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Abstract - The cascade hypothesis, which was introduced in application for

premixed combustion by Yakhot (1988) and Sivashinsky (1988), is examined

against the correlations of the turbulent burning velocity data by Bradley,

Lau and Lawes (1992) (BLL data). A new, less restrictive formulation of the

cascade hypothesis is suggested. The formulation is shown to be consistent

with the BLL data. Various flame characteristics - fractal dimensions, inner

cutoffs, main asymptotic regimes - are determined form the BLL data on the

basis of the cascade hypothesis.
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1. INTRODUCTION

The cascade hypothesis

Turbulent motions involve random fluctuations of very different

characteristic scales. The cascade hypothesis states that the large-scale

fluctuations do not interact with the small-scale fluctuations directly. This

interaction occurs through a cascade process which involves fluctuations of

intermediate scales. The largest eddies break up into smaller eddies whose

characteristic scale is comparable with the characteristic scale of the

original eddies. The smaller eddies break up into smaller and smaller eddies

until the smallest eddies disappear due to the viscous forces. The cascade

hypothesis forms the physical basis of the modern theory of turbulence (see

Monin and Yaglom, 1973, 1975). The renormalization group methods (see Yakhot,

1988) are closely related to the cascade hypothesis. In these methods,

effective averaging over intermediate (and gradually increasing) scales is

implemented.

In turbulent premixed combustion, the flame front is affected by

turbulent fluctuations of very different scales and it is reasonable to

expect that the cascade hypothesis can be used to study the burning velocity.

These ideas were originated by Yakhot (1988), who carried out the

renormalization group analysis of premixed flames involving so-called

e-expansion of the spectral representation of the transport equations.

Sivashinsky (1988) suggested an alternative method of using the cascade

hypothesis and modeled the turbulence-flame interactions by the interactions

of the flame front with a series of discrete waves. Our goal here is to use

the cascade hypothesis as it is, without any further modeling. Of course,

this approach will not allow us to obtain any closed equation for the

turbulent burning velocity UT but the cascade hypothesis will be seen to

impose certain limitations on UT. These limitations will be examined in

comparison with experimental data.

Turbulent burning velocity

Turbulence enhances the transport processes and increases the burning rate.

The turbulent burning velocity UT depends on the laminar burning velocity U0,

the turbulent integral length scale RT, the turbulent integral velocity

fluctuation scale VT, the Reynolds number Re _ VTRT/n and, possibly, some

other parameters (such as the Lewis number, Le) which will be discussed later

in the paper. The laminar flame thickness d0 is not included in the list of

determining parameters since d0 can be estimated as d0 = n/U0 (Bradley, et

al., 1992). The viscous (Kolmogorov) velocity and length scales are given by
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1/4 3 1/4
1/4 C1 VT & n * RTVK _ (neT) = [-------------------------------] and RK _ [--------- = [---------------------------------------] (1.1)

1/4 7 eT8 1/4 3/4
Re C1 Re

3
respectively, where eT = C1 VT/RT is the average dissipation of energy and C1

is a constant. One of the possible dimensionless forms of the equation for UT

is given by

UT & U0 RT*[-----] = fTK [-----],[-----] (1.2)
VT 7 VK RK8

where fTK is an unknown function of two variables. The function fTK may also

depend on other dimensionless parameters. Specifically, in Section 7, the

Lewis number will be included into the list of determining parameters as it

is suggested by Bradley et al. (1992). Here, we investigate the dependence of

UT on U0/VK and RT/RK. The dependence on other dimensionless parameters is

implied but not explicitly specified.

Following Yakhot (1988), Sivashinsky (1988), Krestin (1988), Kuznetsov

and Sabelnikov (1989), Pocheau (1994) we introduce the effective turbulent

burning velocity U = U(R) corresponding to the turbulent fluctuations whose

characteristic length scale does not exceed R. The formal definition of U can

be given by

# -1 $
1 & * i 3

U(R) = [--------------] | (cr)+-(cr)- < rW dr > | (1.3)
2 7 8 j

pR 3 4
|r-r0|<R

In this equation, we select a sphere so that the flame front passes through

its center r0. The radius of the sphere is R. The chemical source term W of

the reactive component c is integrated over the sphere and averaged over

realizations. The subscript indices "-" and "+" correspond to the values in

the cold and hot regions. The value of U(R) is the averaged burning rate

which does not take into account fluctuations whose characteristic scale is

greater than R. If R L 0 then the flame front is almost flat inside the

sphere and U L U0 represents the laminar flame speed. If R exceeds the

integral length scale of turbulence RT then U(RT) = UT specifies the

turbulent burning velocity. The definition of U(R) given by Kuznetsov and

Sabelnikov (1989) is most similar to the definition of U(R) used here.

2. MATHEMATICAL FORMULATION OF THE CASCADE HYPOTHESIS

In this section we investigate the parametric representation of the burning

velocity inside the inertial interval. The value Ui = U(Ri) is introduced so
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that Ri belongs to the inertial interval of turbulence RK , Ri , RT. The

subscript indices ’K’ and ’T’ indicate that values are related to the

Kolmogorov scales and the integral scales respectively. The index ’I’ denotes

a value which is related to the inertial interval as whole, while the index

’i’ emphasizes that the indexed value is selected within the inertial

interval range. The value Ui depends on U0, RK, VT, RT and Ri. According to

the Kolmogorov theory, the characteristics of turbulence within the inertial

interval are determined by the average energy dissipation eT. (This is the

basic assumption in Kolmogorov’s theory of small-scale turbulence which is

also related to the cascade hypothesis - see Monin and Yaglom, 1973, 1975).

Thus, RT and VT are replaced by eT in the list of determining parameters so

that Ui depends on U0, RK, eT and Ri. The dimensionless form of the equation

for Ui takes the form

Ui & U0 Ri*[--------- = fIK [-----],[-----] (2.1)
Vi 7 VK RK8

m m
where VK = (eTRK) and Vi = (eTRi) is the characteristic velocity scale

which corresponds to the eddies whose characteristic length scale is Ri.

Kolmogorov scaling of the inertial interval is given by m = 1/3.

According to the cascade hypothesis, the interaction between the largest

(~ RT) and the smallest (~ RK) fluctuations occurs through a series of

intermediate scales and Ri is one of these scales. The smallest scales do not

affect the largest scales directly. Hence, if all flame and turbulence

parameters related to the scale Ri are given then UT can be determined and we

do not need to know the flame characteristics related to the smallest (~ RK)

scales. The turbulent burning velocity UT is determined by RT, Ri, Ui and Vi.

