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Abstract

In the present study, propagation of a gasification flame through a coal channel
is considered. A simplified physical model, which nevertheless incorporates all
main physical factors determining the flame front propagation in a gasification
reactor, is suggested. As demonstrated, the flame propagation is governed by
energy balance in the channel. The suggested model is in an agreement with
experimental observations obtained in underground gasification of coal (UCG).
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1. Introduction

Flame front propagation, which is an important issue in many technological
problem in power generation, petrochemical and others industries, has received
substantial attention over the years (see, for example, Refs. [1–7]). As pointed
out by Chernyshev [8] and Skafa [9], the position and propagation of flames in
the gasification channel are of great importance for sustainable operations in
underground coal gasification (UCG). Correct positioning of the flame between
the injection and production wells is a significant factor affecting success of
operations during the link enhancement and main gasification stages. Here, we
introduce a theory that takes into account the energy balance in a gasification
channel and explains dependence of the flame speed on the air injection rate,
which represents the primary control parameter, and other parameters of the
flow. This paper focuses on the physics of the phenomenon, while specific UCG
operational procedures remain outside the scope of this work.

The complexity of the problem of premixed flame propagation in turbulent
flows is well known [4]. The majority of the previous studies on the flame
front propagation concentrated on homogeneous reactions in premixed mixtures
either in laminar [6] or turbulent [5] flows. The channel walls were considered
to be made of inert materials and were assumed to be adiabatic [3], or the
outer surface of the wall was assumed to be maintained at the constant ambient
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temperature [1–3]. In the latter case, the influence of the heat losses to the
channel walls on the flame propagation was investigated. Previous studies were
also concentrated on the cases, in which the conduction of heat through the gas
phase is one of the major mechanisms of heat transfer in the axial direction of
the channel.

In contrast to the previous studies, we consider propagation of the flame
front in the context of gasification of coal in a channel which, in UCG con-
ditions, is characterized by high velocities of the gas flow. In this case, the
conduction of heat through the gas flow in the axial direction of the channel is
negligibly small compared to other heat transfer mechanisms, such as radiation,
gas convection and conduction through the channel walls. Another distinction
of the gasification flame from the previously studied cases, where the channel
walls are considered to be non-reactive and non-catalatic, is the importance of
heterogeneous reactions between gas and the channel walls (coal).

Various aspects of coal gasification technologies and UCG in particular (see,
for example, Refs. [10–19]) have been repeatedly studied over the years. CFD
modelling of reacting flows is used in majority of these studies. Principal de-
scription and analysis of the propagation of the gasification flame is given by
Skafa [9]. However, no analytical results governing position and propagation of
the gasification flame can be found in the literature. In this paper we suggest a
physical approach, which explains the main features of the flame behavior in a
channel based on first principles and offers an approximate analytical expression
for the flame speed. To develop this physical model, we make certain simpli-
fying assumptions, which allow for an analytical characterization but retain
physical effects that are of primary importance to the phenomenon in question.
The model predictions are in good qualitative agreement with the experimental
evidence from practical UCG operations [8, 9].

2. Heat transfer in the radial direction

The strategy of this work is in simplifying the problem as much as it possi-
ble, while retaining major physical factors for consideration. The solutions are
then generalized to take into account additional factors that may be of prime
importance under certain conditions. Whenever possible, we wish to obtain a
steady or quasi-steady solution for the problem. This preference is understand-
able since the flame front evolves slowly compared to the velocities present in
the air flow.

We consider an infinitely long channel through the block of a combustible
material.Initially, the material is at the ambient temperature. After some time
from the initiation of combustion, a layer of some thickness surrounding the
part of the channel with product gas will be heated up to the temperature
of the gas. The thickness of such a layer increases in time. The rate of this
increase, however, rapidly declines. To model this, we assume an existence of
the adiabatic wall over a layer of coal of thickness δ surrounding the channel.

