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Several examples of determining the effective Zeldovich number for reduced combustion mechanisms
are given in the paper while, for realistic reactions, the effective Zeldovich number is determined from
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Keywords: Flames premixed laminar; flames premixed turbulent; flame propagation velocity; flame
stretch; flamelets; fluid dynamic aspects in combustion

*Corresponding author, full address:
Dept. of Mechanical Engineering
The University of Queensland
Qld 4072, Australia
FAX: (61-7)-3365-4799
Email: klimenko@mech.uq.edu.au

1



1 Introduction

Premixed combustion becomes increasingly important in applications that require advanced technology.
Using premixed flames rather than diffusion flames enables the engineer to design engines that realize
high energy densities. In general this reduces the cost of these engines, and the fluid or thermodynamic
losses as well. However the fundamentals of diffusion flames are understood far better than those of
premixed flames. The self-propagation mechanism of premixed flames is determined by a sophisticated
balance of the chemical reaction, mass diffusion and convective transport of heat and species. In non-
uniform time-dependent flows, strong interactions of the flow with this balance result in a non-constant
local flame-propagation speed. In the present consideration, we study the interaction of a premixed flame
with a general time-dependent flow, i.e. the flame is subject to strain, and the flame shape is both
non-stationary and non-planar.

Since the flame is, typically, thin in comparison with the characteristic scales of the fluid flow (Bradley,
Lau and Lawes 1992, Klimenko 1998), the most simple approach to premixed combustion is based on
viewing the flame as a surface of discontinuity which separates the dense cold mixture from the light hot
products. The flame behaves as a gas-dynamic discontinuity. A first model of this kind was proposed
by Darrieus (1945) and independently by Landau (1944). In the Darrieus-Landau model, the flame is
described as two incompressible fluids of different densities which are separated by the flame front. The
model is completed by assuming that the flame propagates relative to the fluid at a fixed speed - the
adiabatic flame speed. This heuristic assumption has proven to be oversimplified. It can easily be shown
(Buckmaster and Ludford 1983) that planar flames described by the Darrieus-Landau model are unstable
with respect to perturbations of any wave length. This result is in contradiction with the properties of
planar flames which are known to exist in laboratory experiments. Obviously the flame speed depends
on the geometry of the flame and possibly other effects. In order to overcome this deficiency of the
Darrieus-Landau model, Markstein (1953) proposed a simple model, where the flame speed is assumed
to be proportional to the flame curvature. The constant of proportionality is called the Markstein
number. It should be noted that this model is empirical: the dependence of the flame speed on the flame
curvature is postulated but not derived from the first principles. In the Markstein model, the short-wave
perturbations are stabilized. In both the Darrieus-Landau and the Markstein model the details of the
reaction mechanism are ignored. However if one aims to derive the dependence of the propagation speed
of a flame on the geometry of the flame from first principles these details are essential.

Zeldovich, Barenblatt, Librovich and Makhviladze (1985) introduced a flame model, which ignores the
gasdynamic effects but which takes into account the reaction kinetics. He assumed that the density of the
fluid is constant, so that the flame does not effect the flow, but still the flow effects the flame. The kinetics
was modeled as a one-step irreversible reaction between fuel and oxidizer. This reaction is deemed to
have a high activation energy, the reaction rate strongly depends on the temperature. Otherwise, reaction
would begin spontaneously in a combustible mixture. Due to the strong temperature dependence, the
reaction zone is restricted to a thin zone near the highest temperature. Mathematically, this common
property of the flames is expressed by a large value of the Zeldovich number Z. The thickness of the
reaction zone can be assessed as ∼ lf/Z where lf is the flame thickness. Behind the reaction zone, there
is no reaction since all the available fuel is consumed in the reaction zone while, ahead of the reaction
zone, the reaction rate is negligibly small due to the low temperature. The preheat zone is located ahead
of the reaction zone. Within the preheat zone, the incoming mixture is preheated by heat conduction until
reaction sets in at high temperatures. Also, within the preheat zone fuel diffuses towards the reaction
zone where it is consumed. For hydrdocarbon/air flames at atmospheric conditions the thickness of the
preheat zone is of the order of a tenth of a millimeter, i.e. much smaller than typical geometric length
scales of a burner. At least for laminar flames variations across the flame are much stronger than those
along the flame.

The interactions of the premixed flames formed by a one-step irreversible reaction with variable density
fluid flows are considered in many publications (Sivashinsky 1976, Matalon and Matkowsky 1982, Bechtold
and Matalon 1999) and reviewed by Clavin (1985). For these asymptotic models, Zeldovich’s planar
solution represents a zero-order approximation. At the next order of approximation, the corrections
induced by the flame stretch are accounted for. The flame stretch κ (Karlovitz, Denniston, Knapschaefer
and Wells 1953) is defined as the differential increase of area of a flame surface segment and involves
two terms: a term which is proportional to velocity gradients and another term which is proportional to
the flame curvature (Matalon 1983, Williams 1985). The major asymptotic analyses of the influence of
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the flame stretch on the flame speed are performed by Sivashinsky (1976) and Matalon and Matkowsky
(1982). They consider a thin flame formed by a one-step irreversible reaction with a high activation
energy disturbed by an arbitrary external flow and assume that the flame curvature is weak as compared
to the flame thickness. The flame characteristics depend on differential diffusion, i.e. the Lewis number
L which is defined as the ratio of heat diffusivity to mass diffusivity. Sivashinsky (1976) assumed that
the Lewis number is bounded away from unity ∆L ≡ (L− 1) ∼ 1 while Matalon and Matkowsky (1982)
considered the case when the Lewis number is close to 1 so that ∆L ∼ 1/Z. These formulations are
different characteristic limits and result in different equations for the flame propagation speed. The
analysis of the flames for the case of a near-stoichiometric mixture and a one-step reaction was performed
only recently in Bechtold and Matalon (1999).

Realistic chemical mechanisms are, of course, much more complicated than a one-step irreversible
reaction. The early works on sequential multistep reactions can be found in Kapila and Ludford (1977),
Margolis and Matkowsky (1982) and on parallel reactions in Berman and Riazantsev (1973). Most asymp-
totic considerations of more realistic flames, involving multistep chemistry, are restricted to stationary
planar situations. The reader is referred to Smooke (1991) for details. Typically there are several lay-
ers, where distinct reactions take place. Often the fuel is first broken into smaller molecules, i.e. into
intermediate reactants. These intermediate reactants are further oxidized resulting in the final product.
Reactions between highly reactive radicals are often a limiting step in the reaction mechanism. It is not
our intention to discuss the details of these reaction mechanisms. However it should be noted that the
lack of free radicals at low temperatures is responsible for the low reactivity of a combustible mixture at
low temperatures. The reactions which generate or consume free radicals are often strongly temperature
dependent. From the low reactivity of a combustible mixture at low temperatures, we may not con-
clude that a global single-step reaction modeling the combustion process necessarily has a high activation
energy or Zeldovich number. This is only the case when a reaction with high activation energy is limiting.

There are several publications by Seshadri and Peters (1983), Rogg and Peters (1990), where the flame
speeds of stationary planar stretched flames are considered for reduced multi-step reaction mechanisms.
The authors take advantage of the fact, that for stagnation point flow the velocity component normal to
the flame is independent of the transverse direction. This allows for one-dimensional solutions which are
independent of transverse space. In stagnation point flow the flame stretch is proportional to the gradient
of the normal velocity, which is a parameter in the one-dimensional equations. In Seshadri and Peters
(1983), the reaction mechanism is represented by two reactions: a chain branching reaction and a chain
braking reaction. The activation energy of the chain branching reaction is assumed to be large, while
the activation energy of the chain braking reaction is zero. The chain branching reaction takes place
in an inner layer which is thin compared to the preheat zone. This mechanism is similar to Zeldovich’s
two-step mechanism but both of the reactions considered by Seshadri and Peters (1983) have a significant
heat release. Rogg and Peters (1990) analyzed the influence of the flame stretch on the three-step kinetic
mechanism which was specifically designed for oxidation of methane.

In the present consideration, we do not restrict the analysis to a specific flow. We rather consider
a time-dependent flame, which may be stretched and curved. This includes any geometry and any flow
field as long as the curvature and the flame stretch do not exceed moderately large values. In the
analysis we apply the approach based on the adaptive curvilinear system of coordinates which is attached
to the flame (i.e. IDFE – the Intrinsic Disturbed Flame Equations obtained by Klimenko and Class
(2000)), but now we consider a general reaction mechanism, although the reaction zone is presumed to
be thin in comparison with the preheat zone. The most interesting aspect of the presented approach
is that a certain integral characteristic of the undisturbed flames appears to be sufficient to determine
the propagation speed of the flames curved and stretched by unsteady fluid flows. Even though there
are certain cases, where the reaction zone is not thin as assumed in the present consideration, we want
to emphasize the generic nature of our approach. In order to demonstrate efficiency of our method, we
apply it to the one-step irreversible reaction mechanism and also to the reduced multistep mechanisms
considered by Seshadri and Peters (1983) and Rogg and Peters (1990). Our results are consistent with
the equations obtained in previous publications. We should note that, unlike in Seshadri and Peters
(1983), our consideration of the Zeldovich two-step mechanism is of illustrative character and restricted
only to the cases when complete analytical integration is possible. Our method can also applied to the
realistic flames. In order to demonstrate this we use experimental results and some ideas presented in
Abdel-Gayed, Bradley, Hamid and Lawes (1984) and Abdel-Gayed, Al-Khishali and Bradley (1984a).

