Previously published results from an idealised

jet flame with a one-step flamesheet reaction and a thin reaction zone [8] and the

simulations of the Sandia D-F flame series [38] are discussed in comparison with

new sparse simulations of the Cabra lifted hydrogen flame [39]. For these cases,

we examine the choice of the sparse MMC parameter fm, which determines the

characteristic distance between particles in the reference space in (22) and is

the key MMC parameter determining the degree of localness and controlling

conditional fluctuations (the details of selection of the parameters can be found

in other publications [36, 49]).

In line with our five propositions, we demonstrate the ability of sparse meth-

ods to enforce conditional moments, QI , and control conditional fluctuations

despite a relatively low number of particles and to balance computational cost

and level of detail in the predictions. Indeed, all three cases are simulated on

single workstations, with the relatively low computational cost enabling the use

of detailed kinetics for the Sandia and Cabra flames. The simulations of the

idealised jet flame and the Sandia series were performed using the Flowsi LES

code initially developed by Kempf et al. [51] which was modified to incorporate

the hybrid FDF-MMC model. For these two flames, we report some new results

in addition to those reported previously [36, 49]. The Cabra lifted flame was

tested on the OpenFOAM platform with the use of a newer FDF-MMC code,

mmcFOAM , which can handle both sparse and intensive cases and has been

developed through cooperation of several universities (The University of Syd-

ney, The University of Queensland, Bundeswehr University at Munich, Stuttgart

University and others).

4.1. One-step flamesheet reaction

This case enforces conditions similar to those used in Colucci et al. [8], where

fuel and oxidiser react rapidly in a one-step irreversible reaction to form the
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product. The thinness of the reaction zone for this idealised flame sheet makes

it a difficult test case for mixing models. Non-local mixing models, such as IEM

and Curl’s, cannot reproduce the solution, while EMST performs quite well in

this case [8]. Conceptually, sparse conditions decrease localness and exacerbate

extinctions but the enforcement of localised mixing by MMC is shown to improve

simulations even under sparse conditions. The details of these MMC simulations

are given in [49].

Figure 3 shows scatter plots of the burning index versus instantaneous FDF

mixture fraction field (z) for several particle densities - an intensive case of 20

Lagrangian particles per Eulerian cell (denoted as 20L/1E), a case of inter-

mediate particle density with 1L/1E and a sparse case of 1L/8E. We use the

MC mixing model without localisation (corresponding to an infinite fm) and

MMC-MC mixing model with two localisation values fm of 0.04 and 0.06.

The reactive scalar is strongly dependent on localisation, as shown in Fig-

ure 3. The intensive case with no conditioning produces more conditional fluctu-

ations and has the greatest departure from the equilibrium or flamelet solution

of all the cases shown. Enforcing localness on the mixing operator via selection

of a small, finite value of fm consistently reduces these fluctuations. Condi-

tional fluctuations are strongly dependent on the degree of localisation in the

reference space, with a smaller value of fm leading to fewer departures from

the equilibrium composition and to a more accurate prediction for this case.

This level of control over the fluctuations does not appear possible with the

non-local mixing model. The value fm of 0.04 produces results closest to the

equilibrium condition out of the cases presented here. Our previous work [49]

indicates that fm of 0.02 reduces scattering even further. The values fm from

the range [0.02,0.04] tends to produce reasonable results for this case.

The effect of particle density or sparseness on localisation is evident in Fig-
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ure 3. The decrease of the number of particles from 20L/1E to 1L/1E and finally

to 1L/8E for fm of 0.04 progressively increases scattering. For this sparse case,

more localised mixing with a lower fm is necessary to offset the reduction in par-

ticles. Per our fifth proposition, MMC enables flexible use of the PDF method

and allows for the possibility of reducing computational cost and/or increasing

quality of simulations by assigning useful properties onto the PDF model.

Figure 1 illustrates a numerical convergence test conducted for the same case

where three simulations with different particle number densities are considered.

We first consider a single set of particles (1L/32E), and then double (1L/16E)

and quadruple (1L/8E) the original number of particles. The algorithm for

this convergence check must ensure that mixing distances remain the same,

and this can be achieved in many different ways. We use a relatively simple

algorithm, where particles are divided into two or four groups at random prior

to the nearest-neighbourhood search, such that each group contains the same

number of particles. Mixing couples are then determined within each group.

This ensures that the mixing distances between particles of each group remain

consistent and all three cases have a fixed degree of localisation. A trend of

convergence is visible in Figure 1 with an increase in particle numbers. We note

that increases in the number of particles are limited by computational cost, while

increases in the number of particles without a corresponding improvement in

resolution are mostly impractical. Further details on this test can be found

in [52].

