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Abstract

The present study addresses the problem of predicting the properties of multicompo-

nent systems from those of corresponding binary systems. Two types of multicomponent

Polynomial models have been analysed. A probabilistic interpretation of the parameters

of the Polynomial model, which explicitly relates them with the Gibbs free energies of

the generalised quasichemical reactions, is proposed. The presented treatment provides

a theoretical justification for such parameters. A methodology of estimating the ternary

interaction parameter from the binary ones is presented. The methodology provides a

way, in which the power series multicomponent models, where no projection is required,

could be incorporated into the Calphad approach.

Keywords: Power series models; Projected models; Calphad approach; Probabilistic

interpretation; Generalised quasichemical reaction.

1. Introduction

A polynomial representation of the excess Gibbs free energy (or the Polynomial solution

model) dated from, at least, the work by Max Margules [1] published in 1895. The

coefficients of the polynomial expansion are often called Margules’ parameters. Despite

the availability of more sophisticated solution models, the Polynomial model still widely

used to describe the thermodynamic properties of solutions of metallurgical, geological,
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and chemical engineering interest. Many binary systems can be described reasonably well

with the polynomial solution model. However, the long-standing problem of predicting

the properties of multicomponent systems from those of corresponding binaries remains.

Cheng and Ganguly [2], for example, regarded this problem as “a major problem in

solution thermodynamics”.

Many methods (or models) have been suggested to address the problem. According to

Cheng and Ganguly [2], all these models can be divided into two groups: power series

multicomponent models that are based on the Taylor series expansion of the multicom-

ponent excess Gibbs free energy surface, and projected multicomponent models, in which

interaction parameters in a multicomponent system are determined by projections of the

multicomponent composition to corresponding binary lines. The latter group is also re-

ferred to as geometric [3, 4] or numeric [5] models.

One of the earliest and most successful studies on the multicomponent models related to

the first group is the work by Wohl [6]. Wohl extensively discussed the models available at

that time and presented them in a unified way as “variations of one mathematical scheme”.

Helffrich and Wood [7] and later Mukhopadhyay et al. [8] and Cheng and Ganguly

[2] generalised the Wohl’s approach for arbitrary number of the solution components.

Mukhopadhyay et al. [8] extended the approach to arbitrary degree of polynomials,

reviewed the recent formulations of multicomponent models of the first group (see the

work by Mukhopadhyay et al. [8] and references therein), and established their equivalence

with the Wohl’s formulation.

Different models of the second group have also been suggested. However, only few of

them, namely Kohler, Muggianu, Kohler/Toop, and Muggianu/Toop models are widely

used. The fist two of these models are symmetric, while the others are asymmetric. These

models have been extensively reviewed in the literature (see, for example, [5, 9]). Less

popular models, as well as recently developed models (see the work by Ganesan and

Varamban [10] and references therein) are not considered in the present study.
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The projected multicomponent models are an essential part of the approach used by

international Calphad group, where, as pointed out by Pelton [11], “interpolation proce-

dures based on solution models are used to estimate the Gibbs free energies of the ternary

phases from the Gibbs free energies of the binary phases”. In contrast, the power series

multicomponent models do not seem to be directly in line with the Calphad approach,

since the information about the multicomponent excess Gibbs free energy surface is re-

quired to obtain the coefficients of the Taylor series expansion. However, a way in which

the power series models could be incorporated in the Calphad approach is suggested in

the present study.

2. Terminology Used

In the present study, the interactions that occur in a binary system are referred to as

binary interactions. The binary interactions should be clearly distinguished from two-

body interactions which are those between two mixing particles (atoms, ions, molecules,

etc.) in a solution. As described, for example, by Hillert [9], the pair-exchange reaction

(A1−A1)+(A2−A2) = 2(A1−A2) between two-body interactions (interpreted as bonds)

of different types is considered in the Regular solution model. The molar excess Gibbs

free energy is expressed as follows:

Eg(x1, x2) = α12x1x2 = N0z∆g12x1x2/2 . (1)

Here, N0 is the Avogadro number, z is the coordination number, which is the average

number of nearest-neighbours per particle. ∆g12 is the Gibbs free energy change in forming

two moles of (A1 −A2) nearest-neighbour pairs from one mole of (A1 −A1) pairs and one

mole of (A2 − A2) pairs, and x1 and x2 are the mole fractions of the components A1 and

A2 respectively.

The binary interaction parameter α12, which is the coefficient before the product x1x2,

here is N0z∆g12/2. In the case of the Regular model, where only two-body interactions
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are considered, the binary interaction parameter does not depend on composition. On

the other hand, in the Subregular solution model the binary interaction parameter does

depend on composition. According to Wohl [6], this compositional dependence can be

related to the three-body interactions such as (A1 −A1 −A2) and (A1 −A2 −A2) in the

binary system A1 − A2 . The coefficient α123 in the ternary term α123x1x2x3 is referred

to as the ternary interaction parameter in the present study.

