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Abstract

The rate of generation of fluctuations with respect to the scalar values conditioned
on the mixture fraction, which significantly affects turbulent non-premixed combus-
tion processes, is examined in the paper. Simulation of the rate in major mixing
model is investigated and the derived equations can assist in selecting the model
parameters so that level of conditional fluctuations is better reproduced by the
models. A more general formulation of the Multiple Mapping Conditioning (MMC)
model that distinguishes the reference and conditioning variables is suggested. This
formulation can be viewed as methodology of enforcing certain desired conditional
properties onto conventional mixing models. Examples of constructing consistent
MMC models with dissipation and velocity conditioning as well as of combining
MMC with Large Eddy Simulations (LES) are also provided in the paper.
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1 Introduction

The models of nonpremixed turbulent combustion are traditionally divided
into two categories the mixture fraction-based models (fast chemistry [1] and
Flamelet [2]) and the Probability Density Function (PDF) models[3,4]. The
appearance of Conditional Moment Closure (CMC,[5]) seems to blur this divi-
sion since CMC has links with the both categories. The CMC model has been
developed independently by and in cooperation between R.W. Bilger and the
author of this work. Originally, the CMC model, which uses the mixture frac-
tion as an independent variable and, at the same time, allows for consistent
specification of the global convective scalar transport, was designed as a spe-
cific combustion model introducing a remedy for inherent deficiencies of the

Published: Combustion and Flame, 143(4), pp. 369-385, 2005



Flamelet models. At present CMC, as a methodology of dealing with con-
ditional expectations, has a much broader role in studies of turbulence. The
approach pursued in the present work indicates that CMC is linked to the
PDF methods as much as it is related to the mixture fraction-based models.
R.W. Bilger, who actually suggested the title of the model that outlined the
importance of the conditional moments, must have foreseen this broader role
of CMC.

Section 1 introduces basic CMC equations and provides analysis of the gen-
eration rate for conditional fluctuations based on the Kolmogorov theory of
turbulence. The present work examines further the effect of turbulent mixing
that increases the dimension of the accessed domain in the composition space
that was analysed by Pope [6] and introduces a quantitative measure for this
effect that is expressed in terms of the conditional variance generation.

The PDF methods are most accurate in specification of the reaction source
terms but turbulent mixing is replaced in these models by a surrogate mix-
ing process. While the average properties are directly enforced on surrogate
mixing by setting the required rate of the average dissipation, matching the
conditional properties (such as the rate of generation of conditional fluctu-
ations) would be a pure coincidence. In Section 2, we estimate the rate of
generation of conditional fluctuations for surrogate mixing in most common
mixing models. With the use of these equations, one can achieve a better match
with the expected physical level of the conditional variance even within the
limits of conventional mixing modelling. The Multiple Mapping Conditioning
(MMC, [7,8]) can be viewed as a methodology of enforcing certain conditional
properties on surrogate mixing by mapping the reactive scalars into the refer-
ence space (MMC effectively generalises the Mapping Closure concept [9–11]).
Thus, the significance of conditional characteristics in MMC modelling is even
more profound. Since the basic MMC is, generally, consistent with the 1st
order CMC equation [7], the constraints derived from consideration of the
conditional variances are of prime interest.

While conditioning on the scalar values have been studied within the CMC
framework for some time, we know much less about the other possible types
of conditioning (ref.[12], where joint scalar/dissipation conditioning is con-
sidered, represents a notable exception). Section 4 introduces a most general
understanding of MMC that allows to directly emulate the properties of tur-
bulence which appear to be most important for combustion simulation. MMC
restricts the influence of the surrogate mixing to a locality defined with the
use of the selected properties and physical coordinates. Section 5 introduces
examples of MMC models in which the additional characteristics of turbulence
– scalar dissipation and velocities – are directly emulated.
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2 Moments conditioned on the mixture fraction

2.1 The CMC Equations

In high Reynold number flows, the joint Favre PDF PY = PY (Y (0), ..., Y (n); x, t)
of the scalars Y (0), ..., Y (n) that are governed by equations

ρ
∂Y (i)

∂t
+ ρu ·∇Y (i) −∇ ·

(
ρD∇Y (i)

)
= W (i) (1)

satisfies the following equation

∂ρ̄PY
∂t

+ ∇ · (uY ρ̄PY ) +
∂W

(i)
Y ρ̄PY
∂Yi

+
∂2N

(ij)
Y ρ̄PY

∂Yi∂Yj
= 0, (2)

where

N
(ij)
Y ≡

〈
N (ij)|Y

〉
, N (ij) ≡ D∇Y (i) ·∇Y (j), uY ≡ 〈u|Y〉

W
(i)
Y ≡

〈
W (i)|Y

〉
, ρ̄ ≡ 〈ρ〉 (3)

and indices i and j run over all species considered in the PDF equations.
A PDF model is consistent with the PDF equation if it implies a reasonable
approximation for the coefficients uY and N

(ij)
Y and with these coefficients the

simulated PDF PY satisfies equation (2). By default, The PDFs used in the
present work are the Favre PDFs, for example, ρ̄PY = ρY P

◦
Y where ρY ≡ 〈ρ|Y〉

and P ◦Y is the conventional PDF. Here and further in the paper we neglect
the fluctuations of the density with respect to the conditional means. If these
fluctuations are to be taken into account then the conditional averaging 〈(·)|Y〉
is to be replaced by the conditional Favre averaging 〈(·)ρ|Y〉 /ρY .

The CMC equations specify turbulent transport of scalars with respect to an-
other scalar (or scalars), whose typical selection is represented by the mixture
fraction Z. Assuming that Z ≡ Y (0) is the mixture fraction, we put W (0) = 0.
The CMC equations are the governing equations for the conditional expecta-
tion Q(i) ≡

〈
Y (i)|Z

〉
and the conditional variance Θ(ij) ≡

〈
θ(ij)|Z

〉
, θ(ij) ≡

(Y (i))′(Y (j))′, (Y (i))′ ≡ Y (i) − Q(i). These equations can be obtained form
the transport equations (1) (the decomposition technique) or directly from
the PDF equation (2) (the PDF technique). The 1st and 2nd order unclosed
CMC equations, which neglect only the terms that asymptotically small in
the flows with high Reynolds numbers, take the form
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∂Q(i)ρ̄PZ
∂t

+∇·
(〈

uY (i)|Z
〉

ρ̄PZ
)

=
∂

∂Z

[
NZρ̄PZ

∂Q(i)

∂Z
−Q(i)∂NZρ̄PZ

∂Z
+ JY (i)

]
+W

(i)
Z ρ̄PZ

(4)
∂Θ(ij)ρ̄PZ

∂t
+∇·

(〈
uθ(ij)|Z

〉
ρ̄PZ

)
=

∂

∂Z

[
NZρ̄PZ

∂Θ(ij)

∂Z
−Θ(ij)∂NZρ̄PZ

∂Z
+ Jθ(ij)

]
+

(5)

+ρ̄PZ
[
Ψ

(ij)
N + Ψ

(ji)
N + Ψ

(ij)
V + Ψ

(ji)
V + Ψ

(ij)
W + Ψ

(ji)
W −Ψ

(ij)
D −Ψ

(ji)
D

]
where

J(·) ≡ 2 〈D∇(·)′ ·∇Z|Z〉 ρ̄PZ −
∂ 〈N ′(·)′|Z〉 ρ̄PZ

∂Z
,

Ψ
(ij)
N ≡

〈
N ′(Y (i))′|Z

〉 ∂2Q(j)

∂Z2
, Ψ

(ij)
D ≡

〈
D∇(Y (i))′ ·∇(Y (j))′|Z

〉
,

Ψ
(ij)
V ≡ −

〈
u′(Y (i))′|Z

〉
·∇Q(j), Ψ

(ij)
W ≡

〈
(W (i))′(Y (j))′|Z

〉
,

N ≡ D(∇Z)2 = N (00), (·)Z ≡ 〈·|Z〉 , (·)′ ≡ (·)− 〈·|Z〉
and the Favre PDF of the mixture fraction, PZ , is governed by

∂ρ̄PZ
∂t

+ ∇ · (〈u|Z〉 ρ̄PZ) = −∂
2NZρ̄PZ
∂Z2

(6)