4.2. Sandia Flames D, E and F

We now present results for the Sandia flame series, where the Reynolds

number of a piloted methane jet injected into a co-flow increases progressively

from flame D to F. Flame D has the lowest injection velocity and is the most

stable and is easiest to simulate relative to the other cases. Conversely, flame
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F is close to global extinction and is the most challenging case to simulate.

Modelling of the Sandia flame series requires accurate simulation of conditional

variances. The conventional models (Curl’s and IEM) tend to overestimate the

level of conditional fluctuations, have difficulties in reproducing flame E and

keeping flame F burning, while EMST can reproduce the series quite well, albeit

with some underprediction of conditional fluctuations [7]. Generally, sparseness

of simulations strongly exacerbates the extinction problem but, in combination

with MMC, the sparse-Lagrangian model can predict the series reasonably well

due to strong control over the level of conditional fluctuations [12, 36, 44].

Simulations with one Lagrangian particle per 27 Eulerian cells (1L/27E)

are employed for flames D-F. The GRI-Mech 3.0 kinetic scheme [53] with 219

reaction steps and 34 species (NOx excluded) is applied to each particle. Further

details on the setup of this case can be found in previous publications [12, 36, 44].

The dissipation of mixture fraction is well matched by the LES for each flame

which permits the accurate prediction of the more refined flame characteristics,

per our third proposition.

Figures 4 and 5 shows radial profiles of the steady-state mean and rms

of the OH mass fraction. These unconditional profiles of OH and CO match

reasonably well with experimental data. Enforcing MMC on the micromixing

model permits control over conditional fluctuations and variance. First and

second unconditional and conditional moments of the reactive species are of

comparable accuracy to previously published intensive Lagrangian simulations

using stochastic fields by Jones and Prasad [14]. Most importantly, the results

for the Sandia flames demonstrate that a single value of fm = 0.03 correctly

predicts the trend of increasing local extinction with progressively increasing jet

velocity. This value of fm is consistent with the values used for the flamesheet

case in the previous subsection of fm (0.02-0.04). We note that an increase to
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fm = 0.035 improves the fluctuations for flame D without resulting in changes

to the mean but causes global extinction in flame F [52].

4.3. Cabra Lifted Flame

The Cabra hydrogen lifted flame [39] exhibits great sensitivity to physical

conditions of the case. For example, a study replicating the original experimen-

tal conditions yields a lift-off height of approximately 30 diameters compared to

the original value of 10 [54]. In another parametric study, a reduction in the tem-

perature of the vitiated coflow from the experimental value of 1045 K to 1020 K

results in lift-off height increasing from approximately 10 to 20 diameters [55].

From a mathematical perspective, this problem is ill-posed. In the development

of the flame, convective processes and ignition plays a key role, while the quality

of the mixing model has been found to be of less importance [56]. Generally,

the a priori expectation is that more intensive simulations might be necessary

to reproduce this flame. Here, we report the results of sparse simulations that

nevertheless model this flame quite well. The lift-off height, however, appears

to be sensitive to the localisation parameter.

This lifted flame is formed by a cold fuel jet with a bulk velocity of 107 m/s

at 305 K issuing into a hot co-flowing oxidiser moving at 3.5 m/s at 1045 K.

The central nozzle of the burner has a diameter of d = 4.57 mm and extends

70 mm above a perforated base plate, which induces the vitiated co-flow. The

fuel composition by volume is 25% H2 and 75% N2. The stoichiometric mixture

fraction is zst = 0.47.

The LES problem is formulated for a 3D polar coordinate system at the

central nozzle transitioning radially to a Cartesian coordinate system. There

are 640 equally spaced cells in the axial direction, 8 and 24 cells in the radial

direction of the core and co-flow respectively, and 32 cells in the azimuthal

directions. The number of Eulerian cells totals to approximately 655,000 with
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the smallest cells at the axis measuring 0.3mm × 0.4mm × π/32 radians. The

domain is 30d × 30d × 55d, where d is nozzle diameter as noted above.

Reaction source terms are evaluated from the chemical kinetic scheme of

Mueller [57] containing nine species and 21 reactions. One particle per 32 Eu-

lerian cells (1L/32E) is employed in all the lifted flame simulations shown here.

