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Abstract

The present work suggests a theory of Reverse Combustion Linking (RCL). RCL is
a central unit operation of Underground Coal Gasification (UCG) technology. The
theory is based on analysing stability of different branches of the propagation speed
curves and determining the regime that is responsible for propagation of the flame
during RCL. The theory is in a good qualitative and quantitative agreement with
the data obtained in practical use of RCL in UCG operations.
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1 Introduction

Reverse combustion linking (RCL) is a key operation of Underground Coal Gasification
(UCG, [1,2]). The term ”reverse combustion linking ” became conventional in UCG appli-
cations and we follow this convention in the present work. UCG is a gasification process
carried on in non-mined coal seams using injection and production wells drilled from the
surface, which enables the coal to be converted into product gas. RCL is a method of
linking the process wells within a coal seam, which includes injection of an oxidant into
one well and ignition of coal in the other so that combustion propagates towards the
source of oxidant thereby establishing a low hydraulic resistance path between the two
wells as shown in Figure 1. This allows to inject an oxidant and produce synthesis gas at
commercially significant flow rates. A procedure to conduct RCL includes the following:
an oxidant is injected in one of the wells (injection well) while coal seam is ignited in the
other well (production well). Combustion of coal in the production well proceeds towards
the source of oxidant. Injection of oxidant into the injection well is maintained until the
fire reaches the bottom of the well. Creation of a low hydraulic resistance link between the
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bottoms of the process wells results in significant drop in the pressure difference between
the wells indicating successful completion of the linking process. RCL is followed by main
stages of UCG that are not considered in the present work. RCL is conventionally charac-
terised by the speed of linking measured in meters per day and by oxidant consumption
measured in normal cubic meters per hour.

Among a number of publications devoted to reverse combustion in porous media [1,3–6],
only the analytical work of Britten and Krantz [1] is specifically devoted to RCL. In this
work, Britten and Krantz considered RCL while solving a set of modelling equations for a
planar reverse combustion front and focusing their attention on the equations for the gas
phase, implicitly assuming deficiency of air and excess of coal in the reaction zone and
downstream from it. Although their approach confirmed hydrodynamic instability of the
front, which is an important factor in the link formation, the conceptual understanding of
RCL employed by Britten and Krantz contradicts empirical evidence. They consider RCL
as the process of coal pyrolysis followed by combustion of the released volatile matter
so that the hydraulic link between injection and production wells is formed by a porous
path of an enhanced permeability. However, empirical data from UCG operations indicate
that RCL results routinely in formation of a channel in which coal has been essentially
consumed by combustion.

In our approach we, to a large extent, follow the principle formulation of reverse combus-
tion introduced by Schult et al [5] and used in the recent work of Liu et. al. [6]. Unlike
the formulation of Britten and Krantz [1], the formulation of Schult et al [5] allows for
analysis of both oxigen-deficient and coal deficient flames. We assume, however, as did
Britten and Krantz [1], that gas phase in the reaction zone is not dominated by diffusion.
We analyse both oxygen-deficient and coal-deficient cases and their hydrodynamic and
pulsating stability and pay special attention to the vicinity of the stoichiometric point. As
the result of the analysis, we found that the flames close to the stoichiometric regime (as
defined for incomplete combustion) are primarily responsible for RCL. Another feature of
the present work is consideration of curved flames and their propagation speed, which is
important for understanding of RCL. It is treated using Intrinsic Disturbed Flame Equa-
tions (IDFE, [7–10]). Although in most of the paper we implicitly follow the developed
asymptotic methodologies, at several instances we opted for a simplified (rather than strict
asymptotic) formulation that allows to obtain compact analytical representations of the
results but does retain the important physical effects that are of primary importance in
RCL. This approach resulted in an overall theory of reverse combustion linking during
UCG that determines main relationships between key parameters of the process. Prelim-
inary results of applying the theory to specific UCG conditions demonstrate a reasonable
conformity with the data obtained in practical UCG operations.
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2 The modelling equations

The equations governing transport and reactions in porous media are represented by the
conservation of mass, energy and species equations that can be written in the form

∂ρ

∂t
+∇·(m) = 0,

∂ρi
∂t

+∇·(mi) = Wi (1)

∂ρh

∂t
+∇·(mh)−∇· (λ∇(T )) = 0 (2)

Here, m ≡ ρv and mi = viρi are the mass fluxes, the subscript index ”i” runs over all
species of interest; ρi is the density (mass per volume) of the specific component (so that
Yi = ρi/ρ is the mass fraction), λ is the effective heat conductivity and Wi is the chemical
reaction source terms of the i’th component. The mass flux ρv is denoted by m. The
temporal pressure derivative ∂p/∂t is conventionally neglected in the energy equation.
The over-bar denotes the superficial averages:

m = φgmg + φqmq + φsms =
∑
i

φimi =
∑
i

φiρivi

mh = φgmghg + φqmqhq + φsmshs =
∑
i

φimihi

The superficial averages can be evaluated as the sum over parameters of the three phases
– gas, liquid and solid – that are denoted by the subscript indices ”g”, ”q” and ”s”. The
specific volumes φ occupied by the phases are determined by the porosity of the solid
phase. The superficial averages can also be evaluated as a sum over all species involved.
The species are indexed by the running index ”i” but we should note that velocities v
and specific volumes φ are the same for all components of a given phase, although v
and φ are, generally, different for different phases. For example, vi = vg 6= vs for any
”i” that belongs to the gas phase. The averages that are applied to a single component
such as mi = φimi = φiρivi do not involve summation over the other species. Similarly,
mg = φgmg = φgρgvg for the gas phase and other phases. The temperature T is considered
to be the same for all phases and does not need averaging. We do not consider variations
of the values in the interparticle space. Hence, the intrinsic averages simply coincide with
the values determined within a specific phase and no special notation is needed here for
intrinsic averages. The momentum equation is represented by the Darcy law

vg = U + S, U = −f∇p (3)

where S is the velocity associated with the moving frame of reference (i.e. the flame
speed) and f is permeability.