The structure of the present manuscript is as follows. In section 2 the formulation of the governing
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equations is introduced. In section 3 the asymptotic analysis of the preheat and the reaction zone is
presented including the matching of the layers to each other and to the outer flow. In section 4 the
problem of an undisturbed flame is considered, which may be used as a reference solution, and allows
us to omit to derive the full solution for all intermediate species. The general results are compared to
the special limiting cases which have been studied by Sivashinsky (1976) and Matalon and Matkowsky
(1982) in section 5. In section 6 and 7 the effective Zeldovich-numbers of flames with a simplified
chemical kinetics and those with realistic chemical kinetics are determined. Here, the effective Zeldovich
number represents an important undisturbed flame characteristic which enters the flame speed equation
for disturbed flames. Finally, in section 8 we summarize our results.

2 Formulation of the problem

In the present work, we consider a general reaction mechanism whose integral effect can be symbolically
represented by

νAA+ νBB + (...+ νRiRi + ...)→ νP1P1 + ...+ νPjPj + (...+ νRiRi + ...) + heat (1)

This reaction specifies conversion of the reactants A and B into one or more products Pi. The reactant
A is assumed to be deficient. The reaction is complete so that A is not present in the products (this
assumption is, obviously, linked to the assumption of a thin reaction zone which is discussed below).
The terms in the brackets involving Ri indicate the presence of a set of intermediate species which are
generated and consumed in the intermediate reaction steps. The enthalpy, reactants and products can be
called ”the major species” to distinguish them from the intermediate species. The values of νI represents
the reaction coefficients of species denoted by I. The system of equations governing transport, production
and consumption of species for low Mach flows is represented by the conventional conservation of mass,
conservation of energy and conservation of species equations.

∂ρ

∂t
+ div (ρv) = 0 (2)

Λ(1) [h] = Wh (3)

Λ(LI) [CI ] = WI (4)

where h represents the sensible enthalpy and Λ(L) [...] denotes the convective operator

Λ(L) [c] ≡ ρ∂c
∂t

+ ρv ·∇c− div
(
D

L
∇c

)
for any c (5)

This operator depends on the Lewis number L. The ”dynamic” diffusion coefficient is denoted here by
D is defined D ≡ D̃ρ where D̃ is conventional ”kinematic” diffusion coefficient. In the scalar transport
equations given by (4), the binary mutual diffusion fluxes are conventionally replaced by the diffusion
coefficients D/LI implicitly assuming that the diffusion of the components occurs with respect to an inert
gas G whose concentration is dominant in the mixture. In this case, the diffusion coefficients depend on
temperature and do not depend on concentrations. The sensible enthalpy is, generally, specified by the
integral

h = h∗s +
∫ T

T∗
cpdT (6)

where h∗s is sensible enthalpy at T = T ∗. Considering that the concentration of G is dominant, it is logical
to assume that the heat capacity cp is determined by the heat capacity of G and cp = cp(T ) does not
depend on concentrations. The heat released by the reactants is expected to be significant. In this case,
∇h = cp∇T and D(T ) = kT /cp where kT is thermal conductivity. Another conventional assumption is
given by cp = const which makes the sensible enthalpy proportional to temperature so that equation (3)
can be written for T . If cp is not constant, then, as it is discussed above, T and h are linked by a function
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h = h(T ) (or T = T (h)) which is, generally, non-linear. Practically, the gas G is represented by molecular
nitrogen whose heat capacity cp changes ∼25% as the temperature increases from 300K to 3000K.Thus,
it is more accurate to retain a general dependence h = h(T ) in the following analysis but the assumption
cp = const is also acceptable.

The values of W represent the influence of chemical reactions which are negligibly small everywhere
with exception of the thin reaction zone where reactions are very intense. The actual equations for the
reaction rates are, obviously, dependent on the reaction mechanism used. With exception of section 6
where specific examples are considered, we do not presume any particular form of the reaction rates. The
major assumption of the present work which involves the characteristic scale of fluid motions lm, the
flame thickness lf and the thickness of the reaction zone lr is represented by the inequality

lm � lf � lr (7)

3 The flame structure

3.1 The preheat zone

In this section we consider the transport processes within the flame (whose characteristic scale is of order
of lf ) disturbed by general unsteady fluid flow fluctuations of larger scale lm. The influence of reaction
terms is confined to a thin reaction zone (∼ lr). In the preheat zone, this influence can be neglected and
the flame structure is determined by diffusion and convection

Λ(1) [h] = 0, Λ(LI) [CI ] = 0 (8)

where I denotes any of the species. The boundary conditions for the major species are given by

h→ hu, CA → CAu, CB → CBu, CPi → CPiu, CRi → 0 as x1 → −∞ (unburned mixture) (9)

The subscript ”u” denotes values of the parameters in the unburned mixture while the subscript ”b” is
used to denote those values related to the burned mixture. Typically, the products Pi are not present in
the unburned mixture such that CPiu = 0. However it is possible that some amounts of the products are
premixed with reactants before igniting the flame (for example water vapor or recirculated flue gases). The
unburned values of the concentrations and the enthalpy are prescribed by the experimental conditions.

The preheat zone is the widest zone of the flame and, therefore, this zone is primarily affected by
the fluid flow. We follow our previous work (Klimenko and Class 2000) and select a moving generalized
curvilinear system of coordinates x1, x2, x3 so that x1 = 0 specifies the location of the reaction zones.
With these coordinates, the conservation equation of mass and the convective operator take the form

∂g1/2ρ

∂t
+
∂g1/2mi

∂xi
= 0 (10)

Λ(L)[c] = ρ
∂c

∂t
+mi ∂c

∂xi
− 1
g1/2

∂

∂xj

(
gijg1/2D

L

∂c

∂xi

)
(11)

where gij is the metric tensor; g ≡ det(gij) = 1/det(gij); mi ≡ ρU i; i, j = 1, 2, 3 and the sum is taken
over repeated indices. The contravariant components U i specify the fluid velocity relative to the moving
system of coordinates U i ≡ vi + dxi/dt where dxi/dt is evaluated for constant values of the Cartesian
coordinates.

The derivation of IDFE requires several steps which are fully presented in Klimenko and Class (2000).
The major steps of this approach involve selecting the coordinate x1 to be normal to the flame surface.
The orthogonality condition requires that g1α = gα1 = g1α = gα1 = 0 where the Greek indices run over
the flame surface coordinates: α = 2, 3. We assume that, in the vicinity of the point of consideration,
g11 = g11 = 1, and thus the coordinate x1 represents the physical coordinate normal to the flame.
Alternative assumptions would result in more complicated equations involving additional geometrical
terms which should not affect (and do not affect) the final equations (Klimenko and Class 2000). Since
det(gαβ) = g/g11 = g, the value of g specifies the element of the flame surface area.
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We introduce stretched coordinates Xi = xi/ε and τ = t/ε which characterize the outer fluid flow.
Here, the small parameter ε represents the ratio ε ≡ lf/lm. The physical coordinates xi are assumed to
be of unity order within the flame. Since g and other geometrical parameters are determined by the outer
flow, they must depend on the stretched coordinates while other parameters, such as the enthalpy (or the
temperature) and the concentrations change within the flame and depend on inner variables. Without
loss of generality, the coordinates on the flame surface are selected so that Uα = 0 to the leading order
of the asymptotic analysis (i.e. dxα/dt = −vα on the flame surface, α = 2, 3). The leading terms of
equations (10) and (11) are given by

ε
∂g

1/2
f ρ

∂τ
+ ε

(
∂g1/2

∂X1

)
f

m1 +

(
g

1/2
f + ε

(
∂g1/2

∂X1

)
f

x1

)
∂m1

∂x1
+ ... = 0 (12)

Λ(L)[c] = ερ
∂c

∂τ
+m1 ∂c

∂x1
− ∂

∂x1

(
D

L

∂c

∂x1

)
− εD

L

(
∂ ln(g1/2)
∂X1

)
f

∂c

∂x1
+ ... (13)

Terms of higher order, which are not needed in the present analysis, are omitted. The subscript ”f”
indicates that the indexed value is either taken at the flame surface, is related to whole flame structure,
or remains constant within the flame. Further in the paper, we denote m ≡ m1, x ≡ x1, etc. for
convenience. Using the rescaled flame stretch Kf and the flame curvature Γf which are defined by

Kf ≡
(
∂ ln(G1/2)

∂τ

)
f

, Γf ≡ −
(
∂ ln(G1/2)

∂X

)
f

. (14)

and linked to the physical flame stretch κf and to the physical flame curvature γf by κf = εKf and
γf = εΓf , we rewrite the IDFE in the form

εKfρ+ ε
∂ρ

∂τ
− εΓfm+ (1− εΓfx)

∂m

∂x
+ ... = 0 (15)

Λ(L)[c] = ερ
∂c

∂τ
+m

∂c

∂x
− ∂

∂x

(
D

L

∂c

∂x

)
+ ε

D

L
Γf

∂c

∂x
+ ... (16)

The major feature of these equations is that IDFE explicitly involve two major parameters of the
flame/flow interactions: the flame stretch Kf and the flame curvature Γf . IDFE are relatively sim-
ple and can be used to find efficient solutions for variety of problems. The sign of Γf takes into account
that the flame propagates towards x = −∞. It is convenient to rewrite equation (16) in terms of the
normal flux operator S defined by S(L)[c] ≡ mc− (D/L)(∂c/∂x)