Based on the prescribed inlet jet velocity of 107 m/s and the axial domain

length of approximately 250 mm, a single flow-through time is 2.3 ms. Each

simulation is run for a minimum of five flowthrough times prior to any data sam-

pling. Following this, data is sampled over approximately five flowthrough times

from the time at which flame stabilisation is observed. Results are recorded and

sampled every 500 time steps typically for 30000 time steps, with sampling and

averaging performed over approximately 60 time steps.

We present axial profiles of the experimental and Lagrangian and Eulerian

simulated mean and rms mixture fraction for a simulation case with fm of 0.08,

which yields the closest match to the experimental result of mixture fraction in

Figure 6. Although slightly under-predicted, the mean Lagrangian results are

noticeably better than the Eulerian mixture fraction predictions which are overly

diffusive. Per our proposition that mixing is conditioned purely on the reference

variable, the Lagrangian and Eulerian mixture fraction fields are topologically

similar, reinforcing the role of the Eulerian mixture fraction as this reference

variable. The improved accuracy of the sparse-Lagrangian relative to the Eu-

lerian results is attributed to the mixing timescale model which is valid in the

inertial range,

τA,B
S = C−1

L

f̃
′2
L

f̃
′2
E

τd, (23)

where f̃
′2
E is the subfilter variance of reference mixture fraction at the Eu-

lerian filtering scale ∆E and f̃
′2
L is variance of particle mixture fraction at the
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mixing scale ∆m. The parameter CL can also be tuned to control conditional

variances but is fixed here. We note here that the minor dissipation time τS

and the major dissipation time τd, where Λ = τS/τd (or the ratio of rela-

tive importance of the chemical processes to the mixing processes), are linked

by a constant CL in Equation (23). Equation (23) adjusts the particle mix-

ing timescale so that the rate of decay of Lagrangian scalar variance matches

that of the Eulerian LES while accounting for the increased length scale in the

Lagrangian field ∆L.

The sparse-Lagrangian MMCmodel tends to over-predict the peak axial mix-

ture fraction rms, which is typical for other FDF simulations. In comparison,

the time-averaged reference mixture fraction RMS is generally in better agree-

ment with experimental data. While lower Lagrangian mixture fraction RMS

predictions are possible through the reduction of the micromixing timescale,

numerical diffusion would likely result in more inaccurate predictions for the

mean. In the presented simulation, the micromixing time constant was set to

CL = 1.25. This slightly higher value of CL compared to the usual value of

unity has the effect of reducing the mixing timescale τS and decreasing the con-

ditional fluctuations. The effect of CL is relatively minor and CL = 1 is also

suitable for these simulations. Figure 7 shows radial profiles of the steady state

mean and RMS of the Lagrangian mixture fraction. We generally observe good

agreement between the simulated and experimental means at all locations with

slight over-prediction of the rms.

Axial profiles of experimental and unconditional Lagrangian mean and rms

temperature are shown in Figure 8. The predictions are generally in very good

agreement with experimental data, although mean and rms temperatures are

slightly over-predicted up to 30d from the nozzle which can be associated with

the early jet break up that is noticeable in the axial mixture fraction profile.
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The OH radical, a product of chain initiation, is a good indicator of flame

lift-off height. Using a threshold of YOH of 2x10−4 we predict lift-off to occur

at 9.4d from the inlet, relatively close to the experimental lift-off height of 10d.

Figure 9 shows steady-state mean radial profiles of OH at several axial locations.

Mean OH is under-predicted at x/d = 11, indicating that the width of the inner

jet core is over-predicted. The under-prediction of OH at this location can be

attributable to the slight difference in the predicted lift-off height relative to

experimental results. It is also worth noting that the particle mixture fraction

predictions are accurate at this point. The accuracy of our results is compa-

rable to the LES-CMC simulations by Navarro-Martinez and Kronenburg [58]

which employ the detailed Yetter mechanism [59]. OH predictions appear more

accurate in the intensive RANS-PDF calculations by Cao et al. [56] which em-

ploy 100 Lagrangian particles per cell with EMST as the mixing model and

the detailed Li mechanism [60]. Steady-state conditional OH profiles shown in

Figure 10 also compare reasonably well with experimental data. The stochastic

error observed in this figure, which is also present in the OH profiles of the

Sandia series in Figure 4, is attributed to the sparse distribution of particles in

both cases.