In the present analysis we do not consider the liquid phase separately, assuming that the
underground water is supplied with the gas flow or represents the coal moisture content.
Hence only two phases, gas and solid, need to be indexed explicitly. In terms of the phases
the global reaction takes the form

µ−g (Gas)− + µ−s (Solid)− → µ+
g (Gas)+ + µ+

s (Solid)+
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or ∑
i

µ−i (Species)i →
∑
i

µ+
i (Species)i

The coefficients µi are on the mass basis. The superscripts ”−” and ”+” denote values
before and after reactions and µ+

i −µ−i represents the mass change of ith component. In the
rest of the paper we put µ−g = 1 without loss of generality. The global reaction is presumed
to be specified so that the products coefficients depend on µ−s so that µ±i = µ±i (µ−s ) for
any component ”i” (or phase ”i”). All of the reactions are presumed to form a global
reaction that has a single rate so that we can write for any i and j

Wi

µ+
i − µ−i

=
Wj

µ+
j − µ−j

The total enthalpy hi of each component can be represented as a sum of sensible enthalpy
and enthalpy of formation hi = h

(s)
i +h

(f)
i with the superscripts ”s” and ”f” denoting the

sensible and formation enthalpies. The enthalpy equation takes the form

∂ρh(s)

∂t
+∇·(mh(s))−∇· (λ∇(T )) = Wh (4)

where

−Wh ≡
∂ρh(f)

∂t
+∇ · (mh(f)) =

∑
i

h
(f)
i

(
∂ρi
∂t

+∇·mi

)
=
∑
i

h
(f)
i Wi = qWO2,

q ≡ H(µ−s )

µ−O2 − µ+
O2

, H(µ−s ) ≡
∑
i

(
µ−i − µ+

i

)
h

(f)
i (5)

and H(µ−s ) is the enthalpy of the reaction. The enthalpy of formation is defined as the
enthalpy at a certain reference temperature T (f) whose conventional value is 250C. (The
best choice for T (f), which accurately defines the heating value of the reaction, is a constant
temperature that is close to the temperature in the reaction zone). Multiplying equations

for the each component in (1) by (h
(s)
i ) = h

(s)
i (Tu), evaluating the sum over all ”i” and

subtracting the result from equation (4) yields the equation for the sensible enthalpy

increments ∆h
(s)
i

∂ρ∆h(s)

∂t
+∇·(m∆h(s))−∇· (λ∇(T )) = Wh +W

(s)
h (6)

where

∆h
(s)
i ≡ h

(s)
i − (h

(s)
i )u; W

(s)
h ≡ −

∑
i

Wi(h
(s)
i )u

The additional term W
(s)
h can be nullified by selecting T (f) = Tu.
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3 Planar flame

A simple, planar flame front propagating under stationary conditions is characterised by
the following system of equations

∂m

∂x
= 0,

∂mi

∂x
= Wi (7)

∂mh

∂x
− ∂

∂x

(
λ
∂T

∂x

)
= 0 (8)

Here, we use the system of coordinates that is attached to the flame; for the first compo-
nents of vectors that is normal to the flame front – x(1), v(1), m(1) and others – the index
identifying the normal component is omitted here and further in the article. Integration
of these equations across the flame yields

(m)b = (m)u (9)

(mi)b = (mi)u +Qi, Qi ≡
∫ +∞

−∞
Widx (10)

(mh)b = (mh)u (11)

The subscript ”u” is used to denote values upstream from the flame while the subscript
”b” denotes values downstream from the flame front. Equations (4) and (11) can be
written as

∂mh(s)

∂x
− ∂

∂x

(
λ
∂T

∂x

)
= Wh (12)

(mh(s))b = (mh(s))u +Qh (13)

where equations (5) indicate that

Qh ≡
∫ +∞

−∞
Whdx = (mh(f))u − (mh(f))b = (mg)uH(µ−s ) (14)

3.1 The reaction zone

The major reaction in the global reaction mechanism is oxidation of carbon

C + (1− n/2) O2 → nCO + (1− n) CO2

that is expected to be incomplete when n < 1. The reaction machanism may also include
other reactions and phase transitions (evaporation of water, for example, has a significant
effect on the flame temperature), although the rate of the major reaction is presumed to
determine all other reactions and phase transitions. The rate of the major reaction that
determines consumption of oxygen is given by

WO2 = −ϕ(ρC)AρO2K(T );
1

K(T )
=

1

Kr(T )
+

1

Kt

, Kr(T ) = exp (−TE/T ) (15)
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For temperatures lower than Tt specified by Kt = exp (−TE/Tt) , the rate is reaction-
limited K ≈ Kr and, for the temperatures higher than Tt, the rate is transport-limited
K ≈ Kt. The reaction parameter A is presumed constant while ϕ = 1 when ρC > 0 and
ϕ = 0 when ρC = 0. Assuming that the reaction zone is thin in comparison with the flame
thickness, we obtain

∂m

∂x
= 0,

∂mi

∂x
= Wi (16)

− ∂

∂x

(
λr
∂T

∂x

)
= Wh (17)

The integral of the enthalpy equation is given by

(λT ′)(−r) = Qh = (mh(f))(−r) − (mh(f))b (18)