Λ(L)[c] =
∂S(L)[c]
∂x

− εΓfS(L)[c] + ε
∂cρ

∂τ
+ εKfcρ+ .. (17)

The mass flow rate and the other variables are represented by the expansions m = m0 + εm1 + ....,
c = c0 + εc1 + .., h = h0 + εh1 + ..., ρ = ρ0 + ερ1 + ..., D = D0 + εD1 + ..., CI = (CI)0 + ε(CI)1 + ... Here,
we analyze equation (16) using a function c(x, L) which satisfies Λ(L)[c] = 0 subject to the boundary
conditions c→ 0 as x→ −∞. The solution of equation (15) is

m0 = const , m1(x) =
∫ 0

x

Ψmdx+m1b, Ψm ≡ ρ0Kf −m0Γf +
∂ρ0

∂τ
(18)

while the solution of equation (16) takes the form

c0(x, L) = exp
(
m0

∫ x

0

L
dx

D0

)
(19)

c1(x, L) =
c0(x, L)
m0

∫ 0

x

Ψc(x, L)
c0(x, L)

dx+
1
m0

∫ x

−∞
Ψc(x, L)dx (20)
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Ψc(x, L) ≡ −∂m1c0
∂x

−Kfc0ρ0 −
∂c0ρ0

∂τ
+

∂

∂x

(
D1

L

∂c0
∂x

)
(21)

so that

c(0, L) = 1 + εΨr(L) +O(ε2), c′(0, L) =
(
L

D0

)
b

m0 +O(ε2) (22)

where

c′ ≡ ∂c

∂x
, Ψr(L) ≡ 1

m0

∫ 0

−∞
Ψc(x, L)dx = −m1b

m0
+
D1b

D0b
− Φ(L) (23)

Φ(L) ≡ 1
m0

(
Kf +

d

dτ

)
[φ(L)] , φ(L) ≡

∫ x

−∞
ρ0c0(x, L)dx (24)

The enthalpy and concentrations of the components are governed by the equations

h = hu + ahc(x, 1), CI = CIu + aIc( x, LI) (25)

which take into account the conditions in the unburned fluid. The coefficients a are to be determined by
matching to the reaction zone. Meanwhile we obtain the values of the parameters and their derivatives
as x→ −0

(h)r = hu + ah (1 + εΨr(1)) +O(ε2), (CI)r = CIu + aI (1 + εΨr(LI)) +O(ε2) (26)

(
∂h

∂x

)
r

= ah
m0

D0b
+O(ε2),

(
∂CI
∂x

)
r

= aI

(
LI
D0

)
b

m0 +O(ε2) (27)

Here the subscript index ”r” denotes the values related to the location x → −0 (i.e. just before the
reaction zone which is assumed to be at x = 0). The subscript ”b” indicates values evaluated in the
burned mixture. Note that for some parameters, the subscript ”r” has the same meaning as ”b”. As
determined by the reactions zone analysis and asymptotic matching presented in the following sections,
these indexed values are identical to the order of precision considered in the present analysis. For other
parameters, the meanings of ”r” and ”b” are different. For example (h)r = hb and Dr = Db but
(∂h/∂x)r 6= (∂h/∂x)b since (∂h/∂x)b = 0.

3.2 The reaction zone

In this section we consider the reaction zone, where the combustion reactions take place. The major
assumption which is used in the present analysis is the requirement of a thin reaction zone. Here thin
means that the thickness of the reaction zone is much smaller than the thickness of the preheat zone.
Therefore, we introduce a small parameter εr = lr/lf . The characteristic variable of the reaction zone
is denoted by ξ = x/εr. First, we apply the asymptotic analysis of the reaction zone to the generic
equation Λ(L)[C] = W. The symbolic variables are represented by the expansions C = Cb + εrC1 + ...,
W = ε−1

r W0+..., etc. At the leading order of an asymptotic series expansion in powers of εr the convective
terms do not contribute and the generic equation is given by

−
(
D

L

)
b

∂2C1

∂ξ2 = W0 (28)

Integrating the generic equation across the reaction zone yields(
D

L

)
b

(
∂C

∂ξ

)
r

=
∫ +∞

−∞
W0dξ (29)
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where the subscript ”r” denotes the intermediate limit specified by ξ → −∞, x→ −0 which corresponds
to the location just before the reaction zone. We transform these equations back to the original coordinate
x when applying them to the enthalpy and other species

−Db
∂2h

∂x2
= Wh, −

(
D

LI

)
b

∂2CI
∂x2

= WI (30)

where ”I” denotes any of the species. Note that, to the order of O(εrε), the reaction zone remains
plane and undisturbed. The integral of the reaction rate over the reaction zone specifies the integral
rate of consumption (or production) of a particular reactant. Thus, the integral rates of consumption
of reactants and generation of products are linked by the reaction coefficients while the overall rate of
generation of the intermediate species is zero (i.e., for the intermediate species, the volume average of the
consumption rate is the same as the volume average of the generation rate). Evaluation of the integral
(29) for different species yields (

D

LA

)
b

(
∂CA
∂x

)
r

= −MA =
∫ +∞

−∞
WAdx

Db

(
∂h

∂x

)
r

= NhMA,

(
D

LB

)
b

(
∂CB
∂x

)
r

= NBMA

(
D

LPi

)
b

(
∂CPi
∂x

)
r

= NPiMA,

(
∂CRi
∂x

)
r

= 0 (31)

where the value MA is the mass rate of consumption of the deficient reactant in the reaction zone. The
values NI = ±(νIwI)/(νAwA) are introduced for the major chemical species and the positive sign is
selected for products (and the sensible enthalpy) while the negative sign is selected for the reactants.
Obviously, NA = −1. Here νI denote the reaction coefficients and the wI denote the molecular weights
of the substances I. The value Nh represents the heat released when burning one unit mass of the deficient
reactant. The values NI and Nh remain constant (as long as the reaction mechanism is not changed).
Although Nh is presumed constant, the adiabatic temperature T0b = T (h0b), where h0b = hu +NhCAu,
can be changed by altering CAu - the amount of the deficient reactant present in the fresh mixture, or
by changing the temperature Tu and the enthalpy hu = hu(Tu) of the fresh mixture.

Assuming that the values of the enthalpy (or temperature) and concentrations in the burned mixture,
which are indexed by the subscript ”b”, are given, the solution of the problem (30)-(31) specifies the
consumption rate of the deficient reactants as the function of the other parameters of the reaction zone

MA = FA (hb, CIb, Nh, NI , D, LI , ρ) = FA (Tb, CBb, CPib) (32)

We will call the function FA the consumption rate function. In this equation, the burned concentrations
of the deficient reactant A and of the intermediate species Ri are zeros and should be excluded from the
function FA. We also omit the values NI and Nh, which can not be altered as long as fixed reaction
mechanisms and complete combustion are considered. The sensible enthalpy h, the density ρ, and the
diffusion coefficient D (and possibly the Lewis numbers if the LI are not constant) are presumed to be
functions of the temperature. The corresponding values are determined by Tb. The dependence of MA on
Tb involves these functions. Although those parameters, which are not expected to change, are excluded
from the list of parameters on the right-hand side of equation (32), the actual values of the parameters
in the burned mixture, which are indexed with the subscript ”b” should be determined by matching with
the preheat zone.

3.3 Matching

First we notice that, as it follows from equations (27) and (31), aRi = 0 for intermediate species. Hence
the reaction zone boundary conditions for intermediate species take the form

(CRi)r = 0 +O(ε2), (CRi)b = 0 +O(ε2) (33)
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If the reaction zone is thin, (as assumed in our analysis) the intermediate species are, to the asymptotic
precision needed in our analysis, confined to the reaction zone. The boundary conditions for the major
species need a more detailed inspection. Comparison of equations (27) and (31) indicates that

ah =
M

m0

D0b

Db
NhCAu +O(ε2), aI =

M

m0

D0b

Db
NICAu +O(ε2), M ≡ MA

CAu
(34)

where a new parameter, denoted as M and having the same dimension as m, is introduced. Equations
(26) specify, to the order of the matching procedure, the values of the enthalpy and concentrations in the
burned mixture

hb = hu +NhCAu
M

m0

(
1− εm1r

m0
− εΦ(1)

)
+O(ε2) (35)

CIb = CIu +NICAu
M

m0

(
1− εm1r

m0
− εΦ(LI)

)
+O(ε2) (36)

Here we use equation (23) and expand Db into the series Db = D0b + εD1b + ... The terms of order ε2

and higher are consistently neglected. The subscript ”I” denotes ”A”, ”B” or ”Pi”.
Since A is the deficient reactant and the reactions are complete, this reactant is not present in the

products: (CA)b = 0. We note that NA = −1, substitute (CA)b = 0 into (36) and obtain

M

m0
= 1 + ε

m1r

m0
+ εΦ(LA) +O

(
ε2
)

(37)

This equation demonstrates that M should be represented by the expansion M = M0 + εM1 + ... so that
M0 = m0 and M1 = m0Φ(LA)+m1r. Substitution of M specified by (37) into (35) and (36) while taking
into account (24) yields

hb = hu + (∆h)0 + ε (∆h)1 +O(ε2)

(∆h)0 ≡ NhCAu, (∆h)1 ≡
(∆h)0

m0

(
Kf +

d

dτ

)
[φ(LA)− φ(1)] (38)

CIb = CIu + (∆CI)0 + ε (∆CI)1 +O(ε2)

(∆CI)0 ≡ NICAu, (∆CI)1 ≡
(∆CI)0

m0

(
Kf +

d

dτ

)
[φ(LA)− φ(LI)] (39)

where the index ”I” represents any of the following species ”Pi” or ”B”. If ”I” is ”A” then, obviously,
(CA)b = 0. The values (∆...)0 specify jumps of the parameters in undisturbed flames (one can formally
put ε = 0 in (38) and (39) to find this) and these values are positive for the sensible enthalpy and products
and negative for reactants. The equations (38) and (39) in conjunction with the equations (33) and (31)
define the boundary conditions for the reaction zone equations (30).