It is possible to model the Cabra hydrogen flame with reasonable accuracy

under sparse conditions, reinforcing propositions three, four and five. Condi-

tioning mixing on the mixture fraction, as in the previous two cases, is necessary

to predict the unconditional and conditional means and variances, and lift-off

height. We note that increasing fm reduces the role of MMC and in the limit,

this corresponds to modified Curl’s model. We now examine the influence of

fm on the reactive field and lift-off height. Figure 11 shows lift-off height nor-

malised by jet nozzle diameter versus fm. We note that the simulation results

for each case is sampled over the same period of time once stabilisation is ob-
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served. There is a high degree of lift-off height sensitivity to fm, with flame

attachment to the nozzle occurring when fm < 0.07. Lift-off height increases

monotonically with fm as the mixture fraction term in Equation (22) becomes

less significant.

Figure 12 compares scatter plots of OH for two values of fm with otherwise

identical model parameters. Both sets are sampled at the same axial location

over the full sampling times and are sufficiently far downstream of the sta-

bilisation point. The case with a lower fm (of lower lift-off height) has fewer

conditional fluctuations and exhibits a more flamelet-like band compared to that

with a higher fm which has more fluctuations. These fluctuations are directly

treated by the mixing operator to emulate micromixing, with larger scales being

controlled by the mixture fraction.

Under these sparse conditions imposed for the lifted flame, we observe that

mixing performed with reduced localness and corresponds to relatively large

mixing distances ∆m reduces flame stability and can stimulate extinctions. It

is conceivable that the occurrence of isolated turbulent events where the tem-

perature (and corresponding scalars) of a small number of particles deviates

sufficiently from the mean can propagate into other cells causing global extinc-

tion. These rare events are particularly important for very sparse simulations

where each particle represents a significant mass of fluid. As long as the lift-off

height is matched by selecting fm, the simulation of reactive scalars is satisfac-

tory despite a high degree of sparseness in the simulations.

The value fm ≈ 0.08, which ensures the best match with the experiments is

noticeably higher than fm ≈ 0.03 which was found to be a good choice for both

the Sandia flames D-F series and for the one-step flamesheet case previously

discussed. Reactive scalar predictions are strongly dependent fm, with larger

values causing departure from flamelet-like conditions and greater conditional
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variance. It seems that highly sparse simulations are not particularly suitable

for this lifted flame. The unusual value of fm = 0.08 is likely a reflection of this

fact.

5. Conclusions

This work presents the current understanding and theory on the generalised

Multiple Mapping Conditioning approach in its most simple and transparent

form as opposed to a step-by-step historic development. MMC is viewed as

a hybrid approach, which effectively blends PDF models with CMC, flamelet

or other models that can be formulated in terms of conditional expectations.

MMC essentially enforces the desired conditional properties on the mixing op-

eration. This hybrid nature of MMC improves quality of simulations and allows

for greater control in simulation of micromixing. The sparse approach repre-

sents an alternative interpretation of Lagrangian modelling that is not aimed at

reproducing joint FDFs of reactive scalars within every Eulerian cell but, nev-

ertheless, still fully account for subfilter fluctuations of reactive scalars. While,

conceptually, the sparse approach is not necessarily linked to MMC, all highly

sparse simulations have been performed with the assistance of MMC. Changing

the mixing distances alters the model, although numerical convergence can be

checked by increasing the particle number density and simultaneously preserving

these characteristic mixing distances.

We present new sparse-Lagrangian MMC simulations of the Cabra lifted

hydrogen flame – the case, which is mathematically ill-posed and especially dif-

ficult for sparse-Lagrangian MMC. The simulations are compared with sparse-

Lagrangian MMC simulations of the idealised jet flame with one-step flamesheet

reaction and the methane Sandia Flame series D-F. The MMC localisation pa-

rameter, which is a key parameter in MMC modelling of micromixing, is rep-
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resented in sparse-Lagrangian MMC simulations by fm. While the simulations

of methane Sandia Flame series D-F and the idealised jet flame have consistent

values of fm ≈ 0.03, the simulations of the Cabra lifted flame are less localised

with fm ≈ 0.08. We believe that very sparse simulations are less suitable for

highly sensitive lifted flames. Nonetheless, sparse-type algorithms and MMC

are universal, in the sense that there is no need to alter the mixing algorithm

and they remain applicable for more sparse and more intensive simulations.
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6. APPENDIX: Original MMC

The original MMC is a special case of generalised MMC, which is charac-

terised by an important additional condition: nc = nr. This means that condi-

tional variables coincide with the reference variables η = ξ since any selection

of η = η(ξ) 6= ξ is equivalent to conditioning on ξ). While generalised MMC

does not impose significant restrictions on the stochastic process emulating the

conditioning variables (since any stochastic process can practically be approx-

imated by Markov process of sufficiently large dimension), the Markov-family

restrictions impose significant constraints on the reference variables in original