The subscript ”r” is used to denote the values related to the reaction zone, for example,
λr is the diffusion coefficient within reaction zone that, conventionally, can be assumed
to be constant λr = λb since the reaction zone is presumed thin. The subscript and
superscript indices ”−” are used to emphasise that the indexed values are related to the
reactants while the index ”+” points to the products. To make equations concise, we
introduced T ′ ≡ ∂T/∂x.The reaction rate for the heat release is linked to the reaction
rate by qWO2 = −Wh where the coefficient q = q(µ−s ) = H(µ−s )/(µ−O2 − µ+

O2) represents
heat released by oxidation with one unit of mass of O2. Hence, with the use of (15) we
may write

∂λrT
′

∂x
= q

∂φgvgρO2

∂x
= −qϕAρO2K(T ) (19)

Since (T ′)(+r) = (T ′)b = 0, we use the following linear dependence between T ′ and ρO2

ρO2 = ρO2(T ′) = (ρO2)b + (ρO2)∆

T ′

(T ′)(−r)
(20)

Here and further in the paper we denote (·)∆ ≡ |(·)u − (·)b|. Linear function (20) rep-
resents an exact integral if φgvg = const through the reaction zone and this is the case
when the reactions do not change number of moles in the gaseous phase (for example,
C+O2 →CO2) in other cases the linear dependence represents an approximation that is
physically plausible and, at the same time, ensures reasonably simple integration of (19).
Multiplying (19) by T ′ and separating variables leads to

λr
qϕA

T ′ dT ′

ρO2(T ′)
= −K(T )dT (21)

Evaluating of the integrals

∫ T ′
(−r)

0

T ′dT ′

ρO2(T ′)
=

(
T ′(−r)

)2

(ρO2)∆

(1− ξ) (22)

Φ(Tb) =
∫ Tb

−∞
K(T )dT =

Kt

Z
ln

(
1 +

Kr(Tb)

Kt

)
(23)
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where

ξ ≡ (ρO2)b
(ρO2)∆

ln

(
(ρO2)u
(ρO2)b

)
, Z ≡ TE

T 2
b

(24)

is performed by expanding the exponent exp (−TE/T ) = exp (−TE/T0 + Z(T − T0)) in
vicinity of a certain reference temperature T0 that is selected close to Tb. In evaluations of
the RCL rates presented below we assume T � Tt, henceKr � Kt and Φ(Tb) = Kr(Tb)/Z.
Finally, we note that Qh = qQO2 and obtain

Qh(Tb, ...) = λrT
′
(−r) =

√
(ρO2)∆ qAλr

1− ξ
Φ(Tb) (25)

3.2 The planar flame speed

The speed of the planar flame can be obtained without specific analysis of the preheat
zone. We first note that the reaction coefficients are linked to the mass fluxes by the
equations

µ−g = 1, µ+
i =

(mi)b
(mg)u

, µ−i =
(mi)u
(mg)u

(26)

for any i representing different species or phases. Equation (11) divided by (mg)u indicates
that the enthalpy is preserved∑

i

µ+
i hi(Tb) =

∑
i

µ−i hi(Tu) =⇒ Tb = Ta(µ
−
s , ...) (27)

This determines the temperature of the products Tb as the adiabatic temperature Ta for
given fuel/air ratio µ−s . Dependence of Tb on µ−s for the conditions analysed in Section 6
is shown in Figure 2. Equation (14) determines the gas and solid mass flow rates

(mg)u =
Qh(Tb, ...)

H(µ−s )
, (ms)u = µ−s (mg)u (28)

and the flame and gas velocities

S = vs =
(ms)u

(φsρs)u
, (vg)u = Uu + S =

(mg)u
(φgρg)u

(29)

The flame speed strongly depends on the temperature of the products Tb which, in its
turn, strongly depends on fuel/air ratio µ−s . The functions Ta(µ

−
s , ...) and Qh(Tb, ...) also

depend on other parameters such as Tu, A, TE and initial compositions of coal and air
that are fixed and selected to match the conditions in the coal seam.

The dependence of the flame speed S on the gas velocity in the fresh mixture Uu is shown
in Figure 3. In Figures 2 and 3, the dashed curve corresponds to irreversible reactions with
a jump in the slope of the curve at point 5 that corresponds to the stoichiometric air/fuel
ratio (for a given proportion n between CO and CO2 in the reaction products). This jump
is induced by the jump in the slope of the adiabatic temperature function Ta(µ

−
s ). Two

propagation speeds correspond to the upper and lower branches of the curve and a single
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given value of Uu. The upper branch of the curve is oxygen-deficient and it is hotter than
the lower branch that is coal-deficient. The temperatures near the point 0 are low, the
flame speed is small and the flame becomes practically extinct. The flame can not be
sustained and is blown off by any flow with a gas velocity that is higher than (Uu)5 (i.e Uu
at point 5) The stability analysis presented in the appendix indicates that the lower branch
is unstable due to pulsating instability. The flames that correspond to this branch either
rapidly accelerate and reach the upper branch or decelerate and become extinct. The role
of this branch is more in separating the flames that are sustainable from the flames that
are extinguished. The upper branch is also not stable – it is affected by the hydrodynamic
instability that is less severe than the pulsating instability. Our assessment of the stability
of RCL is, generally, in agreement with the other works on reverse combustion [1,5,6,11].
The details of the stability analysis are given in the Appendix.