We expect that the flame fronts with U(Ri) = Ui have similar characteristics

of larger (R > Ri) scales irrespective of their small-scale structures. The

mathematical expression of this understanding of the cascade hypothesis is

given by

UT & Ui RT*[-----] = fTI [-----],[-----] (2.2)
VT 7 Vi Ri8

It is plausible to assume that the dimensionless functions fTI and fTK may

have some similarities but these functions are not necessarily the same. The

function fTK depends on viscous-scale processes while fTI does not. Note that

it would be wrong to deduce from Eq.(2.2) that UT does not depend on U0.

Indeed, UT depends on Ui while Ui is expected to be a strong function of U0.

Combining the discussions led to equation (2.1) and (2.2) we obtain
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U2 & U1 R2*[--------- = fII [-----],[-----] (2.3)
V2 7 V1 R18

where U1 = U(R1), U2 = U(R2); R1 and R2 are arbitrary scales within the

inertial interval: RK , R1 < R2 , RT. The function fII, which is unknown

function of two variables, determines the flame front behavior within the

inertial interval. Equation (2.3) represents the mathematical interpretation

of the cascade hypothesis and will be used in the next section. This equation

implicitly imposes certain restrictions on Eq.(1.2).

Pocheau (1994) considered the representation of the burning velocity

which, if we use the notations adopted here, may be written in the form U2/U1
& *

= fP V2/U1,R2,DR , where DR = R2-R1. Although this equation has some
7 8

similarities with Eq.(2.3), these equations are not functionally identical.

In his analysis, Pocheau (1994) used the "covariance by dilatation"

assumption which requires certain invariance of the function fP with respect

to changes of R2 and DR. This assumption is very restrictive and it is not

used in the present work.

3. ASSOCIATIVE CONSISTENCY

In this section we consider certain constraints which must be satisfied by

the function fII. These constraints are determined by consistency

requirements and do not constitute any additional assumption. Equation (2.3)

can be rewritten in the form

& *
a2 = v a1,b2-b1 (3.1)

7 8

where
& U * & a b *

a _ ln [-----] , b _ ln(R), v(a,b) _ ln fII(e ,e ) (3.2)
7 V 8 7 8

and the indices of a and b correspond to the indices of U, V and R. It is

quite obvious that the function v must satisfy

& *
a1 = v a1,0 (3.3)

7 8

Another restriction is given by the associative constraint. Let us consider

three different scales R1, R2 and R3 within the inertial interval

RK , R1 < R2 < R3 , RT. The equation

& * & *
a3 = v a1, Db1+Db2 = v v(a1,Db1), Db2 (3.4)

7 8 7 8
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where Db1 _ b2-b1 and Db2 _ b3-b2, can be derived by substituting v(a1,Db1)

for a2 in a3 = v(a2,Db2). The structure of Eq.(3.4) is quite similar to the

structure of the identity b3 = b1+(Db1+Db2) = (b1+Db1)+Db2: these equations

represent the associative consistency. The value of a3, predicted using the

one-step (Db1+Db2) representation, and the value of a3, predicted using two

steps Db1 and Db2, must be the same.

Equation (3.4) is differentiated with respect to Db1

da3 & * & *
[------------------------] = v’ a1, Db1+Db2 = v’ v(a1,Db1), Db2 W v’(a1,Db1) (3.5)
d(Db1) b7 8 a7 8 b

where
dv(a,b) dv(a,b)

v’ _ -----------------------------------] v’ _ -----------------------------------]
b db a da

Substituting Db1 = 0, Db2 = b and a1 = a into Eq.(3.5) and taking into

account Eq.(3.3), we obtain

v’(a,b) = v’(a,b)Wj(a) (3.6)
b a

where

j(a) _ v’(a,0)
b

Within the inertial interval, Eq.(3.6) is valid for any b and a. Equation
& *

(3.6) can be integrated to yield v(a,b) = f FI(a) + b , where dFI/da = 1/j(a)7 8
and f is an arbitrary function. Since v(a,0) = a for any a, the final form of

-1& * -1
the function is given by v(a,b) = FI FI(a) + b where FI is the inverse

7 8
-1& *

function of FI: FI FI(a) _ a. Equation (3.1) takes the form
7 8

-1& *
a2 = FI FI(a1) + (b2-b1) (3.7)

7 8

Equation (3.7) can be also written in the form FI(a1)-b1 = FI(a2)-b2. Let us

introduce B _ FI(ai)-bi. We stress that the value B is constant and it does

not depend on selection of bi when bi belongs to the inertial interval. The

equation for ai can be written as

-1& * dai 1
ai = FI B + bi ; [----------] = j(ai) = [-----------------------------] (3.8)

7 8 dbi F’(ai)I

where F’ _ dFI/da. Note that the constant B depends on the units used to
I

measure R. Hence, the constant B is not universal and its functional

representation needs to be determined.

If the intensity of turbulence is very small U/V L 8, it is reasonable

to expect that turbulence does not affect the flame front and U2 L U1. This
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& *
limit corresponds to a2 L a1-ln V2/V1 = a1 - m(b2-b1) as a1,a2 L 8 and it is

7 8
consistent with Eq.(3.7). The limiting form of the function FI is given by

FI(a) L -a/m + const.

4. MATCHING WITH THE SMALLEST AND LARGEST SCALES

Equation (3.8), which is valid only within the inertial interval, should be

matched with the functional representations of the burning velocities outside

the inertial interval. This relates UT to U0 and determines the constant B.

The smallest scales are considered first. Equation (2.1) can be written

in the form ai = vK(aK,bi-bK) where aK _ ln(U0/VK), bK _ ln(RK) and vK is
+

related to fIK by Eq.(3.2). The asymptote vK of the function vK as Ri/RK L 8
+ -1

must be consistent with Eq.(3.8) that is vK(aK,bi-bK) = FI (B + bi). This

equation can be written in the form

& + *
FI vK(aK,bi-bK) = B + bi = B + bK + (bi-bK) (4.1)
7 8

Since the constant B does not depend on bi, the sum B + bK is also

independent of bi. This gives the equation for the constant B

B = FK(aK) - bK (4.2)

& + *
where FK(aK) _ FI vK(aK,b) - b. Note that FK does not depend on b. The

7 8
function FK(a) does not necessarily coincide with FI(a).