This assumption is even more justifiable in the case of UCG, where the
gasification channel is, usually, below the water table. To prevent contamina-

2



tion of local aquifer by product gas, the operational pressure in the channel is
maintained below the hydrostatic pressure in environmentally responsible UCG
operations [20, 21]. This pressure difference produces influx of ground water
into the channel and prevents product gas from leaving the reactor. Apart from
preventing aquifer contamination, the water influx also prevent enthalpy losses
to the surroundings. The enthalpy conducted and irradiated from the reactor
is used for heating and evaporating incoming water and for heating the incom-
ing steam up to the reactor temperature. As a result, the reactor is covered
by a layer of steam, which is called, according to terminology introduced by
Blinderman et al. [20, 21], the “steam jacket”. The enthalpy lost in conduction
and radiation returns to the reactor in a form of sensible enthalpy of the incom-
ing steam. The issue of stability of the steam jacket is analyzed in Ref. [22].
For the purposes of this paper, however, we neglect the incoming water as an
independent phase and treat it as contained in coal, while considering the ther-
modynamic balance.

3. Radiation in a Cavity

Including the effect of radiation when analyzing transport phenomena in a
cavity presents challenges unless a diffusion approximation can be used so that
radiation can be evaluated utilizing the same differential equations as in the
analysis of transport by convection and diffusion.

The diffusion approximation for radiation can be justified by considering
that the gasification flame has a significant extent along the channel. Here,
the channel is treated as an infinite cylinder having radius R extending from
x = 0 to x = +∞ in one direction and to x = −∞ in the other direction.
The location x = 0 is selected for simplicity and, of course, can represent any
physical location along the cylinder. The cylinder surface temperature T (x) is
allowed to vary (gradually) with x and the cylinder is filled with a transparent
medium.

The heat flowing down the tube from x > 0 is given by

q(+) = 2πRσ

∫ +∞

0

Fd1−0

(
x

DR

)
T 4(x)dx . (1)

Where Fd1−0 is the radiation view factor from a differential ring d1 on a cylinder
to the cylinder’s base at x = 0 given by [23, 24]

Fd1−0(X) =
X2 + 1/2√

1 + X2
− X , (2)

where X = x/DR, DR = 2R is the channel diameter, the differential ring is of
area dS = 2πRdx and located at a distance x from the base of the cylinder of
radius, R, and base area is given by S0 = πR2. Similarly, the radiant flux from
the section of the tube x < 0 is given by

q(−) = 2πRσ

∫ −∞

0

Fd1−0

(
x

DR

)
T 4(x)dx . (3)
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We note that the view factors Fd1−0 in Eqs. (1) and (3) are the same due to
symmetry of the cylinder. Where surface 1 is the differential tube wall located
at x = x1. Surface 0 is the circular disc at x = 0. The overall radiant heat flux
is given by the difference

qrad = q(+) − q(−) . (4)

If we expand the forth power of temperature as a Taylor series

T (x)4 =
(
T 4

)
x=0

+ 4
(
T 3

)
x=0

(
dT

dx

)
x=0

x + ... (5)

the integral takes the form

qrad = 64πR3σT 3 dT

dx

∞∫
0

XFd1−0(X)dX =
32
3

πR3σT 3 dT

dx
. (6)

In this equation, the integral is evaluated as 1/6. This integral does not converge
extremely fast so the analysis is restricted to a long cylinder with small radius.
For example, at X = 15 the value of the integral is 95% of its value (1/6) at
X = ∞ and it reaches 99% of the value at infinity when X = 50. It is about
90% of 1/6 at X = 7. In this work, we use this equation for estimates of the
effective conductivity coefficient and this accuracy is sufficient. It should be
also noted that linear approximation used here for the temperature would tend
to overpredict qrad when temperature disturbances are rapid Δx < DR = 2R
where Δx is the length of the disturbance. For example, if we consider a small
increment of temperature ΔT that is stretched over small distance Δx, the
radiative flux would tend to a finite value

qrad = 32πR2σT 3ΔT

∞∫
0

Fd1−0(X)dX = 8πR2σT 3ΔT (7)

as Δx → 0. The approximation of the flux in Eq. (6) is given by qrad =
32
3