As we show in the next sections, the vicinity of the stoichiometric point 5 in Figure 3
plays a major role in RCL but the dashed curve does not allow to analyse the details of
the stoichiometric point. In a more realistic case, Ta(µ

−
s ) appears to be smoothed near

the stoichiometric point and this case corresponds to the solid curves in Figures 2 and
3. One can notice that instead of the single maximum velocity point, we now have two
maximum points: point 2 where the flame speed S reaches its maximum (S)2 (and BU = 0
in (A.5)) and point 3 that corresponds to the maximal value of the gas velocity (Uu)3 (and
BS = 0 in (A.5)). The stability analysis shows that the branch between points 0 and 2 is
hydrodynamically unstable, the branch between points 3 and 0 is unstable due to pulsating
instability while the section of the curve between points 2 and 3 is stable. The vicinity of
point 2 can be considered as practically stable due to obvious physical limitations imposed
on the scale of the disturbances so that k in equation (A.19) of the appendix can not be
infinitely small. Point 3 represents the most stressed regime of the flame separating the
sutained flame from the flame blow-off and point 3 is therefore unstable for practical
purposes.

4 Disturbed flame

The Intrinsic Disturbed Flame Equations (IDFE) is an asymptotic methodology of analysing
structure of the flame fronts curved and stretched by surrounding flow. IDFE were first
introduced in Ref [7]. The main features of IDFE is using specially selected adaptive curvi-
linear system of coordinates attached to the flame that radically simplifies formulation of
the problem. In curvilinear system of coordinates, differential equations involve g2 — the
determinant of the metric tensor that defines local metrics of the curvilinear coordinates.
The IDFE coordinates are selected so that g is proportional to the area of a flame surface
segment. As discussed further in this section, the value of g is determined by two major
parameters: the spatial derivative of g, which is related to flame curvature γ, and the
temporal derivative of g, which is related to the flame stretch κ The most useful feature
of IDFE is that only two parameters characterising flame/flow interactions (γ and κ) enter
the transport equations from early stages of problem formulations. Several results have
been obtained with the use of IDFE technique. If any multistep reaction kinetics occurs in
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a zone, which is thin in comparison with the flame width, then γ does not explicitly appear
in the disturbed flame speed equation [8] but, if the reaction zone is thick, γ is, generally,
present in the flame speed equation [9]. IDFE have been used to formulate a unifying
approach to determining the speed of disturbed flames [7,10], to establish effective flame
jump conditions for scalars and velocities [10] and to analyse stability of premixed flames
[12].

Here we use IDFE to take into account the effects of flame stretch and curvature as well
as some of unsteady effects. In a general curvilinear system of coordinates the transport
equations (1), (2) and (4) take the form

∂gρ

∂t
+
∂gmj

∂xj
= 0 (30)

∂gρi
∂t

+
∂gmi

j

∂xj
= gWi (31)

∂gρh

∂t
+
∂gmjh

∂xj
− ∂

∂xj

(
gjkgλ

∂T

∂xk

)
= 0 (32)

∂gρ∆h(s)

∂t
+
∂gmj∆h(s)

∂xj
− ∂

∂xj

(
gjkgλ

∂T

∂xk

)
= gWh + gW

(s)
h (33)

where g =
∣∣∣det gjk

∣∣∣−1/2
, gjk is the metric tensor of the of coordinates, the superscript

indices run over spatial components of the vectors j, k = 1, 2, 3 and the summation con-
vention is applied to repeated indices. The most convenient choice of the coordinate system
used in IDFE enforces that x1 is perpendicular to the flame (so that g12 = g13 = 0);
x1 has the same scaling as the physical coordinate g11 = g11 = 1 and the coordinate
system is attached to the flame so that x1 = 0 determines the flame (i.e. reaction
zone) location [7,8]. In the rest of the paper x1 is denoted simply as x. The operator
∇f denotes the 2-dimensional divergence evaluated on the flame surface, for example
∇f · (gm) ≡ ∂(gmα)/∂xα, where α = 2, 3 runs over the coordinates on the flame surface.
Although in the case of a single phase the 2-dimensional divergence term can be removed
by selecting the proper stretch rate for the flame surface coordinates x2 and x3 [7,8], the
multiphase case requires explicit specification of the surface divergence since the rate can
be different for different phases. The transport equations can now be written as

∂gρ

∂t
+∇f · (gm) +

∂gm

∂x
= 0 (34)

∂gρi
∂t

+∇f · (gmi) +
∂gmi

∂x
= gWi (35)

∂gρh

∂t
+∇f · (gmh) +

∂gmh

∂x
− ∂

∂x

(
gλ
∂T

∂x

)
− ... = 0 (36)

∂gρ∆h(s)

∂t
+∇f · (gm∆h(s)) +

∂gm∆h(s)

∂x
− ∂

∂x

(
gλ
∂T

∂x

)
− ... = gWh + gW

(s)
h (37)

The triple dots indicate neglecting tangential heat fluxes that are small in thin flames
(the major tangential heat losses are taken into account by using the intrinsic curvilinear
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system of coordinates [7,8]). Integration of equation (37) across the flame results in(
m(h(s) − h(s)

u )
)

(+r)
= Qh −

∑
i

Qi(h
(s)
i )u −Ql (38)

where

Ql ≡
1

gr

∫ x(+r)

−∞

(
∂gρ∆h(s)

∂t
+∇f · (gm∆h(s))

)
dx (39)

is the rate of heat loss, g = gr is x-independent within the reaction zone (but not every-
where within the flame) ∫ x(+r)

−∞
gWidx = grQi, (40)

and the values Qi are the same as defined in (10). The subscript ”+r” indicates the
point at the end of the reaction zone rather than any point in the burned mixture. This
distinction is needed since m is not necessarily a constant in the burned region due to
possible variations of g. The reaction zone is thin and, to the leading order, is not affected
by the disturbances and the unsteady effects so that, within the reaction zone, the function
g = g(x, t) can be replaced by a single value gr(t). We also need to introduce the projected
mass fluxes m∗i that coincide with mi within the reaction zone, but m∗i remain constant
outside the reaction zone. Thus the projected mass fluxes can be defined as satisfying
∂m∗i /∂x = Wi so that (m∗i )b − (m∗i )u = Qi. Multiplying the last equation by h