Most of the conditional moment equations, their derivation and closures are
presented in Ref.[5] although the complete form of the PDF-derived unclosed
conditional variance equation is given only in Kim[13] (one can note that the
scalar transport equation (1) is used in [13] at several instances but it can be
shown that all needed equations can be obtained by evaluating the moments
of the joint PDF equation (2)). The equations are given here in divergent
form, the alternative (but equivalent) convective form can be obtained using
the mixture fraction PDF equation (6). The possibility of deriving the CMC
equations from the PDF equation (2) without using (1) needs to be stressed
here: in PDF models only the PDF equation (but not the scalar transport
equation) is modelled. If a PDF model is compliant with the PDF equation
then the consequence of the PDF equation – the unclosed CMC equations –
can be used in the analysis of the model. One may note that the instantaneous
values Y, N, etc. are not necessarily defined in PDF models. Thus all corre-
lations in the CMC equations must be defined in terms of the joint PDF PY
and coefficients of the PDF equations (the conditional expectations uY and

N
(ij)
Y ). For example, 〈

uY (i)|Z
〉

=
{
uY Y

(i)
}
Z〈

u′(Y (i))′|Z
〉

=
{
uY Y

(i)
}
Z
− {uY }Z Q

(i), Q(i) =
{
Y (i)

}
Z〈

D∇(Y (i))′ ·∇Z|Z
〉

=
{
N

(i0)
Y

}
Z
− ∂Q(i)

∂Z
NZ , NZ =

{
N

(00)
Y

}
Z〈

N ′(Y (i))′|Z
〉

=
{
N

(00)
Y Y (i)

}
Z
−NZQ

(i), Θ(ij) =
{
Y (i)Y (j)

}
Z
−Q(i)Q(j)
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where the curly brackets subscripted by ”Z” denote the following integral

{(·)}Z ≡
1

PZ

∫
(·)PY dY (1)...dY (n)

In this section, we mainly consider simultaneous mixing of only two scalars
and use the following notation Z and Y . The scalar Z, as it is noted above,
represents the mixture fraction while the scalar Y is reactive. In order to
keep notations simple we denote: Z = Y (0), Y = Y (1), W (0) = 0, W = W (1)

Q ≡ 〈Y |Z〉 and Θ ≡ 〈θ|Z〉 , θ ≡ (Y ′)2, Y ′ ≡ Y − Q. The equation for the
conditional variance Θ = Θ(11) takes the form

∂Θρ̄PZ
∂t

+ ∇ · (〈uθ|Z〉 ρ̄PZ) =
∂

∂Z

[
NZρ̄PZ

∂Θ

∂Z
−Θ

∂NZρ̄PZ
∂Z

+ Jθ

]
+

+2ρ̄PZ [ΨN + ΨV + ΨW −ΨD] (7)

ΨN ≡ 〈N ′Y ′|Z〉
∂2Q

∂Z2
, ΨD ≡

〈
D(∇Y ′)2|Z

〉
,

ΨV ≡ −〈u′Y ′|Z〉 ·∇Q, ΨW ≡ 〈W ′Y ′|Z〉 ,
The conventional CMC closures are obtained by neglecting the J terms. The
justification for this closure can be found in Ref. [5]. Note that compliance
with the unclosed CMC equations does not guarantee similarity with CMC
closures.

2.2 Analysis of the long-time asymptote of the conditional generation term

For the purposes of analysing joint mixing properties of Z and Y , the W
reaction term is deemed to be switched off for the duration of mixing although
Z and Y are not necessarily linked by a linear dependence. Thus, for the
duration of mixing, the scalars are governed by the equations

ρ
∂Z

∂t
+ ρu ·∇Z −∇ · (ρD∇Z) = 0 (8)

ρ
∂Y

∂t
+ ρu ·∇Y −∇ · (ρD∇Y ) = 0 (9)

but are constrained by different initial conditions. If at initial moment t0, Y is a
deterministic function of Z, so that Y = f(Z) and if f is not a linear function,
turbulent mixing would result in a certain level of fluctuations Y ′ ≡ Y − Q
appearing around conditional mean Q ≡ 〈Y |Z〉. The assumption of initial
deterministic dependence between Y and Z is made for more transparent
illustration of the problem to be studied: if initially Y = f(Z)+Y ′0 then initial
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conditional fluctuations Y ′0 would eventually disappear while the generated Y ′

would attain the same level. The problem of increasing the dimension of
the initial manifold was considered by Pope [6] for multiple species. That
consideration is primarily concerned with short-time topological bahaviour
while we perform quantitative analysis of the long-time (compared to the
Kolmogorov time scale) asymptote for the conditional generation but deal
only with two scalars Y and Z.

In a locally homogeneous case, when the turbulent transport in physical space
is neglected, the equations for conditional variance takes the form

∂Θ

∂t
= 2ΨN − 2Ψ (10)

Assuming that f is relatively graduate function of Z, we expand f into Taylor
series in the vicinity of a certain point of interest Z0. Since the generation
of conditional fluctuations is a rather local process with small-scale fluctua-
tions playing a most significant role (note that the small-scale component of
turbulent fluctuations is most significant for the dissipation), we need only
local representation of f . The first and the second terms in the expansion
f = f0 + f

(′)
0 (Z − Z0) + ... do not affect the level of conditional fluctuations

and can be locally put to zero without loss of generality f0 = f
(′)
0 = 0. Indeed,

a new scalar Y + a1Z + a0 would have the same conditional variance but f0

and f
(′)
0 can be set to zero by a proper choice of the constants a1 and a0. Thus,

initially, the scalar Y is represented by the deterministic quadratic dependence
Y = f

(′′)
0 (Z − Z0)2/2.

First, we note that Q ≡ 〈Y |Z〉 does not remain the same and evolves. The
parameters that can be responsible for this process are the average dissipation
of energy E0, the average scalar dissipation N̄0, the initial parameter f

(′′)
0 and

the elapsed time t − t0. Generally, the average values should be averaged in
the vicinity of the point of interest, for example, N̄0 ≡ 〈D(∇Z)2|Z0〉 . The
dimensionally consistent evolution of Q is given by Q − Q(t0) = const N̄0

f
(′′)
0 (t − t0). The 1st order CMC equation (4) determines that the consistent

value for the constant is 1 and

Q−Q(t0) = N̄0f
(′′)
0 (t− t0) + ... (11)

We investigate the evolution of the scalar Y assuming that the macro-parameters
E0, N̄0 and f

(′′)
0 do not change much within the observation time period. Con-

sidering evolution the second derivative of Q is relatively slow, we can replace
f (′′) by Q(′′) = ∂2Q/∂Z2 evaluated at Z = Z0.

Initially, the conditional variance Θ grows from its zero value but, when pro-
duction of conditional fluctuations becomes balanced by their dissipation, Θ
becomes time-independent. It can be seen that the parameters E0, N̄0 and Q(′′)
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are not sufficient to define time-independent Θ so that another time scale, τ 0,
must be introduced

Θ = τ 2
0

(
N̄0Q

(′′)
0

)2
, Q

(′′)
0 ≡

∂2Q

∂Z2
(12)

Effectively, this equation serves as a definition for a new scale τ 0 and, thus, does
not need a dimensionless constant multiplier. Arguably, since Θ is significantly
smaller than 〈y2〉 where y ≡ Y − 〈Y 〉 , the time τ 0 must be smaller than the
time macro-scale and, presumably, τ 0 belongs to the inertial interval. In the
rest of this section, we will give physical interpretations for the time scales
introduced here. The general expression for the conditional dissipation ΨD

can written in the form

ΨD =
Θ

τD
(13)

This equation simply reflects that ΨD must be proportional to Θ and defines
the dissipation time τD. Since the conditional dissipation term is balanced by
the conditional generation term ΨN = ΨD for Θ given by (12), the conditional
generation term becomes

ΨN = τN
(
N̄0Q

(′′)
0

)2
, τN ≡

τ 2
0

τD
(14)

In order to evaluate the characteristic generation time τN , we substitute Y =
Q(Z, t) + Y ′ into equations (8) and (9) while taking into account (11)

ρ
∂Y ′

∂t
+ ρu ·∇Y ′ −∇ · (ρD∇Y ′) =ρN ′f

(′′)
0 (15)

where the scalar dissipation N ≡ D(∇Z)2 is decomposed into N = N̄0 +
N ′. Pope [6] considered short-time behaviour of this equation (with multiple
scalars involved) and demonstrated that the fluctuations of scalar dissipation
are likely to increase the dimensionality of the accessed composition space.
This, in our terms, means ”generate conditional fluctuations”. Here we are
interested in quantifying the long-time (compared to the Kolmogorov time
scale τK) rate of increase of the conditional variance. If we neglect the diffusion
term that is responsible for dissipation of the fluctuations and introduce the
Lagrangian derivative d/dt ≡ ∂/∂t + u ·∇, equation (15) takes the form

dY ′/dt = N ′f
(′′)
0 . The short-time ∆t � τK solution for this equation is,

obviously, given by

Y ′ = N ′f
(′′)
0 ∆t (16)

while the long-time asymptote is given by the Lagrangian integral

Y ′ = f
(′′)
0 I ′, I ≡

∫ t

t0
Ndt, I ′ = I − N̄0(t− t0) =

∫ t

t0
N ′dt (17)
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The integral I ′ represents a stochastic value with a zero mean and the following
long-time asymptote of its variance

〈
(I ′)

2
〉
→ 2τ ◦NN̄

2
0 (t−t0), τ ◦N ≡

∫ ∞
0

(K(t)−1)dt, K(∆t) ≡ 〈N(t0)N(t0 + ∆t)〉
N̄2

0

(18)

Thus the rate of increase of Θ = 〈(Y ′)2〉 is given by 2τ ◦N(N̄0f
(′′)
0 )2 so that

τN = τ ◦N and τ ◦N defined in (18) represents a physical interpretation of the
time τN introduced in (14).