Matching with the largest scales is quite similar to matching with the

smallest scales. We rewrite Eq.(2.2) in the form aT = vT(ai,bT-bi) and
- -

consider the asymptote vT L vT as Ri/RT L 0. Matching of vT and Eq.(3.8)
- -1

yields vT(aT,bT-bi) = FI (B + bi). Finally, after repeating all steps in the

derivation of Eq.(4.2), we obtain the equation B = FT(aT) - bT where FT(aT) _

& - *
FI vT(aT,b) - b does not depend on b. Combining of the result with Eqs.(3.8)
7 8

and (4.2) yields

B = FK(aK) - bK = FI(ai) - bi = FT(aT) - bT (4.3)

The functions FT, FK and FI determine scaling of the turbulent burning

velocity U(R). These functions may have some common features but they do not

necessarily coincide with each other. The function FI which characterizes the

inertial interval is expected to be universal. The function FK is determined

by viscous-scale processes and FK may depend on dimensionless parameters

characterizing the smallest scales. An important example of such parameter is
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given by the Lewis number (Le). The function FK describes the interaction of

a laminar flame front with turbulence of the smallest scales while the

function FI describes the interaction of the turbulent fluctuations with the

flame front which has been already wrinkled by the fluctuations of smaller

scales. This difference between FI and FK will be shown to be quite

significant. The function FT depends on the dimensionless parameters

characterizing the largest scales. The largest scales in turbulence are not

universal and, in a rigorous approach, the parameters characterizing the

geometry of the flow should be treated as determining parameters for FT while

the function FI does not depend on these parameters. On other hand, both

functions FT and FI describe the interaction of the wrinkled flame with

turbulence and must have more common features than FK and FI. It is

reasonable to assume that FT(a) = FI(a). Neglecting the non-universality of

the large-scale fluctuations is a common assumption in turbulent combustion

theories and it will be used here for some estimations. The instantaneous

position of the flame front in a non-homogeneous flow is constantly varied by

large-scale fluctuations. This may require averaging of the characteristics

of turbulence over the front positions. Averaged characteristics can be

expected to have higher degree of universality than the local characteristics

of turbulence (see Klimenko et al., 1995). Note that both functions FT, FK

and FI may indicate dependence on one additional parameter - the density

ratio q _ r+/r-.

5. THE EQUATION FOR TURBULENT BURNING VELOCITY

As it follows from Eq.(4.3), the value of aT is given by the equation

-1& *
aT = FT FK(aK) + bT - bK (5.1)

7 8

-1
where FT is the inverse function of FT. Using the definitions introduced in

Eq.(3.2), we can rewrite Eq.(5.1) in the form

& UT* & U0*FT [-----] FK [-----] & *
7 VT8 7 VK8 UT -1 RT & U0*[----------------------------------] = [----------------------------------] or [-----] = FT |[-----] FK [-----] | (5.2)

VT RK 7 VK8RT RK 7 8

where
& *
& *

F(a) _ exp|F ln(a) | (5.3)
7 8

7 8

and the subscript indices of F correspond to the indices of F. Equation (5.2)

specifies the structure of the function fTK in Eq.(1.2) which corresponds to
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the cascade hypothesis. The cascade hypothesis effectively reduces some

degrees of freedom in choosing fTK. The function fTK is a function of two

variables while Eq.(5.2) is determined by two one-variable functions FT and

FK. (In general, a two-variable function is determined by an infinite number

of one-variable functions.)

In analysis of the the burning velocity, the largest ~RT and the

smallest ~RK scales are often formally treated as part of the inertial

interval. This corresponds to the assumption FT(a) = constWFK(a) for any a

The constant allows for introduction of the Kolmogorov scale and macroscale

which differ from the conventional definitions by constant factors. This

assumption makes Eq.(5.2) too restrictive and it will be shown that in this

case Eq.(5.2) can not match the experimental data. It is easy to show that

the traditional representation of turbulent burning velocity UT/U0 =
& *

fB VT/U0 (see Bradley, 1992) is consistent with Eq.(5.2) and corresponds to
7 8

-1 3 -3
fB(a) = a FT (C1a ), FK(a) = a . However, this representation does not

comply with the assumption FT(a) = constWFK(a).

Sivashinsky’s (1988) equation for the burning velocity can be written in

the form

bT & *
& UT * i & V *

ln [---------] = l ln|S [-----] | db (5.4)
7 U0 8 j 7 U 8

7 8
0

where l = 2/3; -b is substituted for the logarithm of the wave number and the

function S has been determined as the solution of a modeling problem. The

turbulent burning velocity U is the result of interaction of a passively

convected laminar flame front, whose laminar propagation velocity is U0, with

one-scale homogeneous isotropic field, whose intensity is V. Sivashinsky

(1988) introduced the function S by the equation

U & V *
[-----] = S [-----] (5.5)
U0 7 U08

and evaluated this function for two-dimensional periodic flow field as

( 2& 2 2 * )
(V/U) (V/U) b +1

| 7 8 |
& V * -1
S [-----] ~ min {1 + b , 1 + [-----------------------------------------------------------------------------------------]} (5.6)
7 U 8 2

| & 2 2 * |
4 (V/U) b -1

9 7 8 0

This approximation depends on the inertial interval parameter b introduced by
-1 -1

Zeldovich (1982) as b _ wk V where w is the frequency and k is the wave

number. After differentiation, Eq.(5.4) takes the form
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& *
d ln(U) & V *

[------------------------------] = l ln|S [-----] | (5.7)
7 U 8

db 7 8

Let us compare this equation with scaling within the inertial interval

given by Eq.(3.8)

d ln(U) d(a+ln(V)) 1
[-----------------------------------] = [---------------------------------------------] = j(a) + m = [-------------------------] + m (5.8)

F’(a)
db db I

where m _ d ln(V)/db = 1/3. It is easy to see that both equations are, as it

is expected, consistent with each other and

& *
& -a* 1 & 1 *

SI e = exp|[-----] [-------------------------] + m | (5.9)
7 8 l 7 F’(a) 8

7 I 8

There are, however, some differences. First, the function FI is not bound by

any modeling assumptions and will be found by analyzing the experimental

data. Second, Eq.(5.2), which determined by two functions (FK and FT), has

more degrees of freedom than Eq.(5.7) determined only by one function S. The

index ’I’ is used to distinguish the function S specified by Eq.(5.6) and the

function SI specified by Eq.(5.9).