(f)
i and

evaluating the sum over all i results in the relationship

(m∗h(f))b − (m∗h(f))u = Qh =
(
m∗g
)
u
H(µ−s ) (41)

that is similar to (14). The equation for the sensible enthalpy is, however, directly affected
by the flame stretch: with the use of the projected mass fluxes, equation (38) can be written
as (

m∗h(s)
)
b
−
(
m∗h(s)

)
u

= Qh −Ql (42)

The difference of (42) and (41) represents the equation for the total enthalpy(
m∗h

)
b
−
(
m∗h

)
u

= −Ql (43)

so that ∑
i

µ+
i hi(Tb) =

∑
i

µ−i hi(Tu)−
Ql

(m∗)u
(44)

and

Tb = Ta(µ
−
s , ...)− δTl, δTl =

Ql(
m∗Cp

)
b

(45)

where the last equation is based on the assumption that a constant heat capacity can be
used to characterise the mixture between the actual post-burn temperature Tb and the
adiabatic temperature Ta. The heat release rate is determined by equation (25), which is
not affected by the stretch due to thinness of the reaction zone, and, for given Qh, the
flame speed is determined by (41) in accordance with (29).

The asymptotic value of the integral Ql defined by (39) is now evaluated. This integral is
considered to be a correction so that it can be represented as a sum of the terms and each
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of this terms is linear with respect to the cause of the heat loss. The non-linear terms are
smaller than the leading linear terms and are therefor neglected. It should be noted that
small variations of the temperature Tb can result in significant changes of Qh(Tb, ...) and S
due to a high activation energy of the reaction. First we expand g = gr(1−γ0x+κ0t) + ...
where

γ0 = −
(
∂ ln g

∂x

)
r

, κ0 =

(
∂ ln g

∂t

)
r

(46)

are the flame curvature and the flame stretch, evaluated at the surface of the most intense
reactions. If the surface coordinates do not expand, we can distinguish the overall stretch
κ0 from the ”phase-specific” stretches κi

κ0 = Sγ0, κi = ∇f · (vi) (47)

The stretch κ0 is induced by the flame curvature γ0 and is the same for all phases while
κi are phase-specific and occur when the flow of a particular phase (or mixture com-
ponent) diverges on the flame surface. Within the preheat zone, κi is assumed constant
(i.e. permeability and absolute viscosity determining f in Darcy’s law are presumed to
be temperature-independent). The unsteady effects (which would result in replacement

of κ0 by κ0 + d/dt) are considered separately in Appendix and neglected here. Since h
(s)
i

does not depend, to the leading order, on the surface coordinates x2 and x3, equation (39)
takes the form

Ql ≡
∫ xr

−∞

(
κ0ρ∆h(s) + κρ∆h(s)

)
dx = (κ0 + κ)I =

∑
i

(κ0 + κi)φiIi (48)

where

Ii =
∫ xr

−∞
ρi∆h

(s)
i dx =

∫ Tb

Tu

ρi∆h
(s)
i λ

m∗∆h(s)
dT (49)

The integrals Ii are mainly dependent on conditions in the preheat zone and, since the
reaction zone is thin, can be evaluated with the upper limit just before or just after the
reaction zone, whichever approach is more convenient. In the preheat zone where Wh = 0,
as it follows from equation (12) the link between the differentials dT and dx is given by
λdT = m∗∆h(s)dx. Estimations of the integrals Ii result in the following expression for
the temperature loss

δTl
T∆

= γ0lfθs + κg
lfθg
Uu

, (50)

where

θs ≈

(
m∗s(Cp)s

)
u(

m∗Cp
)
u

, θg ≈

(
m∗g(Cp)g

)
u(

m∗Cp
)
u

, lf ≡
∫ xr
−∞ (T − Tu) dx

Tb − Tu
≈ λr

(mCp)u

and T∆ = Tb − Tu. In these estimations we assume constant heat capacities and put(
m∗Cp

)
u
≈
(
m∗Cp

)
b
. This assumption is valid as long as the heat effect of the reaction

does not depend strongly on the temperature. The flame thickness can be defined dif-
ferently for different components li = Ii/(ρi∆h

(s)
i )b but any li can be approximated by

lf .
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5 Reverse combustion linking

In order to understand the complexity of the RCL process we first note that the planar
reverse combustion flame would be very difficult (and probably impossible) to sustain.
Indeed, there is only a small region between points 2 and 3 that can correspond to this
regime and be stable. The gas velocity Uu must be homogeneous and accurately controlled
so that (Uu)2 < Uu < (Uu)3. Practically, any noticeable increase in Uu will lead to the
flame blow off while any decrease in Uu will cause development of instabilities curving the
flame.