MMC. Nevertheless, as a special case of generalised MMC, original MMC pos-

sesses all properties of generalised MMC and thus, is consistent with the pdf

transport equation. In addition, the original MMC has some specific proper-

ties that are not applicable to generalised MMC. These properties are briefly

discussed in this Appendix.
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First, equation (21) takes the form

∂QIPη

∂t
+∇ · (UηQIPη) +

∂AiQIPη

∂ηi
− ∂2BijQIPη

∂ηi∂ηj
−D∇

2 (QIPη) = 〈W ∗
I 〉η Pη

(24)

which is closed as long as we know how to evaluate the source term. The

correlations of equation (21) are decoupled since all random variables ξ∗i are

present as conditions ξ∗i = ηi in equation (24). Hence, the distinctive feature of

original MMC is existence of a closed deterministic equation for Q, which is not

the case for generalised MMC. The term D∇
2 (QIPη) is small in high Reynolds

flows and this term was neglected in original MMC [22]. The generalised MMC

has only one formulation — stochastic with YI
∼= Y ∗

I (i.e. the reactive scalars YI

are modelled by Y ∗
I ); while the original MMC has two formulations: stochastic,

where YI
∼= Y ∗

I , and deterministic, where YI
∼= QI . This is related to another

non-trivial point, which has been demonstrated for original MMC [22]: that

modelling the reactive scalars by QI is also consistent with the pdf equation.

If considered as a pdf model, the deterministic version of the original MMC

represents a generalisation of the multidimensional Mapping Closure combined

with CMC — this gave MMC its name of Multiple Mapping Conditioning.

References

[1] V. R. Kuznetsov, V. Sabel’nikov, Turbulence And Combustion, 1st Edition,

Hemisphere Publishing Corporation, 1990.

[2] P. Libby, F. Williams, Turbulent combustion: fundamental aspects and a

review, Academic Press, London, 1994.

[3] R. Bilger, Turbulent flows with nonpremixed reactants., in: P. Libby,

F. Williams (Eds.), Turbulent Reacting Flows., Springer, 1980, Ch. 3, pp.

65–113.

37



[4] A. Klimenko, R. Bilger, Conditional moment closure for turbulent com-

bustion, Progress in Energy and Combustion Science 25 (1999) 595–687.

doi:10.1016/S0360-1285(99)00006-4.

[5] N. Peters, Turbulent Combustion, Cambridge University Press, 2000.

[6] S. Pope, Pdf methods for turbulent reactive flows, Progress in Energy and

Combustion Science 11 (1985) 119–192. doi:10.1016/0360-1285(85)90002-4.

[7] D. Haworth, Progress in probability density function methods for tur-

bulent reacting flows, Progress in Energy and Combustion Science 36.

doi:10.1016/j.pecs.2009.09.003.

[8] P. J. Colucci, F. A. Jaberi, P. Givi, S. B. Pope, Filtered density function

for large eddy simulation of turbulent reacting flows, Physics of Fluids 10

(1998) 499. doi:http://dx.doi.org/10.1063/1.869537.

[9] R. Fox, Computational Models for Turbulent Reacting Flows, Cambridge

University Press, United Kingdom, 2003.

[10] S. Heinz, Statistical Mechanics of Turbulent Flows, Springer-Verlag, Berlin,

2003.

[11] V. Raman, H. Pitsch, A consistent les/filtered-density function for-

mulation for the simulation of turbulent flames with detailed chem-

istry, Proceedings of the Combustion Institute 31 (2007) 1711–1719.

doi:doi:10.1016/j.proci.2006.07.152.

[12] M. J. Cleary, A. Y. Klimenko, J. Janicka, M.Pfitzner, A sparse-lagrangian

multiple mapping conditioning model for turbulent diffusion flames, in:

Proc. Combust. Inst., Vol. 32, 2009, p. 14991507.

38



[13] S. Navarro-Martinez, A. Kronenburg, Les-cmc simulations of a lifted

methane flame, Proceedings of the Combustion Institute 32 (2009) 1509–

1516. doi:10.1016/j.proci.2008.06.178.

URL http://dx.doi.org/10.1016/j.proci.2008.06.178

[14] W. Jones, V. Prasad, Large eddy simulation of the sandia flame series (d

- f) using the eulerian stochastic field method, Combustion and Flame 157

(2010) 1621–1636. doi:doi:10.1016/j.combustflame.2010.05.010.

[15] T. Echekki, E. Mastorakos, Turbulent Combustion Modelling. Advances,

New Trends and Perspectives., Springer, 2011.