At this point we need to stress the approximate character of equating τN and
τ ◦N . In our consideration, we separate the generation process from dissipation
by neglecting the diffusion term in (15) that is responsible for the conditional
dissipation rate estimated by 2Θ/τD. In fact, generation and dissipation in-
terfere with each other and τ ◦N provides an estimation rather than an exact
value for τN . Thus, it is more accurate to conclude that τN ∼ τ ◦N pointing to
the link between two scales than expect that τN = τ ◦N exactly. Note that fast
chemical reactions can effectively terminate the correlation suggested above
and this would reduce the value of τN . Using a single dissipation time, τD, to
characterise the conditional dissipation is also a significant simplification. The
fluctuations generated by N ′ have a wide spectrum of scales with excessive
presence of smaller scales compared to the conventional turbulent cascade.
Thus a particular disturbance with a certain characteristic time scale would
have a dissipation scale of the same order and the overall dissipation of condi-
tional fluctuations is characterised by a set of time scales rather than a single
scale. The time scale τD is effective scale that corresponds to a given spectrum
of the generated fluctuations.

We should note that linking τN to τ ◦N is supported by the refined Kolmogorov
theory of the inertial interval. These arguments [14] are briefly presented be-
low. In the beginning of this section we considered the case when Y is a smooth
function of Z. Now we analyse the opposite case when non-zero values of Y
can be observed only in the vicinity of Z = Z0. Thus, the initial dependence
Y = f(Z) is very sharp and is, effectively, the delta-function Y = δ(Z − Z0)
at t = t0. According to the 1st order CMC, the solution of this problem in
given by the Gaussian function

Q = FG(N̄0∆t, Z − Z0), FG(T, Z) ≡ 1√
4πT

exp

(
−Z

2

4T

)
(19)

where ∆t ≡ t − t0. As one can see, it is the average value of N determines
the solution. If the characteristic scale of a process belongs to inertial interval
a partial average of N over the volume that corresponds to this scale must
replace the mean value N̄0. For Lagrangian-type statistics, it is logical to
use the partial average of N over a corresponding time interval instead of
the volume average [14]. The partial time average N∆t, which is given by
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N∆t = I/∆t where the integral I is defined in (17), replaces N̄0 in (19) and
Y = FG(I, Z −Z0). We can represent I =< I > +I ′ = N̄0∆t+ I ′ and expand
the function FG into a series

Y = FG(N̄0∆t, Z−Z0)+
∂FG(I, Z − Z0)

∂I
I ′ = Q+

∂2Q

∂Z2
I ′, Y ′ =

∂2Q

∂Z2
I ′ (20)

Here we use Q given by (19) and take into account that ∂FG/∂I = ∂2FG/∂Z
2.

As one can see determination of Y ′ in (17) and (20) are very similar and this
corresponds to τN = τ ◦N .

Accurate determining the time scales from experimental or DNS results is a
challenging task. In experiments, non-linear initial dependence between Y and
Z is created by chemical reactions. Thus, in experiments, it is quite difficult to
separate the influence of mixing from that of chemical reactions. DNS allow to
investigate influence of various factors autonomously and, when needed, trace
the Lagrangian characteristics but typical Reynolds numbers are not high
enough to reliably investigate properties of the inertial interval of turbulence.
The properties of the inertial interval are largely responsible for the value τ ◦N .
The values τN and τD have been determined by Direct Numerical Simulations
(DNS) of a reacting flow in [15] where a different strategy of closuring the term
ΨN has been pursued. According to [15], τD is nearly 4 times smaller than the
conventional dissipation time scale (time macro-scale) and τ ◦N is significantly
less than the Kolmogorov time scale. For τD being noticeably smaller than the
macro-scale is expected since the disturbances generated by the fluctuations of
the scalar dissipation have a broad range of characteristic scales and each scale
has it own dissipation time. It is clear that, on average, these disturbances
would have a surrogate (or effective) dissipation time τD less than that of the
largest scales in turbulence.

Although it could be the case that, for moderate Reynolds numbers, τN is
smaller than the Kolmogorov scale as it is illustrated below, it would be rather
premature to link τN to the Kolmogorov time scale. If τN were linked to
the Kolmogorov time scale, the conditional fluctuations would not appear
at the limit of high Reynolds numbers and this seems to be most unlikely.
The conventional independence of the large-scale properties of turbulence on
Re in large Reynolds number flows requires that τN(Re) → const > 0 as
Re → ∞, although the rate of convergence is likely to be very slow since the
convergence of fluctuating properties of the scalar dissipation to the presumed
universal laws of the inertial interval at the limit of Re→∞ is also very slow.
The time τN is linked to τ ◦N and the integral (18) determining τ ◦N has two
major components: integral over the viscous scales and integral over inertial
interval. For moderate Reynolds numbers, the integral over viscous scales may
be dominant and this is observed in DNS. As the Reynolds number increases,
the relative contribution of the viscous scales decreases and we expect that,
at high Reynolds numbers, both τN and τ ◦N are determined by the properties
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of the inertial interval. Relatively small values of τN in [15] are, probably, due
to the influence of chemical reactions.

3 Generation of conditional fluctuations in PDF models

In this section we estimate the generation term ΨN in the common PDF
mixing models. The conditions are implied the same as in Section 2.2.

3.1 IEM

The mixing term that corresponds to IEM (Interactions by Exchange with the
Mean, [16]) model takes the form

dY (i)

dt
=

〈
Y (i)

〉
− Y (i)

τS
(21)

where τS is selected to match the expected physical dissipation rate of the
mixture fraction 〈N〉 = 〈z2〉 /τS and z ≡ Z − 〈Z〉. If, initially, Y = f(Z),
the IEM mixing would shrink the Y -Z plane in both directions but would not
generate any dispersion of Y around f(Z). In homogeneous IEM mixing Y
remains a deterministic time-evolving function of Z (i.e. Y = f(Z, t)). Thus,
it is obvious that the conditional generation term in IEM mixing model

ΨN = 0 (22)

does not comply with its expected physical value.

3.2 Modified Curl’s model

In the various versions of the Curls model [17,18], couples of particles are
selected randomly and independent from each other and the scalar values
assigned to the couple Y

(i)
(1) and Y

(i)
(2) reset according to the equation

Ý
(i)

(1) = Y (i)
c + βY

(i)
d , Ý

(i)
(2) = Y (i)

c − βY
(i)
d (23)

where

Y (i)
c ≡

Y
(i)

(1) + Y
(i)

2

2
, Y

(i)
d ≡

Y
(i)

(1) − Y
(i)

(2)

2
the ”acute” symbol indicates new values and β is, generally, a random number
that is independent of the particle scalar values and β = 0 corresponds to
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complete mixing and β = 1 corresponds to no mixing at all. In Curl’s model
only a certain fraction of particles are mixed at a given mixing step but we may
formally force all particles to form couples (assuming the number of particles
is even) and put β = 1 for the couples that do not mix. In old Curl’s model β
can take only values 0 and 1. In modified Curl’s models β may have various
distributions although β is chosen to satisfy 0 ≤ β ≤ 1 for every couple.