Similar consideration can be applied to the reverse combustion in a channel that would
be inevitably formed due to the instabilities even if the initial conditions correspond to
a planar flame. The gas velocity in the channel can’t be much greater than (Uu)2 (and
never exceeds (Uu)3), since the flame would be blown off, or noticeably smaller than
(Uu)2, since this would leave too much space for development of instabilities that would
effectively narrow the channel. The channel width that, for a given total mass flow of the
gas phase Mg, corresponds to gas velocity of (Uu)2 is the width that would be “preferred”
by the process. Under these conditions, the flame can be still treated as oxygen-deficient
but nearly all coal within the channel is oxidised in the process. We, however, find a
new complication: the speed of (Uu)2 is not a constant and would in its turn depend
on the channel width. A narrower channel has a more significant heat loss and a lower
temperature in the reaction zone and this results in lower (Uu)2 and S2. This loss would
occur at least because the flame in the channel has a convex shape and, in accordance
with the IDFE analysis of the previous section, a lower propagation speed. There are also
other possible reasons for the temperature decrease in narrow channels (such as ground
water influx from coal around the channel and lateral heat loss). Greater Mg corresponds
to wider channels and greater flame speeds. Very large Mg corresponds to minimal losses
and any further increase in Mg would not speed up the flame but only widen the channel.
An insufficient Mg results in excessive heat loss and flame extinction.

In reality, the RCL process is even more complicated. It is inevitable that the quality
and porosity of coal in the seam varies from point to point resulting in variations of
the propagation speed. Let us assume that the channel radius Rc is somewhat above the
“preferred” value so that Uu is below (Uu)2. Due to hydrodynamic instabilities, this would
result in development of a small cavity. The tip of the cavity, called the leading point, has
a radius Rp that is smaller than Rc while the local velocity at the tip is (Uu)2. The leading
point propagates faster and is followed by sloping conical flame whose normal propagation
velocity is below that of the leading point. The ratio Rp/Rc can not be too small since this
would result in excessively high gas velocities at the leading point and a slow propagation
speed or extinction of the tip. If the leading point propagates forward too fast the cavity
becomes deep and narrow and this attracts additional gas flow through the leading point
so that gas velocity exceeds (Uu)2. The leading point is then slowed down and forced
to wait until combustion behind the leading point widens the cavity. The leading point
can also be extinguished by excessive local gas velocity or other unfavourable conditions.
As the rest of the channel catches up with the leading point, the front surface of the
channel flattens until conditions favourable for the development of a new leading point

12



are attained. It should be noted that not only one but several leading points competing
for the gas flow can develop at the same time. The leading point that is closer to the
source of the air and/or has better local conditions for the flame propagation is more
likely to “win” and lead further channel formation.

Compared to the reverse combustion in a planar flame, the RCL process in a channel
has an important stabilising mechanism. If the gas velocity is close to or somewhat above
(Uu)3, the propagation of the flame is arrested but the flame in the channel is not com-
pletely blown off: continuing burning behind the leading point would widen the channel
until the gas velocity drops to a more acceptable level. An excessively high (Uu)3 can still
terminate RCL. If the channel is too wide and (Uu)3 is too small for given Mg, the rapidly
advancing leading point would make the following sections of the channel narrower so
that (Uu)3 in these sections becomes higher.

Assuming that linking forms a channel whose radius is Rc and since S � Uu we may write

(mg)u =
Mg

πR2
c

(51)

The temperature loss δTl = Ta − Tb appears mainly due to the flame curvature γ0 at the
leading point γ0 = 2/Rp = 2ζ/Rc where Rc and Rp are connected by a constant factor
ζ that must be not less than unity: Rc = ζRp. Since RCL is close to the stoichiometric
regime and coal is fully consumed (or nearly fully consumed) within the forming channel,
the gas velocity is directed perpendicular to the flame and κg = 0 does not contribute to
the flame stretch. Hence, equation (50) yields

Tb = Ta(µ
−
s )− 2

θT∆lf
Rp

= Ta(µ
−
s )− 2ζθT∆lf

√√√√π (mg)u
Mg

(52)

At the leading point, the mass flow rates and the flame speed satisfy the following

(mg)uH(µ−s ) = Qh(Tb, ...), (ms)u = (mg)u µ
−
s , S =

(ms)u
(φsρs)u

(53)

According to the previous analysis, the S — the velocity of propagation of the leading
point — is treated as the value estimating the overall linking speed.

6 RCL in Chinchilla UCG operations

The UCG process developed and practiced by Ergo Exergy Technologies is called Ex-
ergy UCG or εUCG. εUCG was applied in the Chinchilla site near Brisbane (Australia)
owned by LINC Energy Ltd. (Blinderman and Jones (2002)). RCL has been one of the
methods applied in Chinchilla Project to achieve linking of the process wells. Nine pro-
cess wells have been successfully connected by RCL. The well spacing varied between 15
and 60 m, and RCL at the Chinchilla UCG plant demonstrated linking speeds between
0.9 m/day and 11.3 m/day. The wide range of RCL speeds at Chinchilla, experienced in
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essentially the same geological conditions and similar coal quality, suggests that the speed
is highly sensitive to the injection and production parameters. The maximal RCL speeds
demonstrated at Chinchilla are the highest achieved in UCG operations on record.

We conducted systematic comparison of the calculated RCL speeds for various pressures
and flow rates of the oxidant at the injection wells with the RCL speeds measured at
Chinchilla. This work is still in progress and only preliminary results could be reported
here. Figure 4 shows that the theory presented above gives a reasonable prediction of the
RCL speeds measured in Chinchilla. The graph gives RCL speed in meters per day as a
function of the oxidant mass flow. The parameters in calculations were selected according
to: A = 6.2 × 1011s−1, TE = 3 × 104K, (φg)u = 0.15, Tu = 25◦C, Tt → ∞, polynomial
approximations were used for evaluation of the enthalpies and λ = λ(T ) was taken from
Ref.[4]. The crosses represent some of the empirical data obtained at Chinchilla. Further
comparison with the results of field operation at Chinchilla and other sites will allow a
broader validation of the presented theoretical model. One can see, however, that the
experimental data from Chinchilla is reasonably represented by the calculations as per
the described model.