3. Shortcomings of the Projected Multicomponent Models

Many authors, for example [2, 5, 12], expressed a preference in favour of the Muggianu

model. However, Chartrand and Pelton [3] disagreed “with the current tendency to use

the symmetric Muggianu model for nearly all solutions”. They extensively discussed the

advantages and disadvantages of the different geometric models and concluded that the

Kohler model is more preferable than the Muggianu model and the asymmetric models

are more appropriate for the systems in which one of the components behaves chemi-

cally different from the other two. Chartrand and Pelton also proposed the equations for

extending the symmetric/asymmetric dichotomy into multicomponent systems. The ar-

guments presented by Chartrand and Pelton [3], as well as the reasoning of other authors

are discussed below.

3.1. Kohler vs Muggianu

Chartrand and Pelton [3] used the example of a dilute solution to justify their preference

in favour of the Kohler model. Following Chartrand and Pelton [3], if a ternary solution

A1 − A2 − A3 of composition p is dilute in the component A1, as illustrated in Fig. 1,

the Kohler model uses the values for the binary interaction parameters α12 and α13 at the

compositions a′ and b′ in the binary systems A1 −A2 and A1 −A3 respectively which are

also dilute in the component A1. The Muggianu model utilises the values of the binary

interaction parameters at the compositions a and b which are not dilute in the component

A1. No other arguments in support of Kohler model have been found in the work by
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Figure 1. The Kohler model vs the Muggianu model applied to a ternary solution A1 −
A2 − A3 that dilute in the component A1.

Chartrand and Pelton [3].

The dilute solution consideration is of practical importance, for example, when only

those parts of the systems A1−A2 and A1−A3 which are dilute in the component A1, are

experimentally investigated. In this case, the expressions used for the binary interaction

parameters could be unreliable for the compositions concentrated in A1. At the same

time, it is desirable to use the values from the reliable composition regions. However,

as shown in Fig. 2, if the ternary composition p dilute in both A1 and A2, the Kohler

model employs even less reliable value of the binary interaction parameter in the system

A1 − A2.

The dilute solution consideration applied to the Kohler/Toop model, which has also

been recommended by Chartrand and Pelton [3], is illustrated in Fig. 3. As shown in Fig.

3, for the ternary solution that is dilute in the component A2 the Kohler/Toop model

utilises the value of the binary interaction parameter at the composition a that is even

more concentrated in A2 than the composition a′ used in the Muggianu model.
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Figure 2. The Kohler model vs the Muggianu model applied for the solution that dilute
in both the component A1 and the component A2.

A
1

A
2

A
3

p
a b

c
Kohler/ToopMuggianu

a’

Figure 3. The Kohler/Toop model applied for the ternary solution that dilute in the
component A2.
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Brynestad [13] demonstrated that the Kohler model combined with the Subregular so-

lution model leads to discontinuities in the derivatives of the partial excess Gibbs free

energy at terminal compositions. Brynestad [13] concluded that the Kohler model is

incompatible with the Subregular solution model. Kaufman [14] agreed with the Brynes-

tad’s mathematics but disagreed with his conclusion. In agreement with Kaufman, Hillert

and Sundman [15] stated that the “existence of this singular point is of no physical con-

sequence because it only concerns the property of a component in a point where that

component is absent”.

However, assume that the Kohler model is used for modelling a ternary liquid solution

A1 − A2 − A3, and define the function F (T, x1, x2, x3) as follows:

F (T, x1, x2, x3) ≡ g0;sol1 (T )− µliq
1 (T, x1, x2, x3) . (2)

Here, g0;sol1 is the molar Gibbs free energy of pure solid A1, and µliq
1 is the chemical potential

of the component A1 in the liquid of composition (x1, x2, x3). Using the well-known ex-

pression for the chemical potential (see, for example [9]), the function F defined by Eq. (2)

can be expressed in terms of partial Gibbs free energies. The equation F (T, x1, ..., xk) = 0

gives an implicit functional relation between the liquidus temperature T and the compo-

sition of the liquid (x1, x2, x3) in the primary phase field of the component A1. If all the

conditions of the implicit function theorem are satisfied, the gradient of the liquidus can

be calculated from the following equations:

∂T

∂xi

= −∂F (T, x1, x2, x3) /∂xi

∂F (T, x1, x2, x3) /∂T
(i = 1, ..., 3) . (3)

Eqs. 3 include the derivatives of the partial excess Gibbs free energies which, as shown

by Brynestad [13], have singularities at terminal compositions. In other words, the Kohler

model applied to subregular binaries could result in non-smooth predictions of the liq-

uidus surface which is a matter of concern. Howald and Row [16] also discussed different
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extrapolation methods and came to the conclusion that the Kohler model should not be

used. As pointed out by Howald and Row, many extrapolation models are available which

do not have the inconsistency of the Kohler model and will fit the experimental data with

the same or better quality.