As in the previous analysis we assume that Y = f(Z) where f is a determinis-
tic function (if this is not true we can put Y = f(Z)+Y ′ where the conditional
fluctuations dissipate and do not contribute to the production term). By in-
troducing zc ≡ Z −Zc and expanding the function f into the Taylor series at
Z = Zc so that Y = fc + f (′)

c zc + f (′′)
c z2

c/2 + ..., we obtain

∆Y(p) ≡ Ý(p) − f(Ź(p)) = (1− β2)Z2
df

(′′)
c /2 + ... (24)

Here, the subscript ”(p)” indicates different particles and can be omitted with-
out causing confusion. Curl’s model is not local and by using the Taylor ex-
pansion of f we implicitly assume that the function f is weak. The average
value of Z2

d is linked to and the dissipation rate and the variance change over
the time interval ∆t (that corresponding to the mixing step) by

〈γ〉
〈
Z2
d

〉
=
〈
Z2
〉
−
〈
Ź2
〉

= 2 〈N〉∆t, γ ≡ (1− β2) (25)

At this point, it is convenient to introduce z ≡ Z − 〈Z〉 with the same set
of indices: zd = Zd, zc = Zc− 〈Z〉 , ź = Ź − 〈Z〉, etc and note the following
identities

〈
Z2
d

〉
=
〈z2〉

2
,
〈
z2
c

〉
=
〈z2〉

2
,
〈
ź2
〉

=
〈
z2
c

〉
+
〈
β2
〉 〈
Z2
d

〉
,
〈
Z4
d

〉
=
〈z4〉+ 3 〈z2〉2

8
(26)

that can be easily obtained due to 〈Zd〉 = 〈z〉 = 〈zc〉 = 0, statistical indepen-

dence of β, z(1) and z(2) and also the equation 〈zczd〉 =
〈
z2

(1)

〉
−
〈
z2

(2)

〉
= 0

where the subscripts ”(1)” and ”(2)” denote different particles. The the ob-
vious consequence of these equations 〈γ〉 〈z2〉 = 4 〈N〉∆t indicates a link be-
tween the mean value of γ and ∆t

〈γ〉 = 4∆t/τ̄D, τ̄D ≡
〈
z2
〉
/ 〈N〉 (27)

where τ̄D is the unconditional dissipation time. Note that, to the leading
order of the expansion, 〈∆Y 〉 — the average change of Y over the time ∆t is
consistent with the 1st order CMC prediction

〈∆Y 〉 = f (′′)
c 〈N〉∆t (28)

Since Curl’s mixing is not local, this consistency is valid only when f (′′)
c is

nearly constant in the whole domain under consideration.
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The conditional variance appears to be non-zero after the Curl’s mixing step

〈
(∆Y ′)

2
〉

=

(
f (′′)
c

)2

4

(〈
γ2
〉 〈
Z4
d

〉
− 〈γ〉2

〈
Z2
d

〉2
)

=
(
f (′′)
c

)2
〈N〉2 ∆t2

(
ϕγϕd − 1

)
(29)

where

ϕγ ≡
〈γ2〉
〈γ〉2

, ϕd ≡
〈Z4

d〉
〈Z2

d〉
2 =

ϕz

2
+

3

2
, ϕZ ≡

〈z4〉
〈z2〉2

Considering that the increase in the conditional variance occurs over time ∆t,
we note consistency with equation (14) provided the generation time is given
by

ΨN = τN(〈N〉Q(′′))2, τN = ∆t
ϕγϕd − 1

2
(30)

The dissipation time for conditional fluctuations coincides with the overall
dissipation time: τD = τ̄D Since the generation time is a physical parameter,
it must stay finite as ∆t → 0. This means that the parameter ϕγ ∼ 1/∆t
must become larger and larger. (note also that 〈γ〉 ∼ ∆t/τ̄D). The equation
(30) that examines consistency with the required physical rate for generation
of conditional fluctuations is not local and depends on the flatness factor ϕZ
(since ϕd depends on ϕZ). Although this can be expected due to non-local
nature of Curl’s mixing, the correct selection of the model parameters can be
complicated by the well-known feature of many versions of Curl’s model to
increase ϕZ with time. It should be noted that the evaluation of τN given
above is valid only for weak functions f(Z) due to the non-local character
of Curl’s model. It seems that, practically, Curl’s model tend to overpredict
generation of conditional fluctuations.

The effective value of the instantaneous scalar dissipation can be determined
by comparison with the fast chemistry limit that specifies the chemical rate
W = −N∂2Ye/∂Z

2 that is required to counteract mixing and keep the reactive
scalar close to its equilibrium value Ye(Z). Considering that, according to (24),
W = −∆Y/∆t = γZ2

df
(′′)/(2∆t) we note that the instantaneous value

Neff = γ
Z2
d

2∆t
=

γ

〈γ〉
Z2
d

〈Z2
d〉
〈N〉 (31)

effectively represents the instantaneous value of the scalar dissipation in Curl’s
mixing. The average value of Neff is, obviously, 〈N〉. It should be noted that
if the reaction zone becomes thin compared to the macroscale of the mixture
fraction, the present analysis is no longer applicable. Hence, Curl’s model is
not flamelet-consistent at smaller scales.
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3.3 The EMST model

The EMST model [19] is based on constructing so called Euclidean Minimal
Spanning Tree where each of the particles interacts only with its neighbors in
a way that the tree shrinks in the composition space. The process of shrinking
by itself does not generate conditional fluctuations and, without intermittency,
the model would have a zero conditional generation term. The practical version
of the EMST model involves imitation of intermittent behaviour: the particles
are divided into two subsets, passive and active. Only the active particles form
the evolving tree while the passive particles do not change their scalar values
during the mixing step. Particles are allowed to randomly move between the
subsets and this process is characterised by a certain residence time that is
denoted here by τ g. If, initially, Y = f(Z) the active particles will move from
the line Y = f(Z) while passive particles will not and this, obviously, cre-
ates fluctuations around conditional mean and Θ > 0. Although assessment
of the generation term is not easy due to the complexity of EMST algorithm,
some estimations can be obtained using the properties of EMST mixing. First,
EMST is a local model and the function f can be expanded into a series at
a point of interest, say Z0. Second, EMST preserves any linear dependence
between the scalars Y = a1Z + a0 and the function value and its first deriva-
tive can be changed by adding a1Z + a0 without changing the conditional
fluctuations. Hence, as it is in the real turbulence, the second derivative of the
function, f

(′′)
0 , is responsible for the generation of the conditional fluctuations.

The intensity of EMST mixing should match the dissipation rate N̄0 for the
scalar Z. Using the same dimensional arguments as in Section 2.2, we may
write

ΨN = cgτ g(N̄0f
(′′)
0 )2

where cg is constant and it is taken into account that EMST mixing has its
own characteristic time τ g. Note that this estimate of the generation term
is obtained only for long-time asymptote so that the details of the EMST
mixing do not need to be taken into account directly. The constant cg is not
likely to be universal. If initially, or at a certain moment Y = Q(Z)+Y ′ where
Q ≡ 〈Y |Z〉 and Y ′ 6= 0, the EMST evolutions of fields Y1 = Q and Y2 = Y ′ are
not independent unlike in physical turbulent mixing. Hence, the intensity of
conditional fluctuations generated by Q(Z) (and the constant cg) is dependent
on Y ′ in EMST mixing. Practically, the EMST model seems to underpredict
generation of conditional variance. EMST is known to be consistent with the
fast chemistry limit and the flamelet model. The binary random process that
takes either zero value (for the particles from the passive subset) or the other
positive value determined by intensity of mixing (for the particles from the
active subset ) plays the role of instantaneous scalar dissipation in intermittent
EMST mixing.
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3.4 Basic MMC models

MMC models [7,8] introduce additional reference variables and require the
surrogate mixing to be localised in the reference space. The simplest version
of probabilistic MMC has a single mixture fraction-like reference variable ξ.
The fluctuations of the simulated scalars induced by fluctuations of ξ are called
major fluctuations. In probabilistic MMC, the scalars are allowed to fluctuate
around their conditional expectations Ȳ (i) ≡

〈
Y (i)|ξ

〉
and these fluctuations

Y (i)−Ȳ (i) called the minor fluctuations simulate the other fluctuations present
in a turbulent flow. The minor fluctuations are dissipated by minor dissipa-
tion operator dY (i)/dt = S[Y (i)] that should not affect the conditional means〈
S[Y (i)]|ξ

〉
= 0. This constraint enforces the localness of the surrogate mixing

which is used our analysis. Note that this localness can be compromised by
the overall non-local nature of the model (for example, in a Partially Stirred
Reactor) but MMC is not likely to perform well under these conditions. The
minor operator is characterised by the minor dissipation time τS. The con-
ventional models IEM and Curl’s model are obvious candidates to be used
in the minor dissipation operator. The case of the operator S represented by
IEM S[Y (i)] = (Ȳ (i) − Y (i))/τS was analysed in [8]. The conditional version
of IEM [16] model is called IECM [20]. This is similar to MMC use of the
model where the operator S is also conditional. It is shown although the IEM
model itself does not generate the conditional variance, the MMC with IEM
treatment of the minor fluctuations does increase Θ. The minor dissipation
time should be selected to match the expected physical intensity of conditional
fluctuations. The analysis is quite difficult mainly due the fact that the op-
erator S controls fluctuations around Ȳ (i) while the conditional fluctuations
around Q =