[16] J. Villermaux, J. Devillon, Representation de la coalescence et de la re-

dispersion des domaines de segregation dans un fluide par un modele

d’interaction phenomenologique, Proceedings of the second international

symposium on chemical reaction engineering (1972) 1–13.

[17] C. Dopazo, E. O’Brien, An approach to the autoignition of a turbulent

mixture, Acta Astronautica 1 (1974) 1239–1266.

[18] R. Curl, Dispersed phase mixing: I. theory and effects in simple reactors,

AIChE Journal 9 (1963) 175–181. doi:10.1002/aic.690090207.

[19] J. Janicka, W. Kolbe, W. Kollmann, Closure of the transport equation

for the probability density function of turbulent scalar fields., Journal of

Non-Equilibrium Thermodynamics 4 (1977) 47–66.

[20] R. Lindstedt, S. Louloudi, E. Vos, Joint scalar probability density function

modeling of pollutant formation in piloted turbulent jet diffusion flames

with comprehensive chemistry, Proceedings of the Combustion Institute 28

(2000) 149–156. doi:doi:10.1016/S0082-0784(00)80206-4.

39



[21] S. Subramaniam, S. Pope, A mixing model for turbulent reactive flows

based on euclidean minimum spanning trees, Combustion and Flame 115

(1998) 487–514. doi:10.1016/S0010-2180(98)00023-6.

[22] A. Klimenko, S. Pope, The modeling of turbulent reactive flows based

on multiple mapping conditioning, Physics of Fluids 15 (2003) 1907.

doi:http://dx.doi.org/10.1063/1.1575754.

[23] A. Klimenko, Matching conditional moments in pdf modelling of non-

premixed combustion, Combustion and Flame 143 (2005) 369–385.

doi:doi:10.1016/j.combustflame.2005.08.014.

[24] M. Cleary, A. Klimenko, Multiple mapping conditioning: a new modelling

framework for turbulent combustion., in: T. Echekki, E. Mastorakos (Eds.),

Turbulent Combustion Modelling. Advances, New Trends and Perspec-

tives., Springer, 2011, Ch. 7, pp. 143–173.

[25] A. P. Wandel, A. Y. Klimenko, Testing multiple mapping conditioning

mixing for monte carlo probability density function simulations, Physics of

Fluids 17 (2005) 128105. doi:http://dx.doi.org/10.1063/1.2147609.

[26] M. Cleary, A. Kronenburg, Multiple mapping conditioning for extinction

and reignition in turbulent diffusion flames, Proceedings of the Combustion

Institute 31 (2007) 1497–1505. doi:doi:10.1016/j.proci.2006.07.215.

[27] K. Vogiatzaki, M. Cleary, A. Kronenburg, J. Kent, Modeling of scalar mix-

ing in turbulent jet flames by multiple mapping conditioning, Physics of

Fluids 21. doi:10.1063/1.3081553.

URL http://dx.doi.org/10.1063/1.3081553

[28] K. Vogiatzaki, A. Kronenburg, S. Navarro-Martinez, W. Jones, Stochas-

tic multiple mapping conditioning for a piloted, turbulent jet diffusion

40



flame, Proceedings of the Combustion Institute 33 (2011) 1523–1531.

doi:10.1016/j.proci.2010.06.126.

URL http://dx.doi.org/10.1016/j.proci.2010.06.126

[29] P. Vaishnavi, A. Kronenburg, Multiple mapping conditioning of veloc-

ity in turbulent jet flames, Combustion and Flame 157 (2010) 18631865.

doi:doi:10.1016/j.combustflame.2010.06.007.

[30] C. B. Devaud, I. Stankovic, B. Merci, Deterministic multiple mapping con-

ditioning (MMC) applied to a turbulent flame in Large Eddy Simulation

(LES), Proceedings of the Combustion Institute 34 (1) (2013) 1213–1221.

[31] S. Pope, A model for turbulent mixing based on shadow-position condi-

tioning, Physics of Fluids 25. doi:http://dx.doi.org/10.1063/1.4818981.

[32] A. P. Wandel, R. P. Lindstedt, Hybrid multiple mapping conditioning mod-

eling of local extinction, Proceedings of the Combustion Institute 34 (1)

(2013) 1365–1372.

[33] B. Sundaram, A. Y. Klimenko, M. J. Cleary, U. Maas, Prediction of NOx in

premixed high-pressure lean methane flames with a MMC-partially stirred

reactor, Proceedings of the Combustion Institute 35 (2) (2015) 1517–1525.