The Muggianu model uses the values of the binary interaction parameters that are

evaluated at the points on the corresponding binaries which are geometrically closest to

the ternary composition in the sense of standard Euclidean distance. Despite the expressed

preference in favour of the Kohler model, Chartrand and Pelton [3] pointed out that the

approach used in the Muggianu model seems intuitively more justifiable from a physical

standpoint, than one used in the Kohler model, where the binary interaction parameter

is assumed to be constant at constant xi/(xi + xj) ratio. Cheng and Ganguly [2] pointed

out that the Muggianu model constitutes the most rational approach, since it also follows

from the second or third degree Taylor series expansion of the multicomponent Gibbs free

energy surface. In contrast, the Kohler model can not be reconciled with the Taylor series

expansion of the multicomponent Gibbs free energy surface.

3.2. Symmetric vs Asymmetric Projected Models

Chartrand and Pelton [3] stated that if one of the components in a ternary system is

chemically different while the other two are chemically similar, then an asymmetric model

is more physically reasonable than a symmetric one. To support this statement Chartrand

and Pelton provided an example of a ternary system A1 − A2 − A3 in which the binary

A2 − A3 is ideal, while the binaries A1 − A2 and A1 − A3 exhibit subregular behaviour

with the identical binary interaction parameters α12 = α13 = −50(1 − x1)kJ/mol. If the

binary systems exhibit the described behaviour, the molar excess Gibbs free energy of the

ternary phase is expected to be constant at constant x1. However, the symmetric Kohler

model fails to predict this behaviour. Instead, it predicts a spurious miscibility gap (see

Fig. 3 in [3]). According to Chartrand and Pelton [3], the symmetric Muggianu model

gives similarly incorrect predictions, while the asymmetric Kohler/Toop method resolves
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this particular discrepancy.

However, the development of quantitative criteria for selecting an asymmetric com-

ponent remains an important open problem. Indeed, without such criteria a modeller

should arbitrarily decide which component (if any) is to be treated asymmetrically, when

the components do not differ dramatically. Such a decision could be made based on the

available ternary experimental data. Nevertheless, there is no guarantee that the decision

made will provide a satisfactory fit for another ternary dataset. Therefore, the lack of the

quantitative criteria leaves some subjectivity in the aforementioned decision.

Furthermore, the possibility to treat different phenomena within the unified formalism

constitutes one of the major advances of Thermodynamics. From this standpoint, it would

be desirable to treat all the components in a thermodynamically unified way, even if they

are dissimilar chemically. As demonstrated by Hillert [5] and later by Cheng and Ganguly

[2], the problem of spurious miscibility gap is resolved in the symmetric Muggianu model

with the help of appropriately selected ternary interaction parameter. Note that all the

solution components are treated in a unified way in the symmetric Muggianu model.

Another alternative method to solve the problem in a thermodynamically unified way is

presented in Section 6.1 of the present study.

4. Projected Models vs Power Series Models

As discussed above, if only two-body interactions are considered, the binary interaction

parameter does not depend on composition. As soon as the variation of the binary

interaction parameter with composition is allowed, as it is in the Subregular solution

model, it is implicitly assumed that the system could not be described in terms of two-

body interactions only, and three-body interactions are involved. However, in this case,

the three-body interaction between particles of all types in the ternary system should also

be considered. These three-body and three-component interactions accounted for by the

ternary term.



Article published in Calphad 30 (2006) pp. 405-414 10

The variation of the binary interaction parameter with composition could be attributed

to the influence of the “environment” on the two-body interactions. Again, the multi-body

interactions are implicitly assumed. In projected multicomponent models the influence of

the binary environment on the two-body interactions is projected into the ternary system.

However, the environment in the ternary system principally differs from the environment

in any of the bounding binary systems, and the ternary environment can not be predicted

from the binary environment only. In other words, an appropriate ternary term should

be incorporated to account for the specific of the ternary environment in predicting the

behaviour of the ternary system.

Helffrich and Wood [7] demonstrated that for subregular solutions ternary term exist

independently of the properties of the bounding binaries. This can be considered as an

indication that the ternary terms should always be considered for subregular binaries.

Moreover, it is also demonstrated by Helffrich and Wood [7] that the ternary term could

be required even if the bounding binaries are describable with the Regular solution model.

The problem is that the regular behaviour of the binary system can not be distinguished

from the special symmetric case of the subregular behaviour based on the measurements

in the binary system only. Indeed, let us assume that the binary system A1 −A2 behaves

regularly. In this case, the molar excess Gibbs free energy is expressed by Eq. (1). Since

x1 + x2 ≡ 1 in the binary system, Eq. (1) can be rearranged as follows: Eg(x1, x2) =

α12x1x2(x1 + x2) = α12x
2
1x2 +α12x1x

2
2. The same considerations are valid for the binaries

A1 − A3 and A2 − A3. If the binary systems exhibit the symmetric case of subregular

behaviour, the appropriate ternary term is required in the ternary system. However, to

discriminate between the regular and the symmetric subregular behaviour, independent

measurements in the ternary system are necessary. Similar treatment is valid for an

arbitrary number of the solution components and an arbitrary degree of polynomials.