6. THE CASCADE HYPOTHESIS AND FRACTAL DIMENSION

In this section, we follow Peters (1986), Gouldin (1987) and Bradley (1992)

and consider the fractal structure of premixed flames assuming that the flame

front is a wrinkled surface with the laminar burning velocity U0. The fractal

dimension will be related to the scaling functions introduced in previous

sections. We consider the section of the flame front inside the sphere of

radius R which is chosen so that the sphere is chosen so the flame front

passes through its center. Its fractal dimension is introduced as

& * & *
ln N(R,R0) ln N(R,R0)7 8 7 8

D = [----------------------------------------------------------------] _ [----------------------------------------------------------------] (6.1)
ln(R/R0) b - b0

where b _ ln(R), b0 _ ln(R0) and N(R2,R1) is the minimal number of spheres of

radius R1 (or other volumes whose size does not exceed R1) required to cover

the surface inside the sphere of radius R2. The mathematical definition of

the fractal dimension (Kolmogorov fractal capacity) involves the limit R0 L 0

in Eq.(6.1). Unlike mathematical fractals, the flame fronts are wrinkled only
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at scales exceeding certain scale R0 which is called the inner cutoff. The

flame front is flat for a scale smaller than R0. Thus, the inner cutoff scale

R0 is fixed in the definition of the fractal dimension in Eq.(6.1). Note that

the fractal dimension D, as it is introduced here, can be different for

different R and D = D(R) in Eq.(6.1).

The average area of the flame surface inside the sphere of radius R is
2

denoted as AR. Estimating the surface inside each sphere R0 as pR0 and

multiplying by the number of spheres required, it is easy to conclude that

the area of a surface whose fractal dimension is D and inner cutoff is R0 is

given by

D
2 & R *

AR ~ pR0 [--------- (6.2)
7 R08

The flame front area AR inside the sphere of radius R is proportional to the

flame speed U(R)

D-2
AR & R *

U(R) = U0[-------------- ~ U0 [--------- (6.3)
2 7 R08pR

Equation (6.3) can be derived from Eq.(1.3) if we note that the term in the

square brackets is U0AR.

It is convenient for our purposes to introduce the new value

b
* d(b-b0)D 1 i * q q
D _ [---------------------------------------] ; D(b) = [---------------] D (b ) db (6.4)

db b-b0 j

b0

*
which is directly related to the fractal dimension D. If D is constant then

*
D = D . Taking the logarithm of both sides of Eq.(6.3) we obtain ln(U/U0) =

(D-2)(b-b0) + CA where CA is the logarithm of the constant factor in

Eq.(6.3). This equation is differentiated with respect to b and the

derivative d ln(U)/db is determined from Eq.(3.8). The resulting equation

* 1
D = [-------------------------] + 2 + m = j(a) + 2 + m (6.5)

F’(a)
I

*
(m = 1/3) links D and the scaling functions. This equation specifies the

fractal dimension of the flame front which is scaled according to the cascade

hypothesis. The fractal dimension D given by Eqs.(6.4) and (6.5) is not
*

necessarily a constant (although, constant D and D are also in agreement

with the cascade hypothesis).

It is important to emphasize that we do not assume here that the fractal
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*
dimension of the flame front is constant. The values of D and D may depend

on R and be different for different scales. The value D(R) characterizes the
*

average fractal dimension in the range of scales [R0,R] while D (R) is a
*

characteristic of scale R. If D and D are not constant and the flame front

is not a fractal in strict mathematical sense of this term, the concept of

fractal dimension can still be useful. Equations (6.1)-(6.5) represent

definitions of the fractal dimension for the flame fronts which may not be

pure mathematical fractals. However, it is reasonable to expect that the

flame fronts exhibit some properties of the fractal surfaces and the value D,

measured with proper averaging, is a smooth function of R. The fractal

dimension is related to other scaling functions used here by Eq.(6.5) and

will be determined from experimental data for several asymptotic regimes of

flame propagation.

7. DETERMINING THE SCALING FUNCTIONS

Equation (5.2) is the mathematical expression of the cascade hypothesis

applied to premixed combustion. This equation is not a closed theoretical

formula for burning velocity but it effectively reduces the degree of freedom

in choosing fTK in Eq.(1.2) (i.e. not every function fTK can be represented

by Eq.(5.2)). The burning velocity in Eq.(5.2) is specified by the two

scaling functions FK(a) and FT(a) (or by FK(a) and FT(a)) where FK(a) is

determined by the viscous-scale processes and FT(a) is determined by the

integral-scale processes. Our goal in this section is to find out if it is

possible to represent the known experimental data in the form of Eq.(5.2). A

positive answer would be a confirmation of the cascade hypothesis.

The correlations of the experimental data by Bradley et al. (1992)

provide a wide range for the parameters U0/VK and RT/RK. These data, which

are referred to here as the BLL (Bradley, Lau and Lawes) data, represent the

burning velocity measurements using the two dimensionless parameters K Le and
2

Re/Le where K is the Karlovits stretch factor and Le is the Lewis number.

The BLL data comprise more than 1500 experimental points (basically all known

measurements) and it is the most comprehensive systematization of the burning

velocity data available. The original experimental points have certain

scattering over the parametric curves. This scattering is induced by

measurement errors, by uncertainties in estimations and, may be, by

parameters which affect UT but are not listed as determining parameters. The

BLL data, involving a large number of experimental points, are effective

averages which represent a realistic dependence of the burning velocity UT on
2

K Le and Re/Le .
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Dependence on the Lewis number

It was shown by Bradley et al.(1992) that the dimensionless parameters K Le
2

and Re/Le represent the best choice for parametric representation of the

available experimental data. Under this assumption, Eq.(1.2) takes the form

UT & U0 -1/2 RT -3/2 *
[-----] = fTK [-----] Le , [-----] Le (7.1)
VT 7 VK RK 8

The Karlovits stretch factor K can be found from the isotropic turbulence
2 -1/2

equation K = C2(VT/U0) Re where C2 ~ 0.157. The dimensionless parameters

used here can be determined from the equations

3/4
RT -3/2 1/4& Re *

[-----]Le = C1 [----------]
RK 7 28

Le
(7.2)

1/4
U0 -1/2 U0& Re * -1/2

[-----]Le = [-----] [-----------------------] = C3 (K Le)VK VT7 2 8
C1Le

1/2 -1/4 -1/4
where C1 ~ 0.37 and C3 _ C2 C1 ~ 15 ~ 0.508. These approximations are

chosen according to Bradley et al.(1992).