Presuming that the value of M = FA(...)/CAu is known (i.e. obtained by solving the reaction zone
equations), we can now determine the propagation speed of the flame Uf which is conventionally defined
as Uf = mur/ρu. Here, mur denotes mu taken at the location of the reaction zone (i.e. at x = 0) while
mu represents the unburned mass flow rate which is evaluated under the assumption that the density
does not changed within the flame (i.e. mu is an extension of the unburned mass flow rate into the flame).
The actual mass flow rate m is governed by equation (15) while the unburned mass flow rate mu satisfies
the equation (15) with ρ = ρu. Thus, we have

mur = mr − ε
(
Kf +

∂

∂τ

)[
φρ
]

+O(ε2), φρ ≡
∫ 0

−∞
(ρu − ρ0) dx (40)
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Equations (24), (37), (40) and the expansion mr = m0 + εm1r + ... determine the following equation for
the unburned mass flow rate evaluated at x = 0

mur = M − ε
(
Kf +

∂

∂τ

)[
φ(LA) + φρ

]
+O(ε2), Uf = mur/ρu, M =

FA(...)
CAu

(41)

The equations obtained here are suitable for the analysis of different asymptotic limits, as determined
by the properties of the function FA(...). Note that the value of m0 does not necessarily represent the
value of mass flow rate in a planar undisturbed flame m∗ (some examples of m0 6= m∗ are given in
the following sections). We use the subscript ”∗” to denote values related to the undisturbed flames
under similar conditions. However, (...)0 = (...)∗ appears to be correct for some values. The value
(∆h)0 ≡ NhCAu = (∆h)∗ is not affected when disturbing the flame so that h0b = hb∗, T0b = Tb∗ etc.
Note that this equality does not, apply to the whole enthalpy and temperature profiles: h0 6= h∗ and
T0 6= T∗. In the rest of the paper, we use the ”asterisk notation” whenever suitable to emphasize the
invariable nature of some parameters.

The integrals φ and φρ can be written in a more convenient form if the sensible enthalpy, density and
the diffusion coefficient are functions of the temperature only h0 = h(T0), ρ0 = ρ(T0), and D = D(T0).
Equations (19), (25), (34), and (38) indicate h0 = hu + (∆h)∗ c0(x, 1) so that cpdT0 = dh0 = (∆h)∗dc0
where dc0 = c0m0D

−1
0 dx. By replacing integration over x by integration over T , the definitions of φ and

φρ in (24) and (40) are transformed into

φ(L) = m0
D̃u

U2
f0

I (L) , I (L) ≡ 1
(∆h)L∗

∫ Tb∗

Tu

ρ̂0D̂0 (h0 − hu)L−1
cpdT0 (42)

φρ = m0
D̃u

U2
f0

Iρ, Iρ ≡
∫ Tb∗

Tu

D̂0
1− ρ̂0

h0 − hu
cpdT0 (43)

where we use the following notations

Uf0 ≡
m0

ρu
, D̃u ≡

Du

ρu
, ρ̂0 ≡

ρ0

ρu
, D̂0 ≡

D0

Du
, (∆h)∗ ≡ NhCAu = hb∗ − hu

Here, hb∗ is the sensible enthalpy of the burned mixture of an undisturbed flame (which is linked to
the adiabatic temperature Tb∗ = T (hb∗)). Generally, the value of the Lewis numbers which represent
the ratio of thermal conductivity and diffusivity may depend on the temperature L = L(T ). In this
case equation (42) specifies the integral I(L) = I([L(T )]) which appears to be a functional depending on
the function L(T ). In practical applications, the values of the Lewis numbers vary much less with the
temperature than the values of the diffusion coefficients and it is reasonable to treat them as constants
resulting in a significant simplification of the integral I.

4 Equivalent formulation for undisturbed flames

In this section we formulate the problem for a planar stationary flame, using the consumption rate
function FA(...) introduced in the previous section. Expanding the functional about the planar state
will allow us to find a generic flame speed relation for perturbed flames. The consumption rate function
FA(...) can be found by solving the problem, defined by (30),(31), (38), (39) and (33), within the reaction
zone and then determining the consumption rate of the deficient reactant MA. This approach is suitable
when the reaction mechanism under consideration is not complicated and an analytical solution of the
problem is sought. For more complicated kinetics, it could be more convenient to find structure of the
undisturbed plane flame and determine the mass flow rate m∗. Solving the undisturbed equations

Λ0(1) [h] = Wh, Λ0(LI) [CI ] = WI , Λ0(L)[c] ≡ m∗
∂c

∂x
− ∂

∂x

(
D

L

∂c

∂x

)
(44)

with conditions (9) in the unburned mixture is conventional. This solution determines m∗ = ρuUf∗,
which, as it follows from (37), coincides with M in undisturbed flames (i.e. the physical meaning of the
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value M introduced earlier is given by M = m∗). We use the subscript ”∗” to denote values related to an
undisturbed flame. Generally, M = m∗ is a characteristics of the flame but not a characteristics of the
reaction zone: the convective terms are neglected in the reaction zone. The reaction zone is characterized
by the mass consumption rate of the deficient reactant MA which, however, is easily determined from M
using MA = m∗CAu. The determined value of MA may be expressed as a function of the parameters
listed in equation (32): MA = FA (Tb, CBb, CPib). This function implies dependence on other parameters
(such as Nh) which are deemed to be constant and are not listed explicitly. Since the reaction zone of a
disturbed flame, to the order of present analysis, is not disturbed by the flow, the function FA(...) is the
same for both cases (disturbed and undisturbed) and can be used to determine the propagation speed of
the disturbed flame. It should be noted that MA/ (ρuCAu) is the propagation speed of the undisturbed
flame Uf∗ while the propagation speed of the disturbed flame Uf is, generally, different and determined
by equation (41).

The previously obtained results can be summarized in the following proposition

Proposition 1 If the mass consumption rate of the deficient reactant of an undisturbed and plane pre-
mixed flame with a multistep combustion process occurring in a thin reaction zone is known and expressed
as a function of values of the parameters in the burned mixture MA = FA (Tb, CBb, CPib) (and, may be,
some other parameters which are to be kept constant), then the propagation speed of the same flame dis-
turbed by an arbitrary unsteady flow of a larger scale can be determined and is given by equation (41)
with the arguments of the function FA specified by equations (38), (39) and Tb = Tb(hb).

The equations mentioned in the proposition involve the integrals φ(L) and φρ which are evaluated
in (42) and (43). The procedure specified in the proposition allows for a simple physical interpretation:
we consider both the disturbed flame and the undisturbed flame and, in order to provide similarity of
the reaction zones and the values of MA, we require that the values of the parameters in the burned
mixture of both flames should stay the same. One can view this as a replacement of the conditions in
the unburned mixture (9) of an undisturbed flame by the effective values

h◦u = hu + ε (∆h)1 +Nh (CAu − C◦Au) , C◦Bu = CBu + ε (∆CB)1 +NB (CAu − C◦Au)

C◦Piu = CPiu + ε (∆CPi)1 +NPi (CAu − C◦Au) , C◦Riu = 0 (45)

The values (∆...)1 are defined in (38) and (39). The values of C◦Au are taken the same as CAu or slightly
altered ((CAu − C◦Au) ∼ ε) to ensure positiveness of all concentrations in (45), although the reactant A
should still remain deficient. The effective conditions marked by the subscript ”◦” provide that, to the
order required in the present analysis, the conditions in the burned mixture and in the reaction zone
coincide with the corresponding conditions for disturbed flames with the unaltered conditions in the
unburned mixture and that the values MA are effectively equivalent for these two cases (although the
propagation speeds are different).

It should be noted that only the flame stretch Kf (but not the flame curvature Γf ) is present in the
equations utilized in Proposition 1. This conclusion is valid for any reaction mechanism provided the
reaction zone remains thin compared to the flame thickness. However, if the width of the reaction zone
is comparable to the flame thickness, both of the parameters Kf and Γf can be independently present in
the propagation speed equation even when the reaction mechanism is represented by a one-step reaction
(several examples illustrating this point are given in Klimenko, Class and O’Gorman (2002)). While in
the present work the reference flame location is conventionally defined as being within the thin reaction
zone, the case of wider reaction zones considered by Klimenko et al. (2002) requires accuracy in the
definition of the reference flame location.