The ternary and multicomponent terms that are required for reasonable prediction of

the behaviour of ternary and multicomponent systems are an integral part of the power
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series models. In the projected models, such terms are considered as empirical terms that

could be used to fit ternary experimental data, where such data are available. Chartrand

and Pelton [3], for example, affirmed that the proper projected model should provide

a reasonable first estimate of the ternary excess Gibbs free energy without any ternary

terms which “have little theoretical justification”. Indeed, if only two-body interactions

are considered, ternary terms are irrelevant. In this case, however, the binary interaction

parameters are independent of the composition, and no projection is required. Never-

theless, Chartrand and Pelton agreed that the ternary terms “might be related to the

energies of triplet interactions”. They also designed a special form for these terms to

represent the effect of a third component upon the energy of the pair exchange reaction.

The probabilistic interpretation of the coefficients of the power series multicomponent

model presented in the next section explicitly relates the ternary and multicomponent in-

teraction parameters with three-body and multi-body interactions. The presented treat-

ment provides a theoretical justification for such parameters. This interpretation can

be considered as a generalisation of the Regular solution model, where only two-body

interactions are considered, for multi-body interactions in binary and multicomponent

systems.

5. Probabilistic Interpretation of the Parameters of the Power Series Multi-

component Model

As pointed out by Hillert [9], a simple but useful way of modelling the thermodynamic

properties of solutions is based on the assumption that the energy of the whole system is

the sum of the energies of interactions between neighbouring particles (atoms, molecules,

ions). In the simplest case of the Regular solution model, the energies of nearest neighbour

pairs are only considered, and random mixing of the particles over the equivalent sites of a

lattice is assumed. The formation of a solution can then be regarded as the quasichemical

reaction between pairs of different kinds.
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However, many real solutions exhibit a more complex behaviour which indicates that the

energies of triplets, quadruplets, or even more complex agglomerates of mixing particles

should be considered. Such solutions can be described reasonably well by the Polynomial

solution model. A general treatment that relates the Polynomial model parameters with

the energies of generalised quasichemical reactions is presented below. The assumptions

underlying this treatment are formulated in the next section.

5.1. Assumptions Used

Random mixing

The most important assumption which is extensively used in the present treatment is

that of random mixing of particles over the lattice sites. This assumption is also known

as the Bragg-Williams approximation. More precisely, the random mixing assumption

consists in the following:

• the occupancy of any site is stochastically independent from the occupancies of all

the other sites;

• the probability distribution of the occupancy of a site (by particles of different types)

is the same for all lattice sites.

Short range interactions under consideration

Similarly to the derivation of the Regular solution model presented by Hillert [9], only

the energies of neighbouring particles are considered, with the neighbouhood defined

immediately below. This assumption is related to the fact that the interaction energy

decays with increasing the distance between interacting particles. When only two-body

interactions are considered, a threshold distance can be defined. If the distance between

two sites of the lattice exceeds the threshold, the energy of interaction between particles

at these sites is neglected.

However, it is not clear how the threshold should be defined for multi-body interactions.

Different approaches are possible. The approach used in the present study is elucidated
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a) b)

Figure 4. a) Interacting sites. The sites can be covered with the sphere of interaction of
the threshold radius ρn. b) Non-interacting sites.

in Fig. 4. A set of n different lattice sites is called an n-clique if this set is contained

entirely in a sphere of radius ρn as illustrated in Fig. 4 a). Such sphere will be referred

to as an interaction sphere, and the particles occupying the sites of an n-clique will be

interpreted as an n-agglomerate of neighbouring particles which interact with each other.

If a set of lattice sites is not contained by an interaction sphere of the threshold radius

ρn, as schematically presented in Fig. 4 b), the interaction energy between particles at

these sites is neglected. The threshold radius ρn is not used explicitly in the presented

treatment, although its existence is assumed.

Clearly, the interaction sphere should be large enough to enclose n or more sites. On

the other hand, the interacting sites are not necessarily the nearest neighbours for the

relatively large threshold radius. Note also that the centre of the interaction sphere not

necessarily coincides with a lattice site.

Properties of the lattice

The third group of the assumptions made in the present study is related to the properties

of the lattice. It is assumed that all the lattice sites are equivalent, and the spatial

arrangement of the sites is not influenced by their occupancies. Under these assumptions
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the average number zn of n-cliques, in which a particular site participates, is the same for

each site and independent from the occupancies of the sites. zn depends on the threshold

radius ρn of the sphere of interaction. However, this dependence does not used in the

presented treatment explicitly.

The assumptions on the lattice made do not hold for complex crystalline solutions, in

which particles are mixed over several different sub-lattices, as well as for those liquid

solutions, in which particles of different solution components significantly differ in size.

However, the Polynomial model could provide preliminary approximation even in these

more complex cases.