It was noted above that the functions FK and FK may depend on other

dimensionless parameters characterizing the smallest scales. Such a

dependence was implied but was not considered in Eqs.(4.3) and (5.2). We

assume here that the dependence of FK and FK on Le is given by

q& * 3
FK(a,Le) = FK a-ln(Le)/2 - ---- ln(Le) (7.3)

7 8 2

-3/2 q -1/2
FK(a, Le) = Le FK(a Le ) (7.4)

q q
where the functions FK and FK are universal and related to each other by

Eq.(5.3). This representation is consistent with Eq.(7.1). Equations (4.3)

and (5.2) take the forms

-1& q q*
aT = FT FK(aK) + bT-bK (7.5)

7 8

& *
UT -1 RT -3/2 q& U0 -1/2*

[-----] = FT |[-----] Le FK [-----] Le | (7.6)
VT RK 7 VK 8

7 8

q & U0* q 3
where aK _ ln [-----] - ln(Le)/2; bK _ ln(RK) + ---- ln(Le). These functions

7 VK8 2

formulate the cascade hypothesis for the BLL data. Equation (7.6) is

consistent with both the cascade hypothesis and the representation of the BLL

data. It should be noted that Eq.(7.6) is more restrictive than the original

representation of the BLL data by Eq.(7.1) and not every function fTK can be
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represented in the form of Eq.(7.6).

Scaling functions and main asymptotes
q

The approximations for the functions FK(a) and FT(a) are given in Table I.

These approximations were chosen so that Eq.(7.6) has the same asymptotic

structure as the BLL data. It is convenient to use different representations
q q

in the regions aK < ha and aK > ha. The functions are determined by 17

constants. Four of these constants are bounded by the condition of matching
q

the functions at aK = ha. One of the constants does not affect the data and
-

we can put hK1 = 0 without loss of generality.

The constants have been determined numerically so that Eq.(7.6) gives

the best fit to the BLL data. The values of the constants are given in Table

II. The relative approximation error does not exceed 10% and the average

value of the relative error is less than 4%. The relative error was
* *

determined as |UT-UT|/UT where UT represents the data and UT is the

approximation. Equation (7.6) provides reasonably good approximation of the

BLL data.
q

The functions 1/F’ and 1/F’, where F’ _ dFK(a)/da and F’ _ dFT(a)/da,K T K T

are shown on Figure 1. It is easy to see that 1/F’ and 1/F’ are almost zero
K T

in the interval 0 < a < 1.5. This singular behavior will be discussed in the

next section. Another feature of the functions FK(a) and FT(a) is that their

derivatives of are always non-positive. As it was discussed in Section 4 we

can neglect the difference between scaling of the inertial interval and
*

scaling of the largest scales and assume that FI(a) = FT(a). The value D is
* *

determined by Eq.(3.8): D = 7/3 + 1/F’. According to Figure I, D varies
T

*
within the limits 2 < D < 7/3. The derivative 1/F’ does not have a simple

K

physical interpretation and is given for comparison.
& *

The function SI V/U determined from Eq.(5.9) is compared on Figure 2
7 8

with the theoretical prediction of S in Eq.(5.6). The value b = 1.4 is used

in Eq.(5.6). Agreement with the function S determined from the BLL data is

remarkable for V/U > 0.5 but the value of S is evidently underestimated for

small V/U. The function SI slightly decreases as for small V/U but SI ~ 1.5
2

as V/U L 0. The asymptote S ~ 1+Cs(V/U) L 1 as V/U L 0 (Cs = const) was

obtained by Sivashinsky (1988) as the result of relatively strict asymptotic

analysis. In his asymptotic analysis, the density variations were neglected

and this points to the area where the explanation of the differences between

S and SI should be sought. If U . V, then S ~ 1 and the passively convected

interface is not strongly affected by turbulence.

The burning velocity results are presented on Figures 3 and 4 which

show different asymptotic regimes by selecting different coordinates X. The

approximation is shifted in Y-direction. The turbulent burning velocity
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dependence on U0/VK and Re (we assume Le = 1) and clearly indicate two

asymptotic regions: fast flames and slow flames. The existence of the third

asymptote (very fast flames) for U0/VK>8 is not so clear. The asymptotes

determined from the formulae in Tables I and II are listed in Table III where
q q
b _ bT-bK. If the Re number is moderate, the inertial interval does not

exist and the largest scales should be matched with the smallest scales

directly. Equation (7.6) which is based on the cascade hypothesis is,

however, an acceptable approximation for the whole range of Reynolds numbers

in the BLL data. The BLL data do not clearly indicate any special region or

behavior which is related to moderate Reynolds numbers.

8. FAST FLAMES

Fast flames are characterized by K < 1 and relatively large values of U/V.

There is no question that these flames correspond to the flamesheet (or

flamelet) regime (see Williams, 1985; Pope, 1987). The fast flames can be

treated as laminar flames wrinkled by turbulence. As it follows from Table

III, the function

g2UT & U0* -g2/2[-----] = g1 [-----] Le ; g1 ~ 1.3, g2 ~ 0.6 (8.1)
VT 7 VK8

is a good approximation for the fast flames. The existence of this asymptote

was pointed out by Bradley et al. (1992). The ratio UT/VT does not indicate

any significant dependence on RT/RK and Re. The convergence of the curves
2

corresponding to different Re/Le is very clear on Figure 3. The features of

the fast flames are analyzed below assuming, for simplicity, that Le = 1.

In the fast flames region, aT does not depend on bT-bK since |F’| L 8
T

and |F’| L 8 and Eqs.(4.3) and (7.3) become degenerate
K

-1& q * UT & U0*aT = FT FK(aK) = F*(aK) and [-----] = F* [-----] (8.2)
7 8 VT 7 VK8

where F* is related to F* by Eq.(5.3). It is obvious that the functions FT(a)
q q

and FK(a) are not the same. Indeed, if FT(a) = FK(a)+const then UT/VT ~ U0/VK

and this is not in agreement with Eq.(8.1). In the region where |F’| L 8 and
T

q
|F’| L 8 the functions FT(a) and FK(a) are not unique: only the function

K

F*(a) is uniquely determined by the BLL data. This non-uniqueness in the
q

choice of the functions FT(a) and FK(a) does not affect the properties of the

fast flames discussed here.
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The fractal dimension

If |F’| L 8 and |F’| L 8 then, as it follows from Eq.(4.3), |F’| L 8.
T K I
*

The value D determined by Eq.(6.5) tends to the constant value, 7/3, as

1/F’ L 0. Hence, the fractal dimension of the fast flames is constant
I

1
D = 2---- (8.3)

3

Equation (8.3) means that, within the inertial interval, the effective

burning velocity U has the same scaling with the fluctuation velocity V and

the ratio U/V is constant. This hypothesis was clearly formulated by Krestin

(1988) who pointed out that, because of the density difference q$1, the flame

front is not a passively convected interface and, thus, it should be

dynamically coupled with turbulence. The geometrical properties of the fast

flames (determined by the fractal dimension) do not depend on the ratio U/V.