〈
Y (i)|Z

〉
where Z is the simulated mixture fraction are of physical

interest. The latter fluctuations depend on former fluctuations but these fluc-
tuations should not be confused with each other. The analysis [8] determined
that the dissipation time for conditional fluctuations is τD = τS and that the
generation term is given by

ΨN = τN(N̄0Q
(′′)
0 )2, τN = τS/6 (32)

For fast chemistry case, the instantaneous value of the scalar dissipation in
MMC-IEM mixing is simulated by

Neff = 〈N〉 1 + ω2

2
(33)

where ω is the standard Gaussian stochastic value (i.e. 〈ω〉 = 0 and 〈ω2〉 = 1).
The model preserves flamelet consistency for the scales that correspond to the
major fluctuations but is not consistent with the flamelet model for scales that
correspond to the minor fluctuations.
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The case of the minor operator represented by Curl’s mixing is much easier to
analyse since Curl’s mixing explicitly generates the conditional fluctuations.
The MMC-Curl mixing is different from conventional Curl’s model by allowing
mixing only between particles that are close to each other in the ξ-space. The
equations obtained in Section 3.2 can still be used but z ≡ Z − 〈Z〉 needs to
be replaced by fluctuations Z ′′ ≡ Z − Z̄, Z̄ ≡ 〈Z|ξ〉 localised in ξ-space and
τ̄D needs to be replaced by τS. Under the standard MMC conditions, the
generation rate of the minor fluctuations is the same as the dissipation rate
of the major fluctuations that is given by

2N̄ = 2B

(
∂Z̄

∂ξ

)2

(34)

where B is the diffusion coefficient in ξ-space, while the dissipation rate of the
minor fluctuations by Curl’s mixing is 2Θξ/τS, where Θξ ≡

〈
(Z ′′)2 |ξ

〉
. Hence,

the quasi-steady level of minor fluctuations is give by Θξ = N̄τS. Although
the level of minor fluctuations Z ′′ is, under typical MMC conditions, smaller
than the level of major fluctuations determined by z, the dissipation rate of
minor fluctuations is the same as that for major fluctuations due to having
dissipation time τS smaller than τ̄D. The equations (30) linking the conditional
generation rate to the dissipation rate and other parameters remain the same
(although we can estimate ϕd ≈ ϕz ≈ 3 due to intensive Gaussian generation
of the minor fluctuations)

ΨN = τN(N̄0Q
(′′)
0 )2, τN = ∆t

3ϕγ − 1

2
, ϕγ ≡

〈γ2〉
〈γ〉2

(35)

The subscript ”0” indicates that analysis is performed in the vicinity of Z0

and the model is local. The are, however, some differences that worth noting.
The dissipation time for the conditional fluctuations is now determined by
the minor dissipation time τD = τS. The values of γ need to be increased
(compared to the conventional Curl’s model) in order to provide a more intense
dissipation 〈γ〉 = 4∆t/τS. The mixing couples are localised in ξ-space and the
MMC-Curl model does not have the problem of unrestricted increase of the
flatness factor 〈z4〉 / 〈z2〉2 that exacerbates the performance of many Curl-type
mixing models.

4 Generalised understanding of the reference conditioning

Here we consider the MMC model that is represented by the following stochas-
tic Ito equations

dx = u (ξ,x, t) dt, (36)

dξk = A◦k (ξ,x, t) dt+ bkl (ξ,x, t) dwl, (37)
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dY (i) =
(
W (i)(Y) + S[Y (i)]

)
dt, (38)〈

S[Y (i)]|η,x
〉

= 0, ηi = ηi(ξ; x, t) (39)

A◦k ≡ Ak +
2

Pξ

∂Bkl 〈ρ〉Pξ
∂ξl

, 2Bkl = bkjblj. (40)

where S is the mixing operator, W (i) specify chemical source terms and Pξ is
the PDF of the reference variables ξj. This form of MMC equations is some-
what more general than its original formulation [7] since the conditioning
variables η = {η1, ..., ηnc

} are not necessarily the same as the reference vari-
ables ξ = {ξ1, ..., ξnr

}. We assume that nc ≤ nr since the excessive (nc > nr)
conditioning variables would lay within nr-dimensional manifold and would
not impose additional conditions. The conditioning variables are deemed to
emulate certain Lagrangian characteristics of a turbulent flow (that can be
dissipation, velocities, etc) while the reference variables are used to assist sim-
ulations. The physical properties emulated by the conditioning variables can
be called observed of traced properties to distinguish them from the other
characteristics of turbulence that are not directly simulated in the model. It
is implied that the observed characteristics are the ones that strongly affect
combustion. Note that additional reference variable do not impose a large
computational cost on the model while increasing the dimension of the con-
ditioning space requires a significant increase in the number of particles for
proper evaluation of the conditional expectation and this is computationally
expensive. The generalised MMC can be transformed into the form that is
more close to the original version by introducing the new reference variables
ξ̂ = {η1, ..., ηnc

, ξ1, ..., ξnr−nc
}. The dimension of the new reference space is

the same as the dimension of the old reference space given by nc. The MMC
equations preserve their form but the old coefficients Ak, A

◦
k, Bkl and bkj

should be replaced by the new coefficients Âk, Â
◦
k, B̂kl and b̂kl whose values

are specified in ref. [8]. In original MMC [7], all of the variables ξ̂ are used for

conditioning and
〈
S[Y (i)]|ξ̂,x

〉
= 0. If nc = nr, the generalised MMC is equiv-

alent to its original formulation, but if nc < nr then
〈
S[Y (i)]|η,x

〉
= 0 but, in

general,
〈
S[Y (i)]|ξ̂,x

〉
6= 0. Thus, the conditional expectations

〈
Y (i)|ξ̂,x

〉
are,

obviously, not the same in both versions. While
〈
Y (i)|η,x

〉
are not directly

affected by the change in formulation of the operator S but this change affects
the fluctuations of Y (i) with respect to their conditional means

〈
Y (i)|η,x

〉
.

These fluctuations alter the conditional means
〈
Y (i)|η,x

〉
through interac-

tions with the model coefficients and the non-linear reaction terms W (i)(Y).
Thus the generalised model is not identical to the original version, although
their treatments of

〈
Y (i)|η,x

〉
can be expected to be similar if conditional

fluctuations can be neglected.

The generalised formulation of the MMC model is a natural extension of the
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original version. Indeed, practical simulations deal with a number of parti-
cles that may be large but finite. In original MMC, mixing between parti-
cles is allowed only if the particles are close to each other in ξ-x-space and
this requires definition of the distance d in the ξ-x-space. Generally, the dis-
tance between two particles subscripted by ”(1)” and ”(2)”, can be defined
by d2 = gkl∆ζk∆ζ l where ∆(·) = (·)(1) − (·)(2), g

kl represents a metric ten-
sor and ζ = {ξ,x} represent a vector in the ξ-x-space. The definition of the
distance affects the performance of the model. In order to demonstrate this,
let us for the sake of simplicity consider a homogeneous case and assume that
d2 = g11∆ξ1∆ξ1 + g22∆ξ2∆ξ2 where reference variables have zero mean and
unit dispersion. If g22 � g11 the neighborhood of a point is stretched in the
direction of ξ2 so that mixing particles must be close in ξ1-direction but can
be at a substantial distance in ξ2-direction. Thus, even if both variables ξ1

and ξ2 are used as the conditioning variables, a non-isotropic choice of the
metric tensor allows to make mixing non-local in the selected directions. A
very small value of g22 would, effectively, completely exclude ξ2 from the list
of conditioning variables. The generalised MMC corresponds to the original
MMC with the pseudometric in ξ-space defined by d2 = ηj(ξ)ηj(ξ).