5.2. Derivation

Consider an r-component solution A1 − A2 − ... − Ar and assume that the Gibbs

free energy of the solution can be described as the sum of the Gibbs free energies of

n-agglomerates of particles and the ideal entropy term. The Gibbs free energy of an n-

agglomerate depends on the types of constituent particles and their spatial arrangement

within the n-clique of sites.

Now consider an n-agglomerate that consists of k1 particles of type A1, k2 particles of

type A2 and so on, where k1+...+kr = n, so that the numbers k1, ..., kr specify the “chem-

ical composition” of the agglomerate. The particles in the agglomerate can have different

spatial arrangements with different values of Gibbs free energy. Denote by gn;k1,...,kr the

conditional average of non-configurational Gibbs free energy of the n-agglomerate, where

the average is taken over all possible spatial arrangements, provided that the “chem-

ical composition” of the agglomerate is k1, ..., kr. The entropy part of gn;k1,...,kr takes

into account only non-configurational (for example, vibrational and rotational) degrees of

freedom.

In the framework of the Bragg-Williams approximation, the “chemical composition”

of a randomly selected n-agglomerate follows the multinomial distribution [17] with the

parameters n, x1, ..., xr, where x1, ..., xr are the molar fractions of the solution compo-
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nents A1, ..., Ar respectively. More precisely, the probability pn;k1,...,kr to pick up an n-

agglomerate of a given “chemical composition” k1, ..., kr is given by

pn;k1,...,kr =
n!

k1!...kr!
xk1
1 ...xkr

r . (4)

Then the average non-configurational Gibbs free energy ⟨gn⟩ of a randomly chosen n-

agglomerate is expressed as

⟨gn⟩ =
∑

k1+...+kr=n

n!
k1!...kr!

xk1
1 ...xkr

r gn;k1,...,kr , (5)

where the sum is taken over all ordered collections of nonnegative integers k1, ..., kr such

that k1 + ...+ kr = n.

Under the assumptions made on the lattice properties, the average number zn of n-

cliques containing a given site is independent of the spatial position of the site. The

average number of all n-cliques in one mole of a solution (N0 particles) is znN
0/n. Here,

the factor 1/n appears since each n-clique is counted precisely n times in the product znN
0.

Then, the non-configurational molar Gibbs free energy gnc of the solution is expressed as

gnc =
znN

0

n
⟨gn⟩ =

znN
0

n

( ∑
k1+...+kr=n

n!
k1!...kr!

xk1
1 ...xkr

r gn;k1,...,kr

)
. (6)

All energetic interactions between neighbouring particles are counted in Eq. (6). Con-

sider, for example, two n-agglomerates A and B. The agglomerates could be spatially

close or even share several particles and, therefore, interact with each other. However,

the energy of interaction between the agglomerate A and B is accounted for in a form of

energies of other n-agglomerates that contain, at least, one particle from the agglomerate

A and one particle from the agglomerate B.
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Eq. (6) applied to one mole of pure solution component Ai reduces to

g0i =
znN0

n
gn;ki=n . (7)

Here, gn;ki=n = gn;0, ...0︸ ︷︷ ︸
i−1

,n,0,...,0 is the conditional average non-configurational Gibbs free

energy of an n-agglomerate, provided that the agglomerate consists of particles of type

Ai only, and g0i is the molar Gibbs free energy of the pure solution component Ai.

Since the non-configurational molar Gibbs free energy gnc does not take into account

configurational degrees of freedom, the configurational entropy term should be added to

give the total molar Gibbs free energy of the solution g,

g = gnc +RT
r∑

i=1

xi lnxi =

znN
0

n

( ∑
k1+...+kr=n

n!
k1!...kr!

xk1
1 ...xkr

r gn;k1,...,kr

)
+RT

r∑
i=1

xi lnxi .
(8)

Here, RT
r∑

i=1

xi lnxi is the conventional entropy term in the Bragg-Williams approxima-

tion.

Consider the following generalised quasichemical reaction

k1
n
A1...A1︸ ︷︷ ︸

n

+
k2
n
A2...A2︸ ︷︷ ︸

n

+ ...+
kr
n
Ar...Ar︸ ︷︷ ︸

n

=

n︷ ︸︸ ︷
A1...A1︸ ︷︷ ︸

k1

A2...A2︸ ︷︷ ︸
k2

...Ar...Ar︸ ︷︷ ︸
kr

. (9)

In the reaction Eq. (9) one mole of n-agglomerates, each of which consists of k1 particles

of type A1, k2 particles of type A2 and so on, such that k1+k2+...+kr = n, is forming from

k1/n moles of n-agglomerates, which consist only of particles of type A1, k2/n moles of

A2-particles n-agglomerates and so on. The order in the sequence k1, ..., kr is determined

by the numbering of the solution components.