[34] M. J. Cleary, A. Y. Klimenko, A generalised multiple mapping conditioning

approach for turbulent combustion, Flow, Turbulence and Combustion 82

(2009) 477–491.

[35] A. Y. Klimenko, Lagrangian particles with mixing. II. sparse-lagrangian

methods in application for turbulent reacting flows, Phys. Fluids 21 (2009)

065102.

[36] Y. Ge, M. Cleary, A. Klimenko, A comparative study of Sandia flame series

41



(df) using sparse-lagrangian MMC modelling, Proceedings of the Combus-

tion Institute 34 (2013) 1325–1332. doi:doi:10.1016/j.proci.2012.06.059.

[37] A. Norris, S. Pope, Turbulent mixing model based on ordered pairing, Com-

bustion and Flame 83 (1991) 27–42. doi:doi:10.1016/0010-2180(91)90201-L.

[38] R. Barlow, J. Frank, Effects of turbulence on species mass fractions in

methane/air jet flames, Symposium (International) on Combustion 27

(1998) 1087–1095. doi:doi:10.1016/S0082-0784(98)80510-9.

[39] R. Cabra, T. Myhrvold, J. Chen, R. Dibble, A. Karpetis, R. Barlow, Si-

multaneous laser raman-rayleigh-lif measurements and numerical modeling

results of a lifted turbulent h2/n2 jet flame in a vitiated coflow, Proceedings

of the Combustion Institute 29 (2002) 1881–1888. doi:doi:10.1016/S1540-

7489(02)80228-0.

[40] L. Dialameh, M. Cleary, A. Klimenko, A multiple mapping con-

ditioning model for differential diffusion, Physics of Fluids 26.

doi:http://dx.doi.org/10.1063/1.4864101.

[41] A. Y. Klimenko, Mmc modelling and fluctuations of the scalar dissipa-

tion, in: 2003 Australian Symposium on Combustion & The 8th Australian

Flame Days, 2003.

[42] A. Klimenko, Matching the conditional variance as a criterion

for selecting parameters in the simplest multiple mapping con-

ditioning models, Combustion and Flame 16 (2004) 4754–4757.

doi:doi:10.1016/j.combustflame.2005.08.014.

[43] R. O. Fox, On velocityconditioned scalar mixing in homo-

geneous turbulence, Physics of Fluids 8 (1996) 2678–2691.

doi:http://dx.doi.org/10.1063/1.869054.

42



[44] Y. Ge, M. Cleary, A. Klimenko, Sparse-lagrangian fdf simulations of Sandia

flame E with density coupling, Proceedings of the Combustion Institute 33.

doi:doi:10.1016/j.proci.2010.06.035.

[45] A. Y. Klimenko, On simulating scalar transport by mixing between La-

grangian particles, Phys. Fluids 19 (2007) 031702.

[46] A. Y. Klimenko, M. J. Cleary, Convergence to a model in sparse-lagrangian

fdf simulations, Flow, Turbulence and Combustion 85 (2010) 567591.

[47] A. Y. Klimenko, Lagrangian particles with mixing. I. simulating scalar

transport, Phys. Fluids 21 (2009) 065101.

[48] K. Vogiatzaki, S. Navarro-Martinez, S. De, A. Kronenburg, Mixing mod-

elling framework based on multiple mapping conditioning for the prediction

of turbulent flame extinction, Flow Turbulence Combust (2015) to appear.

[49] M. Cleary, A. Klimenko, A detailed quantitative analysis of

sparse-lagrangian filtered density function simulations in con-

stant and variable density reacting jet flows, Physics of Fluids 23.

doi:http://dx.doi.org/10.1063/1.3657085.

[50] A. Y. Klimenko, On the relation between the conditional moment closure

and unsteady flamelets, Combustion Theory and Modelling 5 (2001) 275–

294. doi:10.1088/1364-7830/5/3/302.

[51] A. Kempf, F. Flemming, J. Janicka, Investigation of lengthscales, scalar

dissipation, and flame orientation in a piloted diffusion flame by les, Pro-

ceedings of the Combustion Institute 30 (1) (2005) 557–565.

[52] Y. Ge, Generalised multiple mapping conditioning for turbulent combustion

simulation, Ph.D. thesis, University of Queensland (2012).

43



[53] G. Smith, D. Golden, M. Frenklach, N. Moriarty, B. Eiteneer, M. Golden-

berg, C. Bowman, R. Hanson, S. Song, W. G. Jr., V. Lissianski, Z. Qin,

Gri-mech 3.0.