At this point we need to introduce certain principles that ensure that the
generalised MMC achieves its goal of good modelling. Turbulent dispersion
without dissipation is considered first. In a physical turbulent flow, we select
some of fluid particles and mark them with Z = 1 while Z = 0 remain for
the rest of fluid particles. Each particle is assigned a certain mass m = M/np
which is small when the total number of fluid particles np is large (here M
represents the total mass in the domain under consideration). One can imag-
ine that these particles are similar to molecules but, unlike molecules, the
particles are not engaged in Brownian motion and move with the local ve-
locity of the flow. As in previous sections, Z ≡ Y (0) is a passive scalar not
affected by the reactions W (0) = 0. The values of Z remain constant for
each fluid particle. In simulations, this case corresponds to the switched off
mixing operator S[Z] = 0. We require that whatever the initial distribution
of the marked particles may be, stochastic variables ηj should emulate well
the nominated Lagrangian physical properties of the turbulent flow. We pre-
sume that η(ξ,x; t), where ξ̂ is Markov vector process of dimension of nr,
can imitate certain Lagrangian physical characteristics of smaller dimension
nc (that are, generally, non-Markovian). Proper simulation of Lagrangian sta-
tistical properties ensures that the Lagrangian PDF PL(η,x; t) is adequately
represented by the model. In case of a single (say the first) particle in a tur-

bulent flow, its Lagrangian PDF is given by PL(η◦,x◦; t) =
〈
ψ(1)

〉
where

ψ(p) ≡ δ(η(t)(p) − η◦)δ(x(t)(p) − x◦) is the so-called fine-grained PDF and the
subscript ”p” runs over different particles [25]. If ns equivalent particles are se-

lected, then PL(η◦,x◦; t) =
〈
ΣpZ(p)ψ(p)

〉
/ns where the summation is formally

performed over all particles but only the selected particles contribute to the
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sum and ns = ΣpZ(p) is the number of selected particles. The integral of the
function ∫

V

〈∑
p

mψ(p)

〉
dη◦dx◦ = MV =

∫
V
P (η; x, t)ρ̄(x, t)dηdx

represents the average total mass of all particles within any arbitrary volume
V in the η-x phase space (i.e. MV is the mass of the fluid in this volume).
The same mass can be obtained by intergrating the Eulerian Favre (density
weighted) PDF times average density ρ̄ ≡ 〈ρ〉 over the same volume, as it is
shown on the right-hand side of this equation. Since the volume is arbitrary,
we can write

〈
Σpmψ(p)

〉
= P (η◦; x◦, t)ρ(x◦, t) and

PL(η◦,x◦; t) =
1

ns

〈∑
p

Z(p)ψ(p)

〉
=

1

Ms

〈Z|η◦,x◦, t〉P (η◦; x◦, t)ρ(x◦, t) (41)

where Ms ≡ mns = ΣpmZ(p) is the total mass of the selected particles. Since
proper simulation of Lagrangian stochastic properties of the physical parame-
ters η(t) ensures adequate simulation of the Lagrangian PDF PL(η,x; t), the
model will simulate well the 1st order conditional expectations Z̄(η,x, t) =
〈Z|η〉 (with arbitrary initial distribution of Z) and the Eulerian PDF P (η; x, t).

The physical dissipation that is inherently present in the turbulent flow would
result in mixing of the values Z so that 0 ≤ Z ≤ 1 rather than Z = 0 and
Z = 1. This mixing process is presumed to be local so that the conditional
means Z̄ remain are not significantly affected by mixing. In MMC model the
physical mixing is substituted by a surrogate mixing. Although condition (39)
ensures that the mixing does not affect the conditional expectation Z̄, the
surrogate mixing and physical mixing are, obviously, not equivalent. Mixing
of physical fluid particles is allowed only if the particles are very close to each
other in physical space so that not only η but all other continuous physical
parameters are the same (or nearly the same) for both particles. The surrogate
mixing allows two particles to be mixed provided the traced values η are the
same (or sufficiently close). The simulation is aimed at reducing the number
of the traced particles compared to the prototype physical flow while keeping
this number large enough to adequately simulate the required characteristics.
Although it is unlikely that the surrogate mixing can be the same as the
physical mixing, the intensity of the surrogate mixing should be selected to
match the most important physical parameter – the conditional variance Θη ≡
〈θη|η◦〉 where θη ≡

(
Z − Z̄

)2
. The surrogate mixing can be represented by

any scheme that a) preserves the sum of the values Z(p), b) reduces max(Z(p))
and increases min(Z(p)) c) treats all scalars Y (i) in the same way and d) is local
in the η-x phase space. The examples of good and relatively simple mixing
schemes are given by Curl’s mixing and IECM. The conditioning variables
should be selected in a way that ensures that Θη is small compared to the
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unconditional fluctuations 〈z2〉 (where z = Z − 〈Z〉)) since direct mixing of
widely dispersed values is not local. In MMC, we label the more detailed
simulation of the fluctuations that are related to the conditional values Z̄ as
major and the less detailed, surrogate simulation of the fluctuations linked
to the conditional variance Θη as minor. The basic principles of generalised
MMC modelling are now summarised

(1) The conditional variables η with assistance of Markov reference variables
emulate as closely as possible certain selected Lagrangian values in a
turbulent flow and this ensures the adequate simulation of conditional
expectations Z̄.

(2) The intensity of surrogate mixing, which is performed by Curl’s mixing,
IECM or similar models locally in the η-space, should match the expected
physical level of the conditional fluctuations Θη.

(3) The conditioning variables η should be selected in a way so that a mini-
mal number of conditioning variables still keeps Θη relatively small (i.e.
η1, ..., ηnc

represent turbulence parameters that strongly affect the com-
bustion process)

These principles seem to be quite simple and transparent but we should note
few complications. First, we have only limited information about 1st and 2nd
moment characteristics conditioned on physical values other than the mixture
fraction. The conditioning on mixture fraction has been studied extensively
but we can not state the same about other possible conditioning variables.
Second, in the previous discussion, we presumed that the conditioning vari-
ables η directly emulate certain characteristics of a turbulent flow. This may
be true for velocities, but not for the mixture fraction. Direct emulation of the
mixture fraction by, say, η0 would violate independence and boundedness of
the scalars. The emulated value η0 is not a mixture fraction but a mixture-
fraction like variable that the simulated mixture fraction and other scalars are
mapped into. It is still preferable that the characteristics of η0 are as close to
the characteristics of the mixture fraction Z as possible but the fluctuations
Y (i)−

〈
Y (i)|η0

〉
are not the same as the fluctuations Y (i)−

〈
Y (i)|Z

〉
although

they are linked to each other. The model parameters must be selected in order
to match the physical level of conditional fluctuations Y (i) −

〈
Y (i)|Z

〉
as it is

discussed in Sections 2, 3 and in Ref [8]. If among conditioning variables, η0

is a mixture-fraction-like variable while the other variables η1, η2, ... emulate
certain physical quantities, the intensity of mixing by the operator S should
be chosen to match the physical level of conditional fluctuations with respect
to
〈
Y (i)|Z, η1, η2, ...

〉
where Z is substituted for η0 in the list of the condition-

ing variables. The requirement that not only Lagrangian transitional PDFs
but also all stochastic properties of the Lagrangian processes η(t) should be
emulated may seem excessive. However, under Markov assumptions the tran-
sitional probabilities fully determine the process and matching the probabil-
ities is equivalent to simulating the whole stochastic process. In generalised
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MMC, the implicit reference variables (that are not used for conditioning)
introduce some memory into the model. Presence of chemical reactions that,
generally, are no less than nonlinear functionals of the observed parameters
of turbulence, matching the PDFs without matching the process seems un-
likely. Hence, complete emulation of the physical processes η(t) is targeted
in MMC modelling but, at the same time, it is clear that the target has to
be compromised to a certain extent in practical modelling. In the following
sections we consider examples of the generalised MMC models that illustrate
the principles established in this section.

5 Examples of the generalised MMC models

5.1 MMC involving emulation of the dissipation rate

Assuming that the mixture fraction-type reference and conditioning variable
is given by ξ0 = η0, we represent the corresponding dissipation term by

NZ ≈ B00

(
∂ 〈Z|η0〉
∂η0

)2

, B00 = B̄Φ(ξ1, ..., ξnd
), 〈Φ〉 = 1 (42)

where B̄ is the value of parameter B00 without modelling the fluctuations
of the dissipation rate and NZ is the conditional dissipation of the mixture
fraction. The reference variables ξj = {ξ1, ..., ξnd

}, where nd = nr − 1 is the
number of the dissipation-like reference variables, are presumed to be standard
Gaussian (with zero mean and unit dispersion) and, since Φ is expected to be
log-normal, we can write

Φ = exp(φ), φ = cjξj(t) + c0 (43)

〈Φ〉 = exp
(
c0 +

cjcj
2

)
= 1, c0 = −cjcj

2
(44)〈

Φ2
〉

= exp (2c0 + 2cjcj) = exp (cjcj) (45)

Bjα =
δjα
τα
, B0j = 0, Aα =

ξα
τα

+ aα (46)

where aα = 0 since the dissipation-related reference variables ξj are indepen-
dent of velocity u. In this section, the indices run over 1, 2, ..., nd and sum is
not taken over Greek indices. The dissipation correlation

K(t) =
〈N(0)N(t)〉
〈N〉2

≈ 〈Φ(0)Φ(t)〉 = 〈exp (φ(0) + φ(t))〉 = exp (κ(t)) (47)
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where

κ(t) ≡ 〈φ′(0)φ′(t)〉 = c2
j exp

(
− t

τ j

)
, φ′ = φ− 〈φ〉 = φ− c0 (48)

and the sum is taken over index j = 1, ..., nd in this equation. The fact that
the average of the first two moments of φ(0) + φ(t) is given by 2c0 and cjcj +
c2

0 + 〈φ(0)φ(t)〉 has been used in the derivation. Since φ(t) represent a linear
combination of independent Orstein-Ulhenbeck stochastic processes ξj(t) with
their correlation functions exp (−t/τ j), the correlation κ(t) is easily evaluated.