The molar Gibbs free energy ∆gg.r. of the generalised quasichemical reaction Eq. (9)
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can be expressed as follows:

∆gg.r. = N0∆gn;k1,...,kr = N0

(
gn;k1,...,kr −

r∑
i=1

ki
n
gn;ki=n

)
, (10)

where ∆gn;k1,...,kr is the Gibbs free energy change per one act of the reaction. If for a given

i, ki = n while kj = 0 for any j ̸= i, then there is no reaction in Eq. (9) and ∆gn;ki=n ≡ 0.

Using Eq. (10), the sum in brackets in Eq. (8) can be rearranged as follows:

∑
k1+...+kr=n

n!
k1!...kr!

xk1
1 ...xkr

r gn;k1,...,kr =∑
k1+...+kr=n

n!
k1!...kr!

xk1
1 ...xkr

r ∆gn;k1,...,kr +
∑

k1+...+kr=n

(
n!

k1!...kr!
xk1
1 ...xkr

r

r∑
i=1

ki
n
gn;ki=n

)
.

(11)

The second term on the right in Eq. (11) can be rearranged as follows:

∑
k1+...+kr=n

(
n!

k1!...kr!
xk1
1 ...xkr

r

r∑
i=1

ki
n
gn;ki=n

)
=

n∑
j=0

 ∑
k1+...+ki−1+

ki+1+...+kr=n−j

n!
k1!...ki−1!j!ki+1!...kr!

xk1
1 ...x

ki−1

i−1 x
j
ix

ki+1

i+1 ...x
kr
r

r∑
i=1

j
n
gn;ki=n

 =

n∑
j=0

r∑
i=1

j
n
gn;ki=n

n!xj
i

j!(n−j)!

 ∑
k1+...+ki−1+

ki+1+...+kr=n−j

(n−j)!
k1!...ki−1!ki+1!...kr!

xk1
1 ...x

ki−1

i−1 x
ki+1

i+1 ...x
kr
r

 =

r∑
i=1

n∑
j=0

j
n
gn;ki=n

n!xj
i (1−xi)

n−j

j!(n−j)!
=

r∑
i=1

xign;ki=n

n−1∑
p=0

(n−1)!xp
i (1−xi)

n−1−p

p!(n−1−p)!
=

r∑
i=1

xign;ki=n .

(12)

Substitution of Eqs. (11) and (12) to Eq. (8) gives

g =
znN

0

n

(
r∑

i=1

xign;ki=n

)
+RT

r∑
i=1

xi lnxi

+
znN

0

n

( ∑
k1+...+kr=n

n!

k1!...kr!
xk1
1 ...xkr

r ∆gn;k1,...,kr

)
.

(13)

Substitution of Eq. (7) to Eq. (13) gives

g =
r∑

i=1

xig
0
i
+RT

r∑
i=1

xi lnxi +
∑

k1+...+kr=n

(
n!

k1!...kr!

znN
0

n
∆gn;k1,...,kr

)
xk1
1 ...xkr

r . (14)
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Using the notation

cn;k1,...,kr =
n!

k1!...kr!

znN
0

n
∆gn;k1,...,kr , (15)

Eq. (14) can be reduced to the power series multicomponent Polynomial solution model

g =
r∑

i=1

xig
0
i
+RT

r∑
i=1

xi lnxi +
∑

k1+...+kr=n

cn;k1,...,krx
k1
1 ...xkr

r . (16)

As demonstrated above, terms of type cn;k1,...,krx
k1
1 ...xkr

r with k1 + · · · + kr = n in

the expression for the molar excess Gibbs free energy correspond to n-body interactions

between mixing particles. If a polynomial of the degree n is used to express the molar

excess Gibbs free energy of a solution phase, it indicates that, as a minimum, n-body

interactions are involved. From this standpoint, the degree of the polynomial used to

describe a higher order system should be, at least, equal to the maximal degree of the

polynomials used for the description of bounding lower order systems. Note also that all

possible combinations of the solution components in the higher order system should be

considered. For example, if a forth degree polynomial is used to describe one or more

of the bounding ternary systems, the term c4;1,1,1,1x1x2x3x4 is required in the quaternary

system.

The above treatment is valid for an arbitrary number of solution components and for

an arbitrary number of interacting particles. The analysis carried out follows the Bragg-

Williams based line of reasoning similar to that in the Regular solution model for binary

systems [9]. Eq. (15) establishes a physically meaningful link between the coefficients of

the power series multicomponent solution model represented by Eq. (16) on the one hand

and the Gibbs free energies of the generalised quasichemical reactions Eq. (9) on the other.

This relationship provides a theoretical background for the ternary and multicomponent

interaction parameters.

Note that the issue of multi-body interactions is addressed in the Cluster Variation
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Method [18, 19] and in the Central Atom model [20, 21]. These models take into account

spatial arrangement of particles and go beyond the assumptions of random mixing (Bragg-

Williams approximation). Another distinction of the approach suggested in the present

study is that neither the Cluster Variation Method nor the Central Atom model consider

the generalised quasichemical reactions.