Turbulence is efficient in increasing the propagation speed (larger values U

correspond to larger R) of the fast flames even if U . V and this efficiency

is difficult to explain if the flame front is considered as a passively

convected interface. The combination of the density difference at the flame

front and the random change of the flame orientation generates hydrodynamic

fluctuations. These fluctuations can be responsible for the rapid increase of
* *

the flame speed. Their intensity V should be estimated as V ~ U. Otherwise,
*

weak (V , U) fluctuations can not significantly affect the flame front. The

process of the rapid increase of the propagation speed is controlled by the

vorticity of the intrinsic turbulence and U has the same scaling as V within

the inertial interval.

The inner cutoff and the transitional region

The flame front is almost flat for the scales smaller than the inner cutoff

R0 and U(R) ~ U0 for R < R0. If the fractal dimension of the flame front is

D = 7/3 then, according to Eq.(6.3), UT/VT ~ U0/V0 where V0 _ V(R0). The

assumption that the inner cutoff coincides with the Kolmogorov scale R0 ~ RK

is quite plausible but it yields the estimation

UT/VT ~ U0/VK = RK/d0 (8.4)

which is not in agreement with Eq.(8.1). Let us determine the value of the

effective inner cutoff which is consistent with the BLL data and Eq.(8.1). As

it follows from the substitution of R = RT and U = UT into Eq.(6.3), the
3

effective inner cutoff R0 ~ RT(U0/UT) which corresponds to Eq.(8.1) is given

by
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g0& U0 *
R0 ~ RK ---------] ; g0 = 3(1-g2) ~ 1.2 (8.5)

7 VK 8

The effective inner cutoff is larger than the Kolmogorov scale for the fast

flames with U0 . VK. The flame is intensively wrinkled in much of the

inertial interval. The density difference across the flame front, combined

with its random wrinkling, generates additional hydrodynamic fluctuations.

These fluctuations provide rapid increase of the flame speed so that the

ratio U/V and the fractal dimension D (=7/3) remain constant for gradually

increasing R. Flames of this type can be called as fully-developed turbulent

flames. This region does not, however, reach the viscous scales. At the scale

R0 which (presumably) can be estimated by Eq.(8.5) the fame front becomes

flatter. It generates smaller fluctuations and its interactions with

turbulence are not as efficient as at larger scales. In this region, which

involves the smallest scales in turbulence, the flame front experiences a

transition from the undisturbed flames to the fully-developed flames. During
g2this process, the ratio U/V deviates from U0/VK to ~ (U0/VK) , g2 ~ 0.6. The

range of R which corresponds to this process can be called as the

transitional region. The BLL data clearly indicate that the turbulence

interactions with the flames which have been wrinkled by smaller fluctuations

(i.e. fully-developed flames) are different from the turbulence interactions

with the undisturbed flames. For this reason, we can not assume that

FT(a) = FK(a) + const.

Let us consider the behavior of the flame fronts in the transitional

region for small V/U as it is predicted by the function S(V/U). According to
2

Sivashinsky’s (1988) asymptotic analysis, (S-1) ~ (V/U) L 0 as V/U L 0. That

is, if VK/U0 , 1, the turbulent velocity specified by Eq.(5.5) remains almost

unchanged: U/U0 = 1. Significant increase of the flame speed is possible only

at scale R where V is sufficiently large so that V/U0 ~ 1 and S is noticeably

greater than 1. This is similar to Peters’s (1986) concept of the Gibson

scale RG. The Gibson scale is determined by the condition V(RG) ~ U0. Hence,
3

RG ~ RK(U0/VK) . The assumption R0 ~ RG combined with D = 7/3 yields UT/VT ~

U0/VG L const as VK/U0 L 0 (where VG _ V(RG) ~ U0) as opposed to Eq.(8.1).

Sivashinsky’s function S(V/U) and Peters’s concept of the Gibson scale

correctly specifies the tendency of the the ratio R0/RK to rise as U0/VK

increases. The comparison with the BLL data indicates that the tendency is

overpredicted by these theories.

The flame instability.

Landau (1944) pointed out that the laminar flame fronts acting as the

surfaces separating mixtures with different densities are unstable. The
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comprehensive analysis of the stability of premixed flames which takes into

account many other factors can be found in Clavin (1975). The flame

instability can potentially wrinkle the flame front at the scales smaller

than RK and further increase the turbulent propagation velocity. In this

case, it is plausible to assume that the inner cutoff scale is determined by

the flame thickness R0 ~ d0. If D = 7/3 everywhere within the range
1/3

d0 < R < RT then, according to Eqs.(6.3) and (8.5), UT/VT ~ (U0/VK)(RK/d0)
4/3

= (U0/VK) . Certainly, the exponent 4/3 is not consistent with the

experimental data.

Alternatively, we can assume that the flame instability fully controls

the flame front in the region R<RG where the laminar burning velocity is

greater than turbulent fluctuations U0>V(R). Let us follow Kuznetsov and

Sabelnikov (1989) and assess the essentially non-linear and stochastic stage

of evolution of the flame instabilities. Initially, the flow is laminar so

this problem has only two main determining parameters: d0 and U0. The

turbulent propagation velocity is given by the equation U = U0f0(R/d0). The

function f0 may depend on other parameters which characterize the flame

instability. Kuznetsov and Sabelnikov (1989) advanced the argument (which has

some similarities with the theory of logarithmic boundary layers) that the

function f0 is logarithmic for R/d0.1, that is U/U0 ~ ln(R/d0) + k where k is

a constant. The fractal dimension of this flame, given by Eq.(6.3), is

D = 2+ln(b0)/b0 ~ 2 where b0 _ ln(R/d0). The flame speed increase due to the

flame instability is so slow that the fractal dimension of the flame is

almost 2. More efficient wrinkling needs the vorticity of intrinsic

turbulence. Thus, the length scale of the smallest wrinkles is of the order

of d0 but D ~ 2 in the range d0 < R < RG. The effective value of the inner

cutoff remains R0 ~ RG and this is not supported by the BLL data. The flame

instability can, however, increase the effective laminar burning velocity:
*
U0 ~ kU0.

Flame generated turbulence

Let us consider the fast flame interactions with turbulence in the

transitional region. It is likely that the fast flames are affected by the

smallest turbulence fluctuations stronger than passively convected interfaces

because of the fluctuations generated by the flame. In the transitional

region the generation of fluctuations is not very strong because the flame
*

front is not sufficiently wrinkled. The fluctuations V ~ U are generated at

larger scales where the flame front is fully-developed and are then

transferred to the dissipation scales where the flame front is almost flat.