7 Conclusions

This work introduces the theory of RCL that qualitatively explains and to a certain extent
quantitatively models the salient features of the process observed in UCG operations. We
explain the inevitability of a channel formation during RCL and demonstrate that con-
sistent RCL is made possible by a combined contribution of several types of instabilities.
We present an analysis of physical mechanisms that are responsible for stabilisation of the
process. The results of this work explain why large scale UCG process based on reverse
combustion would be highly impractical. The quantitative description of RCL is achieved
by

• Analysis of the propagation speeds of oxygen-deficient, coal deficient and near-stoichiometric
planar flames
• Analysis of the asymptotic structure and propagation speeds of flames that are curved

and stretched (using the IDFE technique)
• Analysis of the hydrodynamic and pulsating stability of the different regimes of the

flame
• Estimating the losses in narrow channels using the temperature loss equations obtained

by the IDFE analysis
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A Stability analysis

The variations of equations (3), (25), (26), (41) and (45) are given by

δQh =
ZQ
2
Q0
hδTb, δTb = −T ′a

δµ−s
(µ−s )0 − δTl, (A.1)
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δ
(
m∗g
)
u(

m∗g
)0

u

+
δH

H0
=
δQh

Q0
h

, δH = η′H0 δµ
−
s

(µ−s )0 (A.2)

δ (m∗s)u
(m∗s)

0
u

=
δS

S0
,
δ
(
m∗g
)
u(

m∗g
)0

u

=
δS + δUu
S0 + U0

u

, (A.3)

δµ−s
(µ−s )0 =

δ (m∗s)u
(m∗s)

0
u

−
δ
(
m∗g
)
u(

m∗g
)0

u

=
1

S0 + U0
u

(
U0
u

S0
δS − δUu

)
(A.4)

where

T ′a ≡ −
∂Ta

∂ ln(µ−s )
, ZQ ≡ 2

∂ ln(Qh)

∂Tb
, η′ ≡ ∂η

∂ ln(µ−s )
, η ≡ ln

(
H(µ−s )

)
and ZQ ≈ Z = TE/T

2
b � 1 (assuming Tb � Tt). Here, variations are considered small so

that we use the leading order relationship m∗i = mi = φiρivi. The leading effect of the
flame stretch, which is amplified by large Z, is in altering the burned temperature Tb.
These equations result in

BSδS = BUδUu −BT δTl = BUδUu −Bγγ0 −Bκ
κg
U0
u

(A.5)

where

BS ≡
ZQ
2
T ′a
U0
u

S0
+ η′

U0
u

S0
+ 1, BU ≡

ZQ
2
T ′a + η′ − 1,

BT ≡
ZQ
2

(
S0 + U0

u

)
, Bγ = BT θsT∆lf , Bκ = BT θgT∆lf

The value η′ = 0 (and T ′a > 0) in oxygen-deficient flames, η′ = 1 (and T ′a < 0) in carbon
deficient flames and 0 < η′ < 1 (and T ′a ∼ 0) in the near-stoichiometric flames; η′ is linked
to T ′a by the following equation

T ′a =

(
h(s)
s

)
(∆)

µ−s − η′H(
µCp

)
b

A.1 Unsteady effects in the preheat zone and pulsating stability

Pulsating instability appears when a minor increase in the propagation velocity of a planar
flame results in a change of the fuel/air ratio µ−s that favours increase of the combustion
temperature δTb and further speeds up the flame. We consider a planar flame and put
γ0 = 0 and κ0 = 0. In the preheat zone, we obtain from (37)

∂ρ (h− hu)
∂t

+
∂m (h− hu)

∂x
− ∂

∂x

(
λ
∂T

∂x

)
= 0 (A.6)
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Integration of this equation over x from −∞ to −0 (corresponding to the ”−r” location)
results in (

m(h− hu)
)

(−r)
=

(
λ
∂T

∂x

)
(−r)
− dIh

dt
= Qh −

dIh
dt

(A.7)

where

Ih ≡
∫ −0

−∞
∂ρ (h− hu)dx (A.8)

Thus, unsteady effects result in the correcting term dIh/dt whose evaluation requires
solving the system of equations

∂ρCp (T − Tu)
∂t

+
∂mCp (T − Tu)

∂x
− ∂

∂x

(
λ
∂(T − Tu)

∂x

)
= 0 (A.9)

(
m∗g
)
u
H(µ−s ) = Qh =

(
λ
∂T

∂x

)
(x=−0)

(A.10)

Here we use the approximation of constant heat capacities. The boundary value of T
(that is T 0

b in an undisturbed flame) tends to the quasi-steady value T ∗b determined by
the equation T ∗b = Ta(µ

−
s ). The characteristic relaxation time is determined by reaction

of equation (A.9) to a variation of Qh (that also causes variation of mO2 and adjustment
of the flame propagation speed) and can be assessed as

τf ≈
λr
(
ρCp

)
u(

mCp
)2

u

(A.11)

The simple relaxation equation

dTb
dt

=
T ∗b − Tb
τf

=⇒ d(δTb)

dt
=
δT ∗b − δTb

τf
(A.12)

preserves the major properties of this behaviour. The variations

δQh =
ZQ
2
Q0
hδTb, δT

∗
b = −T ′a

δµ−s
(µ−s )0 ,

δ (mg)u
(mg)

0
u

+ η′
δµ−s

(µ−s )0 =
δQh

Q0
h

,

δ (mg)u
(mg)

0
u

=
U0
u

S0

δµ−s
(µ−s )0 ,

δ (ms)u
(ms)

0
u

=
S0 + U0

u

S0

δ (mg)u
(mg)