6. Estimation of the Ternary Interaction Parameter

As pointed out by Helffrich and Wood [7] and by Ganguly [12], it is impossible, in gen-

eral, to determine the ternary interaction parameters from the binary parameters only.

However, the probabilistic interpretation of the parameters presented in the previous sec-

tion provides a method for estimating the ternary interaction parameter. This estimation

allows incorporating the power series model into the Calphad approach. In simple cases

considered below, the value of the ternary parameter can be predicted using physically

reasonable assumptions.

6.1. The Example Presented by Chartrand and Pelton

In Section 3.2, the example of a hypothetical ternary system A1 − A2 − A3 presented

by Chartrand and Pelton [3] was briefly discussed. Let us now consider the example in

more detail using the treatment of the generalised quasichemical reactions Eq. (9). Since

the binaries A1 − A2 and A1 − A3 behave subregularly, and the binary A2 − A3 is ideal,

it could be assumed that three-body interactions are sufficient to describe the Gibbs free

energy both in the binaries and in the ternary system.

In the considered example the molar excess Gibbs free energy of the binary solution

A1 − A2 is given by Eg12(x1, x2) = −50(1 − x1)x1x2 = −50x1x
2
2 kJ/mol. This term is

related to the reaction

1

3
A1A1A1 +

2

3
A2A2A2 = A1A2A2 . (17)
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According to Eq. (15), the Gibbs free energy change per one act of the reaction Eq. (17)

∆g3;1,2,0 is given by ∆g3;1,2,0 = −50/(z3N
0) kJ. A similar consideration applied to the

binary A1 − A3 gives ∆g3;1,0,2 = −50/(z3N
0) kJ, where ∆g3;1,0,2 is the Gibbs free energy

change per one act of the following reaction

1

3
A1A1A1 +

2

3
A3A3A3 = A1A3A3 . (18)

The Gibbs free energies of the reactions

2

3
A1A1A1 +

1

3
A2A2A2 = A1A1A2 and (19)

2

3
A1A1A1 +

1

3
A3A3A3 = A1A1A3 (20)

are assumed to be zero in the present example.

As soon as three-body interactions are assumed, the ternary interaction term of type

c3;1,1,1x1x2x3 should also be considered for the ternary system. This term is related to the

reaction

1

3
A1A1A1 +

1

3
A2A2A2 +

1

3
A3A3A3 = A1A2A3 . (21)

The Gibbs free energy of the reaction Eq. (21) is not known. However, under reasonable

assumptions, it can be obtained from the analysis of exchange reactions.

The ideal behaviour of the binary A2 − A3 implies that the Gibbs free energies of the

exchange reactions

2

3
A2A2A2 +

1

3
A3A3A3 = A2A2A3 and (22)

1

3
A2A2A2 +

2

3
A3A3A3 = A2A3A3 (23)
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are zero. It follows that the Gibbs free energies of the reactions

A2(A2A2) + A2(A3A3) = A2(A2A3) + A2(A2A3) and (24)

A3(A2A2) + A3(A3A3) = A3(A2A3) + A3(A2A3) . (25)

are also zero. This implies that neither A2 nor A3 particles affect the Gibbs free energy

change in the pair-exchange reaction

(A2A2) + (A3A3) = 2(A2A3) . (26)

Hence, it is reasonable to assume that A1 particles also have no effect on the Gibbs free

energy of the reaction Eq. (26). In this case, the Gibbs free energy of the following

exchange reaction

A1(A2A2) + A1(A3A3) = A1(A2A3) + A1(A2A3) (27)

is zero too. This implies that the Gibbs free energy change ∆g3;1,1,1 per one act of the

reaction Eq. (21) is equal that of the reaction Eq. (17) or Eq. (18):

∆g3;1,1,1 = ∆g3;1,0,2 = ∆g3;1,2,0 = − 50

z3N0
kJ ≡ ∆g . (28)

Therefore, using Eq. (15) and Eq. (28) the molar excess Gibbs free energy in the ternary

system A1 − A2 − A3 is expressed as

Eg123(x1, x2, x3) =
z3N

0

3
(3x1x

2
2∆g3;1,2,0 + 3x1x

2
3∆g3;1,0,2 + 6x1x2x3∆g3;1,1,1) =

z3N
0∆gx1 (x

2
2 + x2

3 + 2x2x3) = −50x1(1− x1)
2kJ.

(29)

According to Eq. (29), the ternary molar excess Gibbs free energy only depends on x1,

as it has been expected initially.

Note also that under the assumptions made, zn is the same for all systems. As demon-
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strated above, it is obtained from known coefficients of the polynomial expansion of the

molar excess Gibbs free energy of lower order systems and used for the coefficients in the

higher order system.

A ternary system with two identical subregular binaries and with ideal third binary has

already been analysed by Hillert [5] and later by Cheng and Ganguly [2]. In both cases,

the result similar to Eq. (29) has been initially assumed, and the ternary interaction

parameter was selected to obtain the desired result. In the present study, this result is

derived from the reasonable assumption using the proposed probabilistic interpretation

and the analysis of the generalised quasichemical reactions.