Within the inertial interval K ∼ (t/τM)−κ where, as it can be inferred from
[21], κ ≈ 0.5 and τM represents the time macroscale. With the use of s ≡ ln(t)
and s(·) ≡ ln(τ (·)) for any subscript (·), we note that

κ(sM − s) ∼ κ = c2
j exp (− exp(s− sj)) (49)

If sj are spaced so that sK ∼ snd
< snd−1 < ... < s2 < s1 ∼ sM , where

the subscripts ”M” and ”K” correspond to the time macro- and Kolmogorov
scales, the coefficients c2

α are given by

c2
α = κ(sα−1 − sα) (50)

The cascade model within the inertial interval corresponds to the equidistant
steps ∆s = sα−1 − sα. Indeed, the cascade of scales is conventionally selected
so that the ratio τα−1/τα = exp(∆s) remains the same and, at αth level of cas-
cade, the stochastic variable ξα can intensify or abate the level of dissipation
by multiplying the dissipation by a positive random number exp(cαξα). Practi-
cally ∆s ∼ 1 produces smooth correlation curves and there is no advantage in
having smaller steps. The inertial interval exponent becomes noticeable when
s1− snd

reaches 3 and we have 4 (or more) dissipation-like reference variables.
This roughly corresponds to the Reynolds number of ∼ 103.

The choice of the conditioning variables is now discussed. Klimenko [22] con-
sidered MMC model that is similar to the model introduced in this subsection
and has all reference variables used for conditioning. That work gave a rather
formal proof that matching Lagrangian characteristics of the scalar dissipation
ensures compliance with the required rate of generation of conditional fluctu-
ations discussed in Section 2.2. The proof is technically complicated and, if
we accept the physical arguments of the present work, is not needed here. The
analysis [22] gives some indications that a proper emulation of the dissipa-
tion rate should make the simulations of the conditional generation rate to be
reaction-independent. Selecting all reference variables as the conditioning ones
ηj = ξj seems to be excessive and computationally expensive. Although there
is a valid argument that, if the set of variables ξ1, ξ2, ... represents the turbulent
cascade, their values must be the same (or nearly the same) for neighboring
points in physical space, we can also treat ξi as mere mathematical variables
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needed to generate proper stochastic process close to the Lagrangian char-
acteristics of the dissipation. The first obvious choice for a dissipation-like
conditioning variable is η1 = Φ or, equivalently, η1 = φ. However, the analysis
of dissipation conditioning performed in [12] with the use of DNS seems to
demonstrate a significant dispersion around concentrations conditioned on the
scalar dissipation rate. Indeed, the scalar dissipation changes rapidly, it is not
a good variable to define a locality for the purposes of mixing. It seems that a
more conservative dissipation-related variable η2 = τ ςjcjξj(t) with some ς > 0
may be used to obtain a more conservative definition of locality.

5.2 MMC and LES

The generalised MMC model with explicit modelling of dissipation fluctua-
tions considered in the previous subsection seems to be a natural associate
of LES (Large Eddy Simulations). Methodologically, LES resolve most of the
velocity and scalar fluctuations but, if the Reynolds number is high, very little
of the dissipation fluctuation. The MMC model can effectively simulate the
adequate level of the dissipation fluctuations. First we introduce the MMC cell
that is expected to be larger than the LES grid size but still small compared
to the macroscales of turbulence. A large number of fluid particles is traced in
LES calculations and the MMC properties Z(i) and ξj are assigned to each of
the particles. Each MMC cell contains many fluid particles. The cell averages
are called cell-resolved values and denoted by the ”tilde” while the subcell fluc-
tuations are denoted by the double-prime superscript. The reference mixture-
fraction like variable is represented by η0 = η̃0 + η′′0 where η̃0 = Z̃LES is the
cell averaged mixture fraction ZLES evaluated from LES and η′′0 is modelled by
the MMC Markov diffusion process as considered in the previous subsection.
The coefficients B00 and A0 are selected to match the level of subcell fluctua-
tions of the mixture fraction that can be dynamically determined from LES.
The coefficient B00 is represented by B00 = B̃Φ(ξ1, ..., ξnd

) where B̃ is the
dynamically evaluated cell-resolved dissipation and Φ(ξ1, ..., ξnd

) is analogous
to Φ from previous subsection but, here, Φ models only the subcell fluctua-
tions of the dissipation and the process times τ j range from Kolmogorov to
cell-related characteristic times. Since dissipation is not resolved in LES, emu-
lation of dissipation fluctuations is based on the theory of the inertial interval.
Note that the mixture fraction ZLES evaluated by LES is not treated as the
”real” mixture fraction – this would violate the independence of scalars. The
mixture fraction is assigned to each fluid particle (explicitly or implicitly as
a linear combination of Y (i)) and modelled in accordance with equation (38).
Within the cell scales, the conventional definition of locality is compromised
to account for subcell fluctuations of the dissipation. The new definition of lo-
cality involves both the conditioning variables η and the physical coordinates
x.
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5.3 Velocity-like reference variables in MMC

The stochastic formulation of the conventional IEM and IECM models [16,23,20,24]
is given by the following equations.

dxj = ujdt, uj = ξj (51)

dξj = A◦jdt+ (C0ε̄)
1/2 dwj, A◦j = −a◦ξj (52)

dY (i) = W (i) + S[Y (i)]dt (53)

IECM: S[Y (i)] =

〈
Y (i)|u,x

〉
− Y (i)

τS
; IEM: S[Y (i)] =

〈
Y (i)|x

〉
− Y (i)

τS
(54)

where ε̄ denotes the average dissipation of energy, C0 is the Kolmogorov con-
stant and j runs over 1, 2, 3. On the face of the problem, it seems that IECM
belongs to the class of MMC models with the conditioning and reference vari-
ables given by ηj = ξj = uj while IEM is a generalised MMC with the refer-
ence variables ξj = uj and without any conditioning variables. A more detailed
consideration, however, indicates that the IECM model does not operate in
the regime expected for an MMC model. Indeed, since IECM can be treated
formally as an MMC model, the MMC techniques [7] indicate that IECM
corresponds to the following equation for the conditional mean Z̄u ≡ 〈Z|u,x〉

∂Z̄u
∂t

+ u ·∇Z̄u + Aj
∂Z̄u
∂uj
− C0ε̄

2

∂2Z̄u
∂uj∂uj

= 〈S[Z]|u,x〉 = 0 (55)

where Z = Y (0) represents the mixture fraction and Aj is linked to A◦j by
(40). In conditional MMC, where Z̄ is interpreted as a model for the scalar,
the scalar dissipation is given by

N̄ =
C0ε̄

2

∂Z̄

∂uj

∂Z̄

∂uj
(56)

A similar rate for the dissipation of velocity components and the scalar dis-
sipation would correspond to C0 ≈ 2/3 while the commonly acceptable value
for this constant is around 5 time higher [25]. Thus, if dissipation is deter-
mined by equation (56), it would be significantly overestimated by the model.
In conventional MMC, the overall dissipation rate is determined by equation
(56) while the operator S has a characteristic time of τS that is linked to the
level of conditional fluctuation. In case of IECM model, the characteristic dis-
sipation time τS has to be selected similar to the average dissipation time τ̄D
in order to match the overall dissipation rate. This results in a large level of
fluctuations around the averages conditioned on u and in essentially non-local
regime for the mixing operator S.
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In this subsection, we assume that spatial scalar transport properties are ade-
quately simulated by model (51)-(53) with the operator S[Y (i)] represented by
IECM (generally, S can be represented by any another mixing model localised

in the u-space and complying with
〈
S[Y (i)]|u,x

〉
= 0). We extend the model

in order to ensure that it operates under the standard MMC conditions. Since
the scalars do not correlate well with velocity components, we introduce the
mixture-fraction-like reference and conditioning variable ξ0 = η0, which ap-
pend the list of the variables ηj = ξj = uj, and require that mixing is local

with respect to all of the conditioning variables
〈
S[Y (i)]|η0,u,x

〉
= 0. Thus,

the operator S is now modified

S[Y (i)] =

〈
Y (i)|η0,u,x

〉
− Y (i)

τS
(57)

but the coefficients of the model A◦j (where j = 1, 2, 3) and C0ε̄/2 remain the
same. The system (51)-(53) is appended by equation dξ0 = A◦0dt+ b00dw0 and
the choice of b2

00 = 2B00 and A◦0 is subject to the usual constraints for mixture
fraction-like reference variables. The equation for Z̄ ≡ 〈Z|η0,u,x〉 takes the
form

∂Z̄

∂t
+ u ·∇Z̄ +Aj

∂Z̄

∂uj
− C0ε̄

2

∂2Z̄

∂uj∂uj
+A0

∂Z̄

∂η0

−B00
∂2Z̄

∂η2
0

= 〈S[Z]|η0,u,x〉 = 0

(58)
where

A◦0 ≡ A0 +
2

Pξ

∂B00 〈ρ〉Pξ
∂ξ0

(59)

and Pξ = P (ξ0,u,x; t) is the reference PDF.