These fluctuations increase the level of turbulence at the dissipation scales

and accelerate the flame front. The Kolmogorov scale can be estimated by the
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1/4 3/4
equation RK ~ RT (n/VT) . (We use Eq.(1.1) and estimate the dissipation

3
of energy as eT ~ VT/RT.) The flame generated fluctuations reduce the

* 1/4 * 3/4 * 3/4
effective value of the Kolmogorov scale RK ~ RT (n/VT) ~ RK(VT/VT) .

The value of the Kolmogorov velocity is also affected by the generated
* * * 3/4 * 3/4

fluctuations VK = n/RK ~ (VT/VT) n/RK = VK(VT/VT) . We assume that the
*

equation (8.4) is valid but we substitute the effective value VK for VK (the
*

substitution of RK for RK yields the same result). Equation (8.4) takes the
* * 3/4 *

form UT/VT ~ U0/VK ~ U0/VK(VT/VT) . Estimating VT/VT ~ UT/VT, we obtain

4/7
UT/VT ~ (U0/VK) (8.6)

The exponent 4/7 is shown on Figure 3 and is in good agreement with the BLL

data.

Very fast flames

As the ratio U0/VK increases, so does the ratio R0/RK and the transitional

region becomes larger in comparison with the inertial interval. The burning

velocity starts to deviate from the asymptote specified by Eq.(8.1) towards

g2=1. This is more noticeable for the flows with the lower Re numbers.

Asymptote 3 in Table III seems to be intermediate and it can not be reliably

determined form the BLL data.

If the intensity of turbulence VT becomes negligibly small in comparison

with U0, one can expect that UT = U0. The function UT = U0 corresponds to the

line Y = X shown on Figure 4. It is clear that, in the range of the BLL data,

this asymptote is not fully achieved.

9. SLOW FLAMES

These flames are characterized by K > 1 and relatively small ratios U/V. The

asymptote in Table III specifies the burning velocity as

g4 g5UT & U0* & RT * g6[-----] = g3 [-----] [---------] Le (9.1)
VT 7 VK8 7 RK 8

g3 ~ 6 g4 ~ 1, g5 ~ -1/4, g6 = -(g4+3g5)/2 ~ -1/8

The regimes specified by Eq.(8.1) and Eq.(9.1) are separated at K ~ 1 by the

intermediate zone where both of the asymptotes are not valid. We assume below

that Le = 1.
q

For slow flames, the functions FK(a) and FT(a) are the linear functions
q

which differ only by a constant so that FI(a) = FT(a) ~ FK(a)+g7, where
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q
FK(a) ~ 4a and g7~7. These equations can be determined from Tables I and II

by assuming that a L -8. The inertial interval function FI(a) is similar to

FT(a). The derivatives of the scaling functions are given by
*

F’ = F’ = F’ ~ 4. The value D determined by Eq.(6.5) is constant and the
I T K

fractal dimension of the slow flames

1
D ~ 2-------- (9.2)

12

is only slightly greater than 2. Equation (6.3) can be written as UT/U0 =
D-2

CU(RT/R0) where CU is a constant factor. This factor is normally neglected

in the fractal analysis since the term RT/R0 is most significant. If D = 2

then it is the factor CU which determines UT/U0.

In most simple case, the chemical reactions can be characterized by one
2

parameter - the characteristic reaction time t0 _ d0/U0 = n/U0. Using this

parameter we can rewrite Eq.(9.1)

1/2
g8 & n * g8UT = 8.2 U0Re = 8.2 [--------- Re ; g8 ~ 1/16 (9.3)

7 t08

Williams (1985) suggested similar approximation with g8 = 0. The value of g8

determined from the BLL data is quite small and, if we take into account

scattering of the original experimental data, it is not clearly

distinguishable from zero. This point is illustrated on Figure 4 where the

line Y ~ X corresponds to UT ~ U0. Equation (9.3) specifies the flame whose

propagation speed explicitly depends on the viscosity coefficient n. Thus,

the flame must have some zones comparable with the viscous scales. The flame

is strongly influenced by the smallest fluctuations (U ~ 6U0) but the

turbulent propagation velocity U remains almost constant inside the inertial

interval. Due to the influence of the fluctuations of the smallest scales the

turbulent propagation speed is essentially greater than the laminar

propagation speed: UT ~ 8.2 U0 in Eq.(9.3). Within the inertial interval, the

fractal dimension D is only slightly greater than 2. The flame is not

dynamically coupled with turbulence and, probably, can be treated as a

passively convected interface. As it can be seen on Figure 2, the theoretical

approximation of the function S, which is based on the consideration of the

premixed flames as flamelets, is well-matched by the function SI determined

from the BLL data.

Although the wrinkled laminar flames can not exist in the case of large

K (see Williams, 1985; Pope, 1987; Bradley, 1992), the flamelets may exist in

the regions of relatively small local dissipation rate where the local value

of K is not so large. The dissipation rate has quite significant fluctuations
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and the regions of relatively small dissipation rate and relatively small

velocity gradients coexist with the regions where the dissipation rate is

much greater. Kuznetsov and Sabelnikov (1989) and Bradley et al. (1992) put

forward arguments that the flamelets are likely to exist in the regions with

the low local dissipation rate. In the rest of the flow the flame front is

stagnant or locally quenched. The reactions in the flamelets are most intense

and determine the propagation velocity. This explains the strong dependence

of UT on n in Eq.(9.3) as well as the weak dependence of UT on Re in UT ~
g8U0Re . The flame front is fragmented and does not form a continuous surface.

The large-scale velocity fluctuations can not effectively stretch the flame

front. Its fractal dimension within the inertial interval remains close to

D = 2 (which is the fractal dimension of a plane). The most of flame

wrinkling occurs at smallest scales and this wrinkling significantly

accelerates the flame.

10.CONCLUSIONS

1) A new mathematical formulation of the cascade hypothesis for premixed

combustion is suggested. The new formulation is consistent with the premixed

combustion theories by Yakhot (1988) and Sivashinsky (1988) which are based

on the cascade hypothesis. The new formulation has more degrees of freedom in

choosing the scaling functions since the present consideration involves fewer

modeling assumptions. Basically, we postulate only the cascade hypothesis and

require satisfaction of certain consistency principles. The turbulent burning

velocity dependence on the main parameters is determined by the two

one-variable scaling functions FK(a) and FT(a). Unlike in previous

investigations, the scaling functions are determined directly from

experimental data rather than from theoretical models.

2) The cascade hypothesis imposes certain restrictions on the dependence of

the turbulent burning velocity on the Karlovits stretch factor K and Reynolds

number Re. The correlations of the burning velocity data by Bradley et al.

(1992) (BLL data) which comprise most of the known measurements of the

turbulent burning velocity are shown to satisfy the these restrictions. This

confirms the cascade hypothesis and validates its use for premixed

combustion.