In general, the substitutions specified in the proposition result in a quite cumbersome equation for
the propagation speed. For example, the assumption that the function FA(...) is a smooth and uniform
function of its arguments results in the following equation

mur = m∗ + εKf


(
∂FA
∂Tb

)
∗

(∆h)∗
CAu(cp)b∗m∗

[φ(LA)− φ(1)] +

+
∑
I

(
∂FA
∂CIb

)
∗

(∆CI)∗
CAum∗

[φ(LA)− φ(LI)]−
−
[
φ(LA) + φρ

]
+O(ε2) (46)
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where the sum is taken over I = B, P1, P2, ... and m∗ = m0. In this equation, we formally expand the
function FA(...) into a series in powers of ε and neglect the terms ∂/∂τ which appear to be out of order
when mur = m∗ +O(ε). Equation (46) is quite large and it is not very convenient for practical purposes
since it does not take into account specific properties of the consumption rate function FA(...). The
equation obtained by the method specified in the proposition may be simplified when specific assumptions
about the properties of the function FA(...) are applied.

5 The large Zeldovich number asymptotes

Since the reaction rate is high in the reaction zone and negligible in the rest of the flame, we can expect
that the rates of some of the reactions should be very sensitive to the value of the temperature (i.e. some
of the reactions should have a large activation temperature). Thus, we can expect that the dependence
of MA = FA(Tb, ...) on Tb is stronger than the dependence on the other parameters. Mathematically,
this can be expressed by introducing an effective Zeldovich number, Zf , defined by the dimensionless
expression

Zf ≡ 2zf (∆h)∗ , zf ≡
1
MA

∂MA
∂hb

=
1

(cp)bMA
∂MA
∂Tb

=
1

(cp)b

∂ ln (MA)
∂Tb

(47)

and assuming that Zf � 1. The value zf is a dimensional (∼ 1/h) characteristic response of the reaction
zone to a temperature change. The effective Zeldovich number, which involves (∆h)∗ in its definition,
is a dimensionless property not only of the reaction zone but also of the preheat zone. In this section
we effectively put MA = FA(Tb) (by assuming Zf � 1) while the remaining arguments of the consump-
tion rate function are deemed to be constant. For the one-step mechanism, the assumption of large
Zeldovich number is equivalent to the assumption of a thin reaction zone. For more complicated reaction
mechanisms, these assumptions may be related but, generally, are not identical.

If Zf and (cp)b can be assumed to be constant for a certain range of Tb, then, as determined by (47),
the variations of MA can be approximated by

MA = FA(Tb) = (MA)∗ exp
(
Zf
2

(cp)b∗ (Tb − Tb∗)
(∆h)∗

)
(48)

This exponential dependence can be formally obtained for one-step mechanism (which is considered in
Section 6.1) by expanding the argument of the exponent into the Taylor series. Peters (1997) demon-
strated that the exponential expression can be a good approximation for the propagation speed of some
flames with more complex kinetic mechanisms and introduced Zf in (48) as the apparent Zeldovich num-
ber. Approximation (48) is used below to obtain more conventional forms for the equations derived in
the present work.

5.1 The differential diffusion limit

Sivashinsky (1976) introduced the limit ε → 0, Zf → ∞ so that εZf ∼ 1 while the Lewis number
LA is bounded away from unity (LA − 1) ∼ 1. In this case the changes of M due to small (∼ ε)
changes of Tb are of order of unity while the rest of equation (41), whose order is O(ε), can be neglected
ρuUf = ρuUf0 = m0 = mur = FA(Tb)/CAu (note that m0 6= m∗ for this limit). We can inverse this
function and write

F−1
A (ρuUfCAu) = Tb∗ + ε

(∆h)∗
(cp)b∗m0

(
Kf +

d

dτ

)
[φ(LA)− φ(1)] =

= Tb∗ − D̃u
(∆h)∗

(cp)b∗ Uf

(
κf +

d

dt

)[
∆I(LA)
Uf

]
(49)

Here, we use hb defined by (38) and φ(L) defined by (42), assume that D̃u and ρu are constants and
introduce ∆I(LA) ≡ I(1) − I(LA). The adiabatic flame temperature is denoted by Tb∗. This equation
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generalizes Sivashinsky’s equation (Sivashinsky 1976) for various FA(Tb). Sivashinsky’s equation can be
obtained by substituting the exponential form of the function FA(Tb) specified by (48) into (49)

Uf = Uf∗ exp

(
−Zf

2
D̃u

Uf

(
κf +

d

dt

)[
∆I(LA)
Uf

])
=

= Uf∗ exp

(
−Zf

2
D̃u∆I(LA)

U2
f

(
κf +

d ln (∆I(LA)/Uf )
dt

))
(50)

Generally, equations obtained for the limit of Lewis numbers bounded away from unity represent non-
linear differential equations with respect to the disturbed flame speed Uf . The flame speed does not
assume fixed values for given conditions ahead of the flame, but it requires a finite time to adjust to
changing conditions.

5.2 The near-equidiffusion limit

In near equidiffusion flames the Lewis-number LA is close to unity. Matalon and Matkowsky (1982)
assumed that LA = 1 + λ/Zf where λ ∼ 1 and Zf → ∞. We estimate that (∆h)1 ∼ 1/Zf and
(M −m0) ∼ ε so that the change of propagation velocity is small and d/dτ term can be neglected (note
that, for this limit, the leading order approximations coincide with the corresponding undisturbed values:
m0 = m∗, Uf0 = Uf∗, h0 = h∗, etc.). Substituting the expansion

M = m∗ + ε
∂M

∂hb
(∆h)1 + ... = m∗(1 + ε

Zf
2

(∆h)1/ (∆h)0) + ...

(note the definition of the effective Zeldovich number in (47) and the following representation M =
FA(Tb(hb), ...)/CAu) into equation (41), while taking into account (38), (42) and (43), yields

Uf
Uf∗

=
mur

m∗
= 1 +

ε

m∗
Kf

[
λ

2
φ′(1)− φ(1)− φρ

]
= 1 + κf

D̃u

U2
f∗

[
(∆LA)

Zf
2
I ′(1)− I(1)− Iρ

]
(51)

where φ′ ≡ dφ/dL, I ′ ≡ dI/dL, and ∆LA ≡ LA − 1. This equation generalizes the Matalon and
Matkowsky equation (Matalon and Matkowsky 1982) for multi-step kinetics but differs from that equation
only by the definition of Zf . The equation of Matalon and Matkowsky is commonly used (even when
∆L is not so small) because of its relative simplicity. With the use of the Markstein number Ma, the
Karlovitz number Ka and the undisturbed flame thickness lf∗, equation (51) can be written as

Uf
Uf∗

= 1−Ma ·Ka, Ma ≡ Zf
2

∆LAI1 + I0, Ka ≡ lf∗
Uf∗

κf , lf∗ ≡
D̃u

Uf∗
(52)

where I1 ≡ −I ′(1), I0 = I(1) + Iρ. These integrals are evaluated in Appendix A.

6 Analytical evaluation of the effective Zeldovich number for
reduced kinetic mechanisms

In this section, the consumption rate function FA(...) and the effective Zeldovich number Zf are eval-
uated analytically for simplified chemical kinetics: 1) the one-step irreversible reaction mechanism, 2)
the two-step reaction mechanism which was introduced by Zeldovich (1948), and 3) three-step reduced
mechanism which was introduced by Peters and Williams (1987) for methane combustion. The first case
demonstrate consistency of the present approach with the approaches of Sivashinsky (1976) and Matalon
and Matkowsky (1982) who considered the one-step mechanism. For this mechanism, the effective Zel-
dovich number Zf is virtually identical to the conventional Zeldovich number Z which is defined using the
activation temperature of the reaction. In the second case, we demonstrate that the effective Zeldovich
number may be not linked to the activation temperature of any the reactions considered. The third
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case repeats the result of Rogg and Peters (1990) while illustrating the efficiency of our approach. The
equation for the effective Zeldovich number bears some similarity with the second case.

The analysis of this section is restricted to the reaction zone since this is sufficient to find FA(...)
and Zf . In the reaction zone, we consider only the leading order terms as specified by the asymptotic
equations in (28). For convenience, we replace the characteristic variable ξ of the reaction zone in equation
(28) by the physical coordinate x (unless a more specific analysis is required). Effectively, this analysis
is conducted for undisturbed planar flames resulting in finding FA(...) and Zf but not the propagation
speed of the disturbed flames. The propagation speed of the disturbed flames Uf can be easily determined
by substituting the found values of FA(...) and Zf into equations (46), (49) and (51) (which are valid
under different conditions) or, alternatively, FA(...) can be used to find Uf as specified in Proposition
1. In the rest of the present work, we often use the asterisk subscripts for some of the values (namely
Tb∗ and Uf∗) to emphasize that the analysis is conducted in Sections 6 and 7 for undisturbed flames and
it is sufficient to find FA(...) and Zf . When the flames are not disturbed by the fluid flow, there is no
difference between ”asterisked” and ”non-asterisked” variables Tb∗ = Tb, Uf∗ = Uf , etc. Note that, for
irreversible reactions considered in the present section, MA does not depend on burned concentrations of
products and (CPi)b can be excluded from the argument list of the function FA(...). In this section we
assume that cp = const.