0
u

are obtained from (A.1)-(A.4) for the case of a planar flame. Combining the equations
results in

d(δTb)

dt
= −βt

δTb
τf

where

βt =
ZQ
2

T ′a
S0/U0

u + η′
+ 1

The oxygen-deficient case is stable due to T ′a > 0 and η′ = 0 while the carbon-deficient
case is not since T ′a < 0, η′ = 1 and ZQ is presumed large. The near-stoichiometric case
T ′a ≈ 0 is stable up to the point where βt = 0 that is coincides with the point where Uu
reaches its maximum (BS = 0 in (A.5)).
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A.2 Harmonic disturbance and hydrodynamic stability

The hydrodynamic instability appears when a planar flame changes its shape and forms a
cavity on the coal surface. The cavity attracts an increased air flow that may further speed
up the flame. In this section, we consider a planar flame with a small harmonic disturbance
of the flame position. The undisturbed pressure and gas velocity are linked by Darcy’s
law p0 = −U0x∗/f . We denote the streamwise and lateral coordinates by x∗and y∗ where
the asterisk is used to emphasise that the coordinates in use are Cartesian coordinates
moving with the speed S0 of the undisturbed planar flame. The position of the flame is
given by x∗f = x∗f (y

∗, t) and we assume that the flame surface is harmonically disturbed

δx∗f = a cos(ky∗) (A.13)

Upstream and downstream from the flame, the pressure

p = p0 + δp =

 −
U0

u

fu
x∗ + au

U0
u

fu
exp(kx∗) cos(ky∗), x∗ < x∗f

−U0
b

fb
x∗ + ab

U0
b

fb
exp(−kx∗) cos(ky∗), x∗ > x∗f


satisfies f∇2p = ∇·(U) = 0 upstream and downstream from the flame (our consideration
is applied to the regions just before and just after the flame but not within the flame or a
long distance before the flame so that changes in density of the gas flow can be neglected).
On the flame surface x∗ = ±x∗f , we obtain to the leading order

p = p0 + δp =


(
U0

u

fu
(au − a)

)
cos(ky∗), x∗ = x∗f − 0(

U0
b

fb
(ab − a)

)
cos(ky∗), x∗ = x∗f + 0


since in porous flows the pressure must be the same to the leading order on both sides of
the flame we obtain

U0
b

fb
(ab − a) =

U0
u

fu
(au − a) (A.14)

The gas velocity U normal to the flame is given on the flame surface by

U = U0 + δU = −f ∂p
∂x

=

U
0
u − auU0

uk cos(ky∗), x∗ = x∗f − 0

U0
b + abU

0
b k cos(ky∗), x∗ = x∗f + 0


while the stretch component κg due to the gas flow divergence on the unburned side of the
flame surface is evaluated by applying the operator ∇f to the projection of U = −f∇p
onto the flame surface

κg = U0
u (au − a) k2 cos(ky∗) (A.15)

The amplitudes au and ab are linked by the equation

−abU0
b

auU0
u

=
δU0

b

δU0
u

= Bb
U0
b

U0
u

=⇒ ab = −Bbau (A.16)
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where the coefficient Bb is determined by the kinetics of the flame. Equations (A.14) and
(A.16) result in

au = Baa, Ba ≡
1−Bf

1 +BfBb

, Bf ≡
U0
b

fb

fu
U0
u

With exception of the vicinity of the stoichiometric point, the coefficient Bb is very close
to unity (although not exactly 1 since temperature and composition of the products
experience some changes when Uu varies). In the vicinity of the stoichiometric point the
exact value of Bb is not important since fb � fu and Bf ≈ 0 due to full (or nearly full)
consumption of the coal under this regime. Hence, we can put Bb = 1. The curvature, the
gas-phase stretch and the upstream gas velocity close to the flame are now given by

γ0 =
∂2δxf
∂y2

= −ak2 cos(ky), κg = −B2U
0
uak

2 cos(ky∗),

δUu = −aBaU
0
uk cos(ky), B2 ≡

2Bf

1 +Bf

(A.17)

Substitution of these equations into (A.5) results in

BSδS =
(
−BUBaU

0
uk + (Bγ +BκB2) k2

)
a cos(ky) (A.18)

Since the fame moves in the negative direction d(δxf )/dt = −δS and

da

dt
= aβa, βa =

BUBaU
0
u

BS

k − (Bγ +BκB2)
k2

BS

(A.19)

The flame becomes hydrodynamically stable in the vicinity of maximum of S where BU =
0, and remains stable in the region of increasing Uu and decreasing S where BS > 0 and
BU < 0. The hydrodynamic and pulsating stability is lost at the point of maximum Uu
where BS = 0. The oxygen-deficient and carbon-deficient regions are hydrodynamically
unstable; for these regimes, assuming the ZQT

′
a is large, we can write

δS

S0
=
δUu
U0
u

− δTl
T ′a
, βa = S0k

(
Ba −

(θs + θgB2)T∆

T ′a
lfk

)
(A.20)

Hence the scale lβ = 1/kβ of the most unstable mode is given by

lβ = 2
(θs + θgB2)T∆

BaT ′a
lf (A.21)
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FIGURE CAPTIONS

Figure 1. Schematic of Reverse Combustion Linking (RCL)

Figure 2. Dependence of the temperature of the products on the coal/air mass ratio.
Dashed line – irreversible reactions; solid line – more realistic reactions.

Figure 3. Dependence of the flame propagation speed on the speed of supplied air; a)
qualitative dependence, b) dependence calculated for the conditions used in Section 6.
The lines as in Figure 2.

Figure 4. The speed of RCL as function of supplied air rate. Solid line - theory; symbols
– data from RCL in Chinchilla [11].
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