URL http://www.me.berkeley.edu/gri_mech/

[54] R.Gordon, S. Starner, A. Masri, R. Bilger, Further characterisation of lifted

hydrogen and methane flames issuing into a vitiated coflow, 5th Asia-Pacific

Conference on Combustion ASPACC 2005.

[55] Z. Wu, S. Starner, R. Bilger, Lift-off heights of turbulent h2/n2 jet flames

in a vitiated co-flow, Proceedings of the 2003 Australian Symposium on

Combustion and the Eighth Australian Flame Days.

[56] R. R. Cao, S. B. Pope, A. R. Masri, Turbulent lifted flames in a vitiated

coflow investigated using joint pdf calculations, Combustion and Flame 142

(2005) 438–453. doi:doi:10.1016/j.combustflame.2005.04.005.

[57] M. A. Mueller, T. J. Kim, R. A. Yetter, F. L. Dryer, Flow reactor stud-

ies and kinetic modeling of the h2/o2 reaction, International Journal of

Chemical Kinetics 31 (1999) 113–125. doi:DOI: 10.1002/(SICI)1097-4601.

[58] S. Navarro-Martinez, A. Kronenburg, Flame stabilization mechanisms

in lifted flames, Flow, Turbulence and Combustion 87 (2011) 377–406.

doi:10.1007/s10494-010-9320-1.

[59] R. A. Yetter, F. L. Dryer, H. Rabitz, A comprehensive reaction mechanism

for carbon monoxide/hydrogen/oxygen kinetics, Combustion Science and

Technology 79 (1991) 97–128. doi:10.1080/00102209108951759.

[60] J. Li, Z. Zhao, A. Kazakov, F. L. Dryer, An updated comprehensive kinetic

model of hydrogen combustion, International Journal of Chemical Kinetics

36 (2004) 566–575. doi:DOI: 10.1002/kin.20026.

44



Figure 1: Convergence test for the one step flamesheet case, with 1L/32E (dotted line),
double (dashed line) and quadruple (solid line) the number of particles with the same mixing
distances between particles for each simulation. Conditional mean of the burning index (Y)
versus Lagrangian mixture fraction (z) are shown for the three simulations at x/d = 13.
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Figure 2: Schematic of generalised MMC localisation with a contour plot of the Eulerian
filtered mixture fraction field with Lagrangian particles A, B and C.
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Figure 3: Scatter plots (black dots) and conditional means (red line) of the burning index (Y)
versus Lagrangian mixture fraction (z) at x/d = 9 for the one-step flamesheet case. Top row:
20 Lagrangian particles per LES cell (20L/1E), middle row: 1L/1E and bottom row: 1L/8E.
Left column: No localisation, middle column: fm = 0.06 and right column: fm = 0.04 [49].
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Figure 4: Radial profiles of steady-state unconditional mean OH for the Sandia flame se-
ries [38]. Top row: Flame D, middle row: flame E, bottom row: flame F. Circles: experimental
mean, triangles: experimental rms. Solid line: simulated mean, dashed line: simulated rms.
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Figure 5: Radial profiles of steady-state unconditional mean CO for the Sandia flame se-
ries [38]. Top row: Flame D, middle row: flame E, bottom row: flame F. Circles: experimental
mean, triangles: experimental rms. Solid line: simulated mean, dashed line: simulated rms.
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Figure 6: Steady-state axial mean and rms mixture fraction profile for the Cabra lifted hy-
drogen flame [39]. Circles: experimental mean, triangles: experimental rms. Solid line:
Lagrangian mixture fraction, dashed line: Eulerian mixture fraction.
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Figure 7: Radial mixture fraction profiles at various axial locations for the Cabra lifted hy-
drogen flame [39]. Symbols: experimental data; solid line: Lagrangian mean mixture fraction,
dashed line: Lagrangian RMS mixture fraction.
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Figure 8: Steady-state axial temperature profile for the Cabra lifted hydrogen flame [39].
Circles: experimental mean, triangles: experimental rms. Solid line: Simulated mean temper-
ature, dashed line: simulated RMS temperature.
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Figure 9: Radial mean OH profiles at various axial locations for the Cabra lifted hydrogen
flame [39]. Circles: experimental data; solid line: Simulation results.
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Figure 10: Conditional mean OH profiles at various axial locations for the Cabra lifted hy-
drogen flame [39]. Circles: experimental data; solid line: Simulation results.
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Figure 11: Lift-off height versus localisation parameter for the Cabra lifted hydrogen flame.
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Figure 12: Scatterplots of OH at x/d = 26 for two values of fm for the Cabra lifted hydrogen
flame.
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