6.2. A Case of the Regular Binary A2 − A3

A ternary system with the subregular binaries has been analysed by Cheng and Ganguly

[2], where the molar excess Gibbs free energy in the ternary system has been expressed as

Eg123(x1, x2, x3) =
∑
i̸=j

xixj(ŵijxj + ŵjixi) + x1x2x3

(
1
2

∑
i ̸=j

(ŵij + ŵji) + c123

)
. (30)

Here, ŵij and ŵji are constants used to describe the behaviour of the bounding binaries.

The following estimate of the parameter c123 has been proposed

c123 ≈
∑

i̸=j ̸=k

σijσik

[
(ŵij − ŵji)

xj

xj+xk
+ (ŵik − ŵki)

xk

xj+xk

]
, (31)

where σij = σji = 0 for i = j, and σij = σji = 1 otherwise.

However, as demonstrated above, the ternary interaction parameter is related to the

Gibbs free energy of the correspondent generalised quasichemical reaction Eq. (9) which

does not depend on the composition. Moreover, the terms of type xj/(xj + xk) used in

Eq. (31) seem to be problematic. Indeed, as demonstrated by Brynestad [13] such terms

could lead to singularities in the partial derivatives of the Gibbs free energy.

The approach used in the previous section for the ideal binaryA2−A3 can be extended to

the case of regular binary. It can be demonstrated that the regular behaviour of the binary
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A2 − A3 implies that the Gibbs free energies of the exchange reactions Eq. (24) and Eq.

(25) are equal to ∆g3;0,1,2 = ∆g3;0,2,1. With the same reasoning as was used in the previous

section, it could be assumed that the Gibbs free energy of the exchange reaction Eq. (27)

is also ∆g3;0,1,2. It can be derived that ∆g3;1,1,1 = 1/2 (∆g3;0,1,2 +∆g3;1,2,0 +∆g3;1,0,2).

The ternary interaction parameter is then obtained from Eq. (15).

It should be noted that the assumed similarity of the exchange reactions is not neces-

sarily valid for all ternary systems. In some systems the Gibbs free energy of the pair

exchange reaction Eq. (26) could be affected by A1 particles. However, the value of the

ternary interaction parameter obtained under the above mentioned assumption can still

be used as a preliminary approximation. This value can then be refined using the available

ternary data. The examples considered above support the viability of the approach sug-

gested in the present study. Moreover, the proposed methodology seems to be amenable

to further extensions towards estimating multicomponent interaction parameters from the

bounding binaries.

7. Impact of the Ternary Term

Recently, Janz and Schmid-Fetzer [22] investigated the impact of the ternary interac-

tion parameter on activities of solution components and found this impact to be counter-

intuitive compared to that of the conventional regular parameter. It has been recommended

by Janz and Schmid-Fetzer [22] to use the ternary term with precautions or not to use it

at all, but rather to improve on the extrapolation model or on the description of bounding

binary systems.

Note that the observed effect is related rather to a type of term than to a value of the

parameter. The ternary term is proportional to the probability p123 to pick up a triplet

A1A2A3 at random, while the conventional regular term is proportional to the probability

p12 of choosing a pair A1A2. These probabilities have the multinomial distribution and,

as functions of composition, behave differently for different terms. From this point of
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view, the dissimilar impacts of different terms on the activities of solution components

are rather expected than unusual.

To clarify the difference, consider a hypothetical r-component solution A1 − ...−Aq −

...− Ar. Assume that for arbitrary q, such that 2 ≤ q ≤ r, the q-component and q-body

term Lqx1...xq is the only molar excess Gibbs free energy term. The parameter Lq is

determined by Eq. (15). Let γ1 be the activity coefficient of the component A1. One can

verify that

RT ln γ1 = Lx2...xq (x1(2− q) + x2 + ...+ xq) . (32)

Eq. (32) demonstrates that ln γ1 does not change its sign and independent of x1 for

conventional regular term (q = 2). However, for more complex terms (q > 2), which

account for the Gibbs free energies of multi-body interactions, ln γ1 changes its sign at

x1 = (x2 + ...+ xq)/(q − 2).

The present author is of opinion that the impact of the ternary term on the activities

described by Janz and Schmid-Fetzer [22] is not extraordinary. The ternary term should

always be used in a ternary system, when three-body interactions are involved.

8. Conclusions

A probabilistic interpretation of the parameters of the power series Polynomial solu-

tion model is proposed in the present study. The presented treatment explicitly relates

the ternary and multicomponent interaction parameters with the Gibbs free energies of

the generalised quasichemical reactions and provides a theoretical justification for such

parameters. The methodology of estimating the ternary interaction parameter from the

binary ones is also presented. The methodology provides a way, in which the power series

multicomponent model, where no projection is required, could be incorporated into the

Calphad approach.
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