3) Two clear asymptotic regimes - fast flames and slow flames - have been

detected. (The fast flames asymptote has been pointed out by Bradley et al.

(1992)). The fast flames correspond to the wrinkled laminar flame regime and
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they are separated from the slow flames by K ~ 1.

4) It is shown that, for the fast flames, the undisturbed laminar flames and

the flames which have been wrinkled by the fluctuations of smaller scales

(fully-developed flames) are affected by the larger turbulent fluctuations in

different ways. In terms of the scaling functions, this means that the

functions FK(a) and FT(a) are different.

5) Sivashinsky (1988) introduced the scaling function S(V/U) and modeled this

function for constant density turbulence. The function S specifies the

increase the flame propagation velocity (whose initial value is U(R)) by the

turbulent fluctuations of intensity V and scale R. The function SI(V/U) is a

similar function determined from the BLL data. The agreement of the scaling

functions S and SI is good for V/U > 0.5. In the region V/U < 0.5, the BLL

data indicate more rapid increase of the propagation velocity than it is

predicted by the function S.

6) On the basis of the cascade hypothesis, various flame characteristics are

determined from the BLL data. It is shown that the fractal dimension of the

fast flames is D = 7/3. This confirms, for the fast flames, Krestin’s (1989)

hypothesis of dynamic coupling between the flame fronts and turbulence.

7) It is shown that the ratios of the effective inner cutoff R0 and the

Kolmogorov length scale RK, which are determined from BLL data for the fast

flames, are larger for larger ratios of U0/VK. This is correctly predicted by

Sivashinsky’s function S and by Peters’s (1986) concept of the Gibson scale.

These theories, however, overestimate the ratio R0/RK.

8) According to the scaling functions determined from the BLL data, the fast

flames (with V/U L 0) are wrinkled by the turbulent fluctuations more

efficiently than passively convected interfaces. This can be explained by the

influence of the flame generated turbulence. The consideration of these

factors yields the 4/7 exponent which, as it is shown on Figure 3, is close

to the exponent 0.6 determined from the BLL data.

9) The asymptote determined here from the BLL data for the slow flames is

quite close to the approximation of the turbulent burning velocity suggested

by Williams (1985). It is likely that this regime corresponds to fragmented

flamelets.
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TABLE I. Representation of the scaling functions
u---------------------------------------------------------------------------i--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------o
p p p
p p Representation p
p p p
p Function u-----------------------------------------------------------------------------------------------------------------------i----------------------------------------------------------------------------------------------------------------------o
p p q p q p
p p in the region aK < ha p in the region aK > ha p
p p p p
u---------------------------------------------------------------------------i-----------------------------------------------------------------------------------------------------------------------i----------------------------------------------------------------------------------------------------------------------o
p q p - p + p
p FK(a) p -Fh(a,hK) p Fh(a,hK) p
p p p p
u---------------------------------------------------------------------------i-----------------------------------------------------------------------------------------------------------------------i----------------------------------------------------------------------------------------------------------------------o
p p - p + p
p FT(a) p -Fh(a,hT) p Fh(a,hT) p
p p p p
u---------------------------------------------------------------------------i--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------o
p p p
p Fh(a,h) p h1+ h2a + exp(h3a + h4) p

p
m----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------.

TABLE II. The values of the constants
u----------------------------------------------------------i-----------------------------------------------------------------------------------i---------------------------------------------i---------------------------------------------i----------------------------------------o
p p p p p p
p j p 1 p 2 p 3 p 4 p
p p p p p p
j----------------------------------------------------------i-----------------------------------------------------------------------------------i---------------------------------------------i---------------------------------------------i----------------------------------------l
p - p p p p p
p (hK)j p p 3.91 p 4.45 p 4.23 p
p p p p p p
u----------------------------------------------------------i-----------------------------------------------------------------------------------i---------------------------------------------i---------------------------------------------i----------------------------------------o
p - p - p p p p
p (hT)j p (hK)1-7.04 p 3.95 p 7.3 p 2.29 p
p p p p p p
u----------------------------------------------------------i-----------------------------------------------------------------------------------i---------------------------------------------i---------------------------------------------i----------------------------------------o
p + p - p p p p
p (hK)j p (hK)1-59301 p -11.94 p -13.03 p 28.55 p
p p p p p p
u----------------------------------------------------------i-----------------------------------------------------------------------------------i---------------------------------------------i---------------------------------------------i----------------------------------------o
p + p + p p p p
p (hT)j p (hK)1+5.19 p -17.05 p -21.37 p 34.23 p
p p
u----------------------------------------------------------k-----------------------------------------------------------------------------------,---------------------------------------------,---------------------------------------------,----------------------------------------l
p p p
p ha p 1.45 p
p p p
m---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------.

TABLE III. Main asymptotic regimes
u--------------------------------------------------------------------------------------------------------------i--------------------------------------------------------------------------------------------------------------------------------------------------------------------o
p p q q p
p1. Slow flames: p aT = 0.99aK - 0.25b + 1.78 p

p
j--------------------------------------------------------------------------------------------------------------i--------------------------------------------------------------------------------------------------------------------------------------------------------------------l
p p q p
p2. Fast flames: p aT = 0.61aK + 0.27 p

p
j--------------------------------------------------------------------------------------------------------------i--------------------------------------------------------------------------------------------------------------------------------------------------------------------l
p p q q p
p3. Very fast flames: p aT = 0.70aK - 0.06b + 0.3 p

p
m---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------.
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TABLE CAPTURES

TABLE I. Representation of the scaling functions

TABLE II. The values of the constants

TABLE III. Main asymptotic regimes

FIGURE CAPTURES

FIGURE 1. The scaling functions determined from the BLL data;

[-------------------------] 1/F’(a);
K

* 7
- - - 1/F’(a) ~ 1/F’(a) = D -[----].

T I 3

& V *
FIGURE 2. The scaling function S [-----] ;

7 U 8
[-------------------------] SI, determined from the BLL data;

- - - S, modeled by Sivashinsky (1988), b = 1.4.

-1/2
FIGURE 3. The dependence of Y = UT/VT on X = Le (U0/VK). Different curves

2
correspond to Re/Le = { 10, 20, 50, 100, 250, 500, 1000, 2000,

2
3000, 4000, 5000, 6000 }. The arrows show the direction of Re/Le

increase.

[-------------------------] BLL data

- - - approximation based on the cascade hypothesis

( shifted, Y = (UT/VT)/3 )

WWWWWWWW The line K Le = 1 is shown.

FIGURE 4. The dependence of Y = UT/VT on X = U0/VT.

See Figure 3 for key.
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