6.1 The one-step mechanism

For a irreversible one-step Arrhenius reaction the equations within the reaction zone are given by

−Db
dT

dx
= NTW, −Db

LA

dCA
dx

= −W (53)

W = A (CB)β (CA)α exp
(
−Ta
T

)
= Ar (CB)β (CA)α exp (z (T − Tb∗)) + ... (54)

where z ≡ Ta/T
2
b∗ and NT ≡ Nh/cp = const. Conventional integration of equations (53) and (54)

(see Clavin (1985), Williams (1985) for details) indicates that CA = LA(Tb∗ − T )/NT and defines the
consumption rate function by

MA = FA(Tb∗, (CB)b∗) =

(
2 Gamma (α+ 1) ArDb

(
1

zNT

)α+1

Lα (CB)βb∗ exp
(
− Ta
Tb∗

))1/2

(55)

Assuming that Ar = A(Tb∗) ∼ (Tb∗)
αA and Db = D(Tb∗) ∼ (Tb∗)

αD we obtain that the effective
Zeldovich number

Zf ≡ 2(∆T )∗
d ln(M)
dTb∗

= Z + (αA + αD + 2α+ 2)
(∆T )∗
Tb∗

≈ Z (56)

is effectively equivalent to the conventional Zeldovich number Z which is defined by

Z ≡ Ta
T 2
b∗

(∆T )∗ = z(∆T )∗ =
Ta
T 2
b∗
NTCAu (57)

since Z ∼ 1/εr � 1 when the reaction zone is thin while the term in (56) involving (∆T )∗/Tb∗ is of
order of unity. Note that the leading order of equation (56) is not affected by the parameters α and β of
reaction rate equation (54). Obviously, equations (55) and (56) combined with equations (49) and (51)
are equivalent to the corresponding equations of Sivashinsky (1976) and Matalon and Matkowsky (1982).

6.2 The two-step Zeldovich-type mechanism

Zeldovich (1948) introduced a two-step reaction mechanism assuming that the first reaction has a very
high activation energy and no heat effect while the second reaction releases heat but its rate does not
depend on the temperature. The typical flame structure for this mechanism is shown in Figure 1. The rate
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of the first reaction is very intense only within the very thin activation zone whose characteristic thickness
is denoted by la. Linan (1971) and Seshadri and Peters (1983) considered a similar mechanism with the
first reaction causing some heat release which is comparable to the heat release of the second reaction.
This formulation requires a numerical integration. In the present example we follow the formulation
of Zeldovich (no heat release in the first reaction) which is sufficient for our purposes and allows for
analytical representation of the flame structure. The full analysis of the reaction zone is presented in the
Appendix B where we consider some minor generalizations of the Zeldovich mechanism for different types
of the reactions to determine the sensitivity of the effective Zeldovich number with respect to altering
the reaction parameters. We can rewrite equations (B16) and (B17), which determine the consumption
rate function, in the form

Tb∗ =
Ta

(α ln (∆Tr)− 2 ln (MA)− z1∆Tr +B1)
, ∆Tr = B2 (MA)

2
β+1 (58)

where B1 and B2 are constants whose exact definition in (B16) and (B17) is obvious but not given here
since Zf appears not to depend on these values. The meaning of the parameters α and β is given in
Appendix B. We use the function Tb∗ = Tb∗(MA) instead of MA = FA(Tb∗) as the most simple analytical
representation of the functional dependence of Tb∗ and MA for this case. Differentiation of equation (58)
indicates that

dTb∗
dMA

=
T 2
b∗
Ta

((
z1 −

α

∆Tr

)
d(∆Tr)
dMA

+
2
MA

)
,

d(∆Tr)
dMA

=
2

β + 1
∆Tr
MA

(59)

Considering the definition of the effective Zeldovich number by (47), we obtain

1
Zf
≡ 1

2
MA

(∆T )∗

∂Tb∗
∂MA

=
1

β + 1
∆Tr

(∆T )∗
+
(

1− α

β + 1

)
1
Z1
≈ 1
β + 1

∆Tr
(∆T )∗

(60)

Here we take into account that ∆Tr/ (∆T )∗ ∼ lr/lf (as it is illustrated in Figure 1) while 1/Z1 ∼ la/lf
according to equation (B5). Since la � lf , the second term can be neglected.

6.3 The three-step methane combustion mechanism of Peters and Williams

In this section we evaluate the effective Zeldovich number for the combustion mechanism suggested
by Peters and Williams (1987) for methane combustion. The mechanism involves three reactions: (i)
methane consumption in a very thin fuel consumption layer, (ii) CO oxidation and (iii) H2 oxidation in a
wider (but still thin) reaction zone. For this case, the undisturbed flame propagation speed is determined
by two equations (Rogg and Peters 1990)

T (x0) = FT (...), Uf∗ = B
Tu

T (x0)

(
Tb∗ − T (x0)
Tb∗ − Tu

)2

(61)

where x0 represents the location of the fuel consumption layer, FT and B are functions of various rate
constants. Exact specifications of FT and B (which are given in Rogg and Peters (1990) ) are not
needed here. We note only that these parameters do not depend on Tb∗. The first equation determines
the temperature in the fuel consumption layer T (x0), while the second equation uses T (x0) to specify
the undisturbed propagation speed. The second equation in (61) determines that the consumption rate
function for this case is

MA = B
Tu

T (x0)

(
Tb∗ − T (x0)
Tb∗ − Tu

)2

ρuCAu (62)

Differentiation of (62) yields

∂ ln(MA)
∂Tb∗

=
2

∆Tr
− 2

(∆T )∗
+
∂ ln(CAu)
∂Tb∗

=
2

∆Tr
− 1

(∆T )∗
(63)

where (∆T )∗ = Tb∗ − Tu and ∆Tr is defined by equation ∆Tr ≡ Tb∗ − T (x0) which is similar to the
corresponding ”two-step definition” of (B17). Here we consider variations of the burning rate MA and
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the adiabatic temperature Tb∗ induced by changing CAu while keeping Tu constant (alternative ways of
changing Tb∗ are discussed in the next section). The derivative ∂ ln(CAu)/∂Tb∗ = 1/ (∆T )∗ is determined
from the equation CAu = (Tb∗−Tu)/NT . The effective Zeldovich, which is defined by (47) and corresponds
to (63), is given by

Zf = 2(∆T )∗
d ln(M)
dTb∗

= 4
(∆T )∗
∆Tr

− 2 ≈ 4
(∆T )∗
∆Tr

(64)

Here, we take into account that the effective Zeldovich number is expected to be large Zf � 1 and neglect
the second term since (∆T )∗/∆Tr ∼ lf/la � 1. This equation is, effectively, identical to the equation
(116) of Rogg and Peters (1990) (if we rewrite that equation using notations of the present work) obtained
for planar methane flames. Without claiming any physical similarity of the two-step and three-step cases
for β = 3, we note that the value of Zf specified by (64) would be the same as Zf specified by (60)
when β = 3 in (B3). The essential common physical feature of the multistep reactions considered above
is that the their effective Zeldovich numbers are determined by various reaction rate constants and are
not linked to the dimensionless activation temperatures. This feature has been previously noted by Rogg
and Peters (1990).

7 Determining the effective Zeldovich number for realistic flames.

First, we summarize findings of the previous sections in the following proposition.

Proposition 2 The equation of Matalon and Matkowsky (1982) for propagation speed of a disturbed
near-equidiffusion premixed flame with a one-step reaction having a high activation temperature can be
used to calculate the propagation speed of a disturbed near-equidiffusion premixed flame with a multi-step
kinetic mechanism provided 1) the reaction zone is thin compared to the flame thickness, 2) the effective
Zeldovich number Zf is used instead of conventional Zeldovich number Z as specified by equation (51) and
3) the effective Zeldovich number is large. The effective Zeldovich number is defined by equation (47) and
can be found from the properties of undisturbed flames. Unlike the conventional Zeldovich number, the
effective Zeldovich number is not necessarily linked to the activation temperatures of any of the reaction
involved.

The definition of the effective Zeldovich number is based on the consumption rate of the deficient
reactant MA. This definition distinguishes rich, lean and stoichiometric (or near-stoichiometric) mixtures.
The case of stoichiometric mixtures is most difficult since, depending on conditions in the flow any of
the reactants may become deficient when the flame is disturbed. This problem was analyzed by Bechtold
and Matalon (1999) for a one-step mechanism and it is not specifically considered in the present work.
The effective Zeldovich number can be determined from data on the propagation speed of undisturbed
flames. Indeed, since MA = CAuρuUf∗, equation (47) can be written as

Zf = 2 (∆T )∗
∂ ln (MA)
∂Tb∗

= 2

(∆T )∗
∂ ln (CAu)
∂Tb∗︸ ︷︷ ︸

(I)

+ (∆T )∗
∂ ln (ρu)
∂Tb∗︸ ︷︷ ︸

(II)

+ (∆T )∗
∂ ln (Uf∗)
∂Tb∗︸ ︷︷ ︸

(III)

 (65)

In this section, we assume cp = const and put (∆T )∗ = (∆h)∗ /cp = Tb∗ − Tu where Tb∗ = Tb since the
flame is not disturbed by the flow. The contributions of the terms (I), (II) and (III) are to be assessed
now. The temperature of the burned mixture of an undisturbed flame Tb∗ = Tu+NTCAu can be changed
by a) altering the temperature of the unburned mixture Tu while keeping other parameters constant or
b) by changing the unburned concentrations of fuel and oxidizer present in the unburned mixture (that
is changing CAu and keeping Tu constant). The choice has an implication for relative significance of the
terms in equation (65). If Tu is altered while CAu is kept constant, term (I) is zero while term (II) can
be assessed as − (∆T )∗ ∂ ln(Tu)/∂Tb∗ ∼ (− (∆T )∗ /Tu), assuming that ρu ∼ 1/Tu. The order of term (II)
(can be as large as ten in real flames) is comparable to the order of term (III). If Tu is kept constant while
CAu is changed then term (II) is negligible while term (I) takes form (∆T )∗ /(CAuNT ) = 1. This value
may be neglected if Zf is very large. Method b) also requires that the burned values of the excess reactant
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and the products are kept constant. Since it seems that the concentration of the products should not
have a dramatic effect on the flame speed, we require that only CBb remains constant (i.e. the increments
of the unburned values of the reactants are linked by ∆CBu = |NB|∆CAu).