The characteristics of the velocity-conditioned scalar Z

Z̄u = 〈Z|u,x〉 =
∫
Z̄P (η0|u,x)dη0 (60)

remain the same for both of the models. Indeed since both Z̄u and Z̄ are not
affected by the operator S, which is not present in equations (55) and (58),
we can put S = 0 without altering Z̄u and Z̄. One can see that, if S = 0, the
appended equation does not have any affect on the rest of the model. Hence,
the major transport of the scalar Z in physical space is the same for both of
the models. There are however some differences. The additional conditioning
variable η0 allows for reduction of the conditional fluctuations Z − Z̄ in the
extended model compared with the conditional fluctuations Z− Z̄u present in
the model prior to the modification due expectation that the mixture fraction-
like reference variable η0 correlates well with the mixture fraction Z. This
means the S is better localised and the extended model operates in agreement
with MMC principles so that the minor dissipation time is not strictly linked
to the overall dissipation rate. As it is discussed in the previous section, these
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goals are easier to achieve when the mixture-fraction-like reference variable η0

follows the Lagrangian characteristics of the real mixture fraction.

The extended model possesses one significant disadvantage – the computa-
tional cost. The large number of conditioning variables needs many particles
for accurate evaluation of the conditional expectations. In the framework of
the generalised MMC, the computational cost can be reduced by excluding the
reference variables ξj = uj (j = 1, 2, 3) from the list of conditioning variables
that are now represented by a single variable, η0 = ξ0. In this reduced version
of the model

S[Y (i)] =

〈
Y (i)|η0,x

〉
− Y (i)

τS
(61)

so that 〈S[Z]|η0,x〉 = 0 but 〈S[Z]|u,x〉 6= 0. This mixing operator S af-
fects the turbulent transport in any direction that does not coincide with
the direction of mixture fraction transport. Note that the standard MMC
equation obtained from (58) by omitting the derivatives ∂/∂uj is, generally,
not valid for the reduced model due to cross-correlations involving uj and
Z. This may be an acceptable price to be paid for computational efficiency
in many non-premixed flames where transport of all species is more or less
akin that of the mixture fractions. Let us examine whether transport of the
mixture fraction in the reduced model is consistent with the transport of
the mixture fraction simulated by the extended model. If A0 = 0, the ex-
tended model corresponds to equation (58) and that equation allows for so-
lution Z̄ = η0. As it is demonstrated in the previous paragraph, any solu-
tion of (58) generates 〈Z|u,x〉 that is consistent with the original model and
equation (55). Equations (58) can still be used to characterise 〈Z|η0,u,x〉
of the reduced model but, generally, 〈S[Z]|η0,u,x〉 6= 0 since the reduced
model demands only that 〈S[Z]|η0,x〉 = 0. However, one can see that in this
case 〈S[Z]|η0,u,x〉 = 〈(〈Z|η0,x〉 − Z)|η0,u,x〉 /τS = 0 for any Z satisfying
〈Z|η0,u,x〉 = η0. Hence Z̄ = η0 remains a valid solution for the reduced
model.

Thus, if A0 = 0, the mixture fraction transport is the same for reduced and
extended models, although transport in any other direction would be different
in these models. The condition A0 = 0 means that the conditioning variable
η0 simulates the mixture fraction. This is quite difficult to achieve with a
reasonably simple choice of the coefficients A0 and B00 due to the fact the
conventional mixture fraction values are bounded by 0 and 1. Thus, in practical
modelling, the transport properties of the reduced and extended models would
be different even for the mixture fraction. However, if η0 is reasonably close
to the mixture fraction, the transport properties can be expected to be quite
similar. The present section demonstrates how the models that comply with
both the MMC requirements and with the transport properties of the well-
explored methodology of Lagrangian velocity simulations can be constructed.
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6 Discussion and Conclusions

The 2nd order CMC equations with scalar (mixture fraction) conditioning in-
volve conditional generation term that is specific to the conditional variance
equations and does not appear in the equation for unconditional scalar vari-
ance but can be dominant under typical conditions. The analysis of this term
is conducted for locally homogeneous isotropic turbulence on the basis of the
theory of the inertial interval for an inert or slowly reacting scalars. The ob-
tained estimates for the generation term involve the characteristic generation
time τN that is shown to be related to the characteristic time of Lagrangian
correlation of the scalar dissipation. Strong and stable chemical reactions are
likely to reduce τN . The rate of generation of conditional fluctuations is
also determined for the major mixing models and it is shown that this rate
exhibits a non-trivial dependence on the model parameters that may include
the duration of the time step. An accurate implementation of a mixing model
should involve a proper selection of the model parameters that allows to set
the conditional generation rate at the desired level. Matching the expected
physical conditional generation rate is even more important in MMC mod-
elling. In MMC, one of the model parameters – the minor mixing time scale
– should be explicitly selected to produce the required level of the conditional
fluctuations. The conditional generation rate in the simplest version of MMC
with a single mixture fraction-like reference variable and the minor dissipa-
tion operator represented by Curl’s mixing model is analysed and shown to
be consistent with the physical expectations for the rate.

While the first part of this work is mainly concerned with the mixture fraction-
type conditioning, a more general understanding of MMC modelling is intro-
duced in the second part. The generalised MMC involves several conditioning
variables η1, ..., ηnc

that are used to emulate selected Lagrangian properties
of turbulence (such as the scalar dissipation and velocities). The conditioning
variables depend on the set of the reference variables ξ1, ..., ξnr

that do not
necessarily coincide with the conditioning variables. The reference variables
are used to assist the emulation process. Another set of variables Z(i) simu-
lates the reacting scalars. These variables are affected by the reaction source
terms and by the surrogate mixing operator utilising the conventional mix-
ing models. The MMC methodology allows to enforce the desired conditional
characteristics

〈
Z(i)|η

〉
through adequate emulation of Lagrangian properties

by η(t). The influence of the surrogate mixing is restricted to the local treat-

ment of the fluctuations with respect to
〈
Z(i)|η

〉
(the minor fluctuations) and,

to a certain extent, this negates the deficiencies of surrogate mixing.

The last section of the present paper demonstrates how consistent MMC mod-
els with various types of conditioning can be constructed. The Lagrangian
properties of the scalar dissipation with a log-normal distribution and required
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correlation function are emulated by a proper choice of the reference variables
that, effectively, represents the turbulent cascade. The spatial turbulent trans-
port of scalars can, presumably, be simulated by IECM model. The model is
converted into a proper MMC model in a way that preserves the transport
characteristics. The emulation of some selected properties of turbulence (the
mixture fraction and the velocities but not the dissipation) can be replaced
by LES of these values. Combining MMC and LES allows to evaluate the
large-scale transport by LES while the small-scale dissipation characteristics
are emulated by MMC.

It seems that the future of turbulent combustion modelling is not in the use of
a particular model but in combining the models in a way that amplifies their
strong features and compensates their deficiencies. Ideally, the user should
be able to ”order” the desired features of the model, although the additional
features are likely to come at some additional computational cost. For example,
if the user is not satisfied with Lagrangian stochastic simulation of velocities
then, presumably, LES can reproduce the Lagrangian trajectories better while
the rest of the combustion model does not need to change much. It seems that
MMC is a right methodology for flexible and consistent interactions between
the models.
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Nomenclature

Y reactive scalars

y = Y − 〈Y 〉

Z inert scalar or mixture fraction

z = Z − 〈Z〉

Q conditional average = 〈Y |Z〉

Θ conditional variance = 〈(Y −Q)2|Z〉

f functional depedence Y = f(Z)

Ψ generation and dissipation terms in 2nd order CMC

u velocity

x physical coordinate

N scalar dissipation

W chemical source term

P probability density function

ρ density

S mixing operator

D molecular diffusion coefficient

t time

τ time scale

K correlation of the scalar dissipation

ξ MMC reference scalars

η MMC conditioning scalars
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A drift coefficient (in the reference space)

B diffusion coefficient (in the reference space)

w standard Wiener process
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