Abdel-Gayed, Bradley, Hamid and Lawes (1984) and Abdel-Gayed et al. (1984a) suggested a method
of finding the dimensionless activation temperature Za ≡ Ta/ (∆T )∗ using experimental data for the
propagation speed. In this method, the activation temperature Ta is determined by plotting the available
data for ln(Uf∗) versus 1/Tb∗ and defining Ta as the doubled negative slope of this curve. One may
notice that the dimensionless activation temperature Za is related to the effective Zeldovich number Zf
when Tb∗ � Tu. Indeed, if Ta = 2∂ ln(Uf∗)/∂(1/Tb∗) then Za ∼ Ta/Tb∗ = 2Tb∗∂ ln(Uf∗)/∂Tb∗ ∼ Zf .
The activation temperatures determined by Abdel-Gayed, Bradley, Hamid and Lawes (1984) and Abdel-
Gayed et al. (1984a) ) do not remain constant and appear to be larger for higher Tb∗. This indicates that,
for the realistic hydrogen, methane and propane reactions analyzed by Abdel-Gayed, Bradley, Hamid
and Lawes (1984) and Abdel-Gayed et al. (1984a), the values Za and Zf are not determined by the
activation energy of any single reaction. We determine the value of the effective Zeldovich number from
experimental data presented by Abdel-Gayed, Bradley, Hamid and Lawes (1984) and Abdel-Gayed et al.
(1984a) without using the concept of the activation temperature. The data do not indicate any significant
difference between lean and rich mixtures. First, we approximate the dependence of ln(Uf∗) on Tb∗ by
the second order polynomial a0 + a1Tb∗ + a2T

2
b∗ whose coefficients are adjusted to give the best fit to

the propagation speed data as shown in Figure 2. It appears that the quadratic term is insignificant for
hydrogen and methane flames. The value of the Zeldovich number is then determined as specified by
equation (65). Since Tu = 328K was kept constant in the experiments of Abdel-Gayed, Bradley, Hamid
and Lawes (1984) and Abdel-Gayed et al. (1984a) the term (II) of equation (65) is zero. The determined
values of the effective Zeldovich number Zf are plotted in Figure 3. We note that Zf is larger for higher
Tb∗ for hydrogen, methane and propane flames considered in the present work. The value of the Zeldovich
number Z defined for the one-step mechanism by equation (57) demonstrates the opposite tendency: Z
is smaller for higher Tb∗.

The value of the Markstein number defined by equation (52) is shown in Figure 4. The Lewis numbers
are assumed constant and taken L = 0.3 for hydrogen, L = 0.98 for methane, L = 1.8 for propane
and L = 1.05 for oxygen. For rich flames, when oxygen is deficient, all of the curves (some of them
are not shown) are very close to the dashed line which corresponds to the equidiffusion case (L =
1). Therefore the Markstein number Ma for lean methane flames is very close to the corresponding
equidiffusion value. The values of Ma for lean propane flames are much larger than for methane. When
the flame is essentially stable (lean methane and propane flames and rich hydrogen flames) the determined
values can be compared with the characteristic experimental values for Ma. The minimal values of
Markstein number (Ma ≈ 2.8 for methane and Ma ≈ 4.2 for propane) are consistent with the lean
asymptotes of these values (Ma ≈ 2.7 for methane and Ma ≈ 4.4 for propane) reviewed by Clavin (1985)
and determined from experimental data of Quinard, Searby and Boyer (1984) and Searby and Quinard
(1990). For rich hydrogen flames, the value Ma ≈ 5.7 determined from experiments is noticeably higher
than the predicted Ma. The assumption of a thin reaction zone should not work well for the hydrogen
flames since, as it has been noted by Dixon-Lewis (1979), in hydrogen flames the reaction zone can be
wider than the preheat zone.

8 Conclusions

In the present work, we consider the propagation speed of premixed flames with a multi-step reaction
mechanism disturbed and curved by an arbitrary and unsteady fluid flow. The reaction zone is assumed
to be thin compared to the flame thickness and the flame thickness is assumed to be small compared to
the characteristic length scale of the fluid flow. The combustion process involves two reactants (fuel and
oxidizer), one or several final products which are present in the burned mixture and several intermediate
products (such as radicals) which are present only within the flame. It is also expected that the deficient
reactant (denoted by A) does not appear in the products. The major results are now summarized.

1) It is shown that if the propagation speed of an undisturbed flame is known (and specified by the
function MA = FA(...) determining the mass consumption rate of the deficient reactant) for varying
conditions in the burned mixture, then the propagation speed of the disturbed flame can be determined
as specified in Proposition 1.The propagation speed of premixed flames with complex chemistry depends
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on the flame stretch but, provided the reaction zone is thin compared to the flame thickness, not on
the flame curvature (as an independent parameter). The general method can be simplified when specific
properties of the function FA(...) are taken into account.

2) In a practically important case, when the propagation speed of undisturbed flame is most sensitive
to the changes of temperature in the burned mixture Tb, the effective Zeldovich number Zf introduced by
equation (47) is expected to be large. Depending on the values of the Lewis number, we distinguish two
characteristic limits: the differential diffusion limit which is similar to the limit introduced by Sivashinsky
(1976) for one-step mechanisms and the near-equidiffusion limit which is similar to the limit introduced
by Matalon and Matkowsky (1982). The near-equidiffusion limit is most often used in applications due
to the relatively simple structure of the final equation.

3) The near-equidiffusion equation (51), which was introduced by Matalon and Matkowsky (1982) for
the propagation speed of the flames with a one-step reaction mechanism, is shown to be valid for multi-
step reaction mechanisms provided the conventional Zeldovich number Z is replaced by the effective
Zeldovich number Zf (Proposition 2). Information about the propagation speed of undisturbed flames is
sufficient to determine the effective Zeldovich number.

4) The effective Zeldovich number is analytically determined for three reaction mechanisms: the one-
step irreversible reaction, the two-step mechanism introduced by Zeldovich (1948) and the three-step
methane combustion mechanism of Peters and Williams (1987). In the first case, as one can expect, the
effective Zeldovich number is almost identical to the conventional Zeldovich number which is linked to
the activation temperature (or energy) of the reaction. The second and third examples demonstrate that,
under certain conditions, the effective Zeldovich number may be not linked to activation energy of any
reaction. The result obtained here for the third example are effectively identical to the results of Rogg
and Peters (1990) who considered methane planar flame near a stagnation point and also noted that the
conventional Zeldovich number is replaced by a certain combination of reaction constants.

5) The values of the effective Zeldovich number Zf and the Markstein number Ma are determined for
hydrogen, methane and propane flames from the experimental data presented by Abdel-Gayed, Bradley,
Hamid and Lawes (1984) and Abdel-Gayed et al. (1984a) for the propagation speed of undisturbed
premixed flames. The Markstein numbers Ma for lean propane/air and lean methane/air flames are
consistent with the experimental data of Quinard et al. (1984) and Searby and Quinard (1990) while the
values of Ma for rich hydrogen flames are somewhat underestimated in the present analysis.
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APPENDICES

A Equation summary and evaluation of integrals for the near-
equidiffusion limit.

In Appendix A, we offer the summary of the equations and the analytical evaluation of the integrals for
the near-equidiffusion case with cp = const and constant Lewis numbers. These equations are commonly
used in applications due to their relative simplicity

Uf
Uf∗

= 1−Ma ·Ka (A1)

Ma ≡ Zf
2

∆LAI1 + I0, Ka ≡ lf∗
Uf∗

κf , Zf ≡ 2 (∆T )∗
∂ ln (Uf∗ρuCAu)

∂Tb∗
(A2)

(∆T )∗ ≡ Tb∗ − Tu, lf∗ ≡
D̃u

Uf∗
=
Du

m∗
, ∆LA ≡ LA − 1, D ≡ D̃ρ, (̂...) ≡ (...)

(...)u
(A3)

I1 ≡
∫ Tb∗

Tu

ρ̂(T )D̂(T ) ln
(

(∆T )∗
T − Tu

)
dT

(∆T )∗
, I0 ≡

∫ Tb∗

Tu

D̂(T )
(
ρ̂(T )

(∆T )∗
+

1− ρ̂(T )
T − Tu

)
dT (A4)

The flame stretch κf involves two components: 1)stretch due to divergence of the fluid velocity on the
flame surface and 2)the flame curvature. Although equation (A1) determines the propagation speed of
disturbed and curved premixed flames, the involved parameters (such as the effective Zeldovich number
Zf ) are linked to the structure of corresponding undisturbed and planar flames as indicated by the
subscript ”∗”. Assuming ρ̂(T ) = Tu/T and D̂(T ) = (T/Tu)α we note that the theoretical value for α
is α = 0.5 while experimental values lay usually in the range α ∈ [0.6, 0.7] (note that D = D̃ρ is the
”dynamic” diffusion coefficient and that the Mach number is assumed to be small). Integration of I0
gives

I0 =
1
α

r2α − 1
1− 1/r2

, r ≡
(
Tb∗
Tu

)1/2

(A5)

Generally, the integral I1 can not always be represented by an analytical expressions. If α = 1 then
I1 = 1. If α = 1/2 then I1 also can be integrated

I1 =
2

r2 − 1

(
2r + ln

(
r − 1
r + 1

)
− ln

(
r2 − 1

)
− 2 + 2 ln(2)

)
, α =

1
2

(A6)

where r is defined in (A5). Linear interpolation of I1 between α = 1/2 and α = 1 can be recommended
for a simple approximate evaluation of this integral.

B Analysis of the reaction zone for the two-step Zeldovich-type
reaction mechanism

We consider the two-step reaction mechanism which is governed by equations

−Db
∂2CA
∂x2

= −W1, −Db
∂2CR
∂x2

= NR (W1 −W2) , −Db
∂2T

∂x2
= NTW2 (B1)

W1 = A1 (CR)α CA exp
(
−Ta1

T

)
= A1 (CR)α CA exp

(
−Ta1

Tb∗

)
exp (z1 (T − Tb∗)) + ... (B2)
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W2 = A2 (CR)β (B3)

where

z1 ≡
Z1

(∆T )∗
=
Ta1

T 2
b∗

(B4)

is used in the conventional expansion of the exponential term within the reaction zone. A is the deficient
reactant, R is an intermediate product (likely a radical) and Z1 is the conventional Zeldovich number
of the first reaction. Since W2 does not depend on T , the activation energy and Zeldovich number of
the second reaction are zeros: Ta2 = 0 and Z2 = 0. The deficient reactant is consumed in the first,
chain-branching step which generates the intermediate product. The rate of this reaction is W1 and its
heat effect is negligible. The second step whose rate is given by W2 converts the intermediate product
into the final products and releases heat. If the parameters of the reactions are selected so that α = 1
and β = 2, then equations (B1)-(B3) represent the two-step Zeldovich mechanism whose first and second
reactions are given by 1) A+R → R+R and 2) R+R → P+ heat. Since W2 does not depend on T ,
the activation energy and Zeldovich number of the second reaction are zeros Ta2 = 0 and Z2 = 0.

Here, we follow, to a large extend, the analysis of Seshadri and Peters (1983), who considered the
behavior of the flame with Zeldovich two-step mechanism (α = 1 and β = 2) in a stagnation point flow.
We assume that the Zeldovich number of the first reaction is sufficiently large so that the consumption
of the reactant A occurs in the activation zone which is thinner than the reaction zone:

la ∼
lf
Z1
� lr (B5)

The heat is released by the second reaction within the reaction zone whose characteristic thickness is lr.
Unlike in the original Zeldovich’s (Zeldovich (1948) ) formulation of the mechanism, Seshadri and Peters
(1983) investigate the case when the heating value of the first reaction is not negligible and this requires
numerical evaluation of the solution within the activation zone. The formulation of Zeldovich (1948) ,
generalized for arbitrary values of parameters α and β, is sufficient for our purposes. The flame structure
is shown in Fig.1. The rate of the first reaction W1 is essential only within the activation zone. If the
second reaction is very fast, then the radicals are immediately converted into products, CR is small and
W1 ≈ W2. This case is effectively equivalent to the conventional one-step mechanism and it is not of
interest in this section. In the present work we consider the case when the rate W2 is sufficiently slow to
provide essential concentration of CR and, at the same time, sufficiently fast to ensure that lr � lf .

B.1 The activation zone

The activation zone is analyzed first. Within the activation zone, the temperature and the concentration
of R is represented by the expansions T − Tb∗ = θ∗ + θ1x+ ... and CR = CR(x0) + ... where x0 specifies
the x-location of the activation zone and is close to zero. Indeed, the heat release and consumption of
R occurs in the reaction zone so that T = T (ξ) and CR = CR(ξ) where ξ is the characteristic variable
of the reaction zone ξ = (x− x0) /εr. Since la � lr, the characteristic variable of the activation zone is
ξ̃ = ξ/εa where εa ≡ la/lr is a small parameter. The functions T (εaξ̃) and CR(εaξ̃) are expanded into
the Taylor series T = T (x0) + εaT

′(x0)ξ̃+ ... and CR = CR(x0) + ... We have to retain more terms in the
temperature series (which can be written in the form T − Tb∗ = θ0 + θ1x+ ... when ξ̃ is replaced by the
physical coordinate x) since T is multiplied by a large value, z1, in the exponential term of (B2). The
coefficients θ0 and θ1 are not known and are to be determined by matching with the heat release zone.
The first reaction begins when the temperature becomes sufficiently high and terminates when CA → 0.
The leading order representation of the CA transport equation (B1) is given by

−Db

LA

d2CA
dx2

= −A∗1CA exp (z1θ0 + z1θ1x) , A∗1 ≡ A1 (CR(x0))α exp
(
−Ta1

Tb∗

)
(B6)

The solution of (B6), which satisfies CA → 0 as x→∞, is given by

CA(x) = MA
2LA
z1θ1Db

BesselK0

(
2

z1θ1

(
A∗1LA
Db

)1/2

exp
(
z1θ0

2
+
z1θ1

2
x

))
(B7)
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The main characteristics of this solution are given by the integrals

MA ≡
∫ +∞

−∞
W1dx = −Db

LA
lim

x→−∞

(
dCA
dx

)
(B8)

x0 ≡
1
MA

∫ +∞

−∞
xW1dx =

Db

MALA
lim

x→−∞

(
CA − x

dCA
dx

)
=

1
z1θ1

(
ln
(
z2

1θ
2
1Db

A∗1LA

)
− γ0

)
− θ0

θ1
(B9)

where γ0 ≡ 2γ and γ ≈ 0.577 is the Euler constant. Finally, we use equation (B9) and evaluate the
leading order of T and T ′ ≡ dT/dx at x = x0

T (x0)− Tb∗ = θ0 + θ1x0 =
1
z1

(
ln
(
z2

1θ
2
1Db

A∗1LA

)
− γ0

)
, T ′(x0) = θ1 (B10)

B.2 The reaction zone

The reaction zone (or the heat release zone) is now considered. Within the heat release zone, the radicals
which are produced in the activation zone diffuse upstream and downstream while they are converted
into products and heat. The source of the radicals R is located somewhere near x = 0 and can be treated
as the delta-function since la � lr. A more precise location of the source of R, which increases accuracy
of matching, is x0 determined by (B9). The leading order equations are given by

−Db

LR

d2CR
dx2

=
(
MAδ(x− x0)− (CR)β A2

)
NR, −Db

d2T

dx2
= (CR)β A2NT (B11)

The boundary conditions for these equations are given by CR → 0 as x→ ±∞ and T → Tb∗ as x→∞.
Integration of (B11) for x > x0 yields

Db

2LR

(
dCR
dx

)2

=
A2NR
β + 1

(CR)β+1 and T = Tb∗ −
NT

NRLR
CR for x > x0

The delta-function term in (B11) determines the value of the derivative of CR at x = x0 (note that CR
is symmetric with respect to the point x = x0) so that(

dCR
dx

)
x=x0

=
LR
2Db

MANR, CR(x0) =
(
β + 1

8
LR
DbA2

M2
ANR

) 1
β+1

(B12)

T ′(x0) =
(
dT

dx

)
x=x0

=
MANT

2Db
, Tb∗ − T (x0) =

NT
LRNR

(
β + 1

8
LR
DbA2

M2
ANR

) 1
β+1

(B13)

B.3 Asymptotic matching

Matching of T ′(x0) and T (x0) specified by equations (B10) and (B13) yields

MANT
2Db

= θ1 (B14)

1
z1

(
ln
(
A∗1LA

z2
1θ

2
1Db

)
+ γ0

)
= − 1

z1

Ta1

Tb∗
+

1
z1

(
ln
(
A1 (CR(x0))α LA

z2
1θ

2
1Db

)
+ γ0

)
(B15)

Equations (B14, B13, B12, B4, and B15) define the functional dependence Tb∗ = Tb∗(MA,∆Tr(MA)) by
the formulae

Tb∗ =
Ta

ln
(

4DbA1(LRNR∆Tr)αLA
z21M

2
AN

2−α
T

)
− z1∆Tr + γ0

(B16)

∆Tr ≡ Tb∗ − T (x0) =
NT

LRNR

(
β + 1

8
LR
DbA2

M2
ANR

) 1
β+1

(B17)

which implicitly determine MA as a function of Tb∗. The physical meaning of the temperature increment
∆Tr ≡ Tb∗ − T (x0) is demonstrated in Figure 1.
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FIGURE CAPTURES

Figure 1. Schematic of the flame structure for the Zeldovich two-step reaction mechanism

Figure 2. The propagation speed of undisturbed premixed flames versus the temperature of the burned
mixture. The data are taken from Abdel-Gayed, Bradley, Hamid and Lawes (1984) and Abdel-Gayed
et al. (1984a) . Small symbols correspond to experimental points while the large symbols mark the ends
of the approximating curves. Solid line - the fit by a second order polynomial.

Figure 3. The values of the effective Zeldovich number Zf versus temperature of the burned mixture.
The approximations Uf∗(Tb∗) and notations are taken from Figure 2.

Figure 4. The value of the Markstein number calculated for lean flames (solid lines) and rich flames
(dashed line). The dash-dotted line shows the value of Ma for equidiffusion case (L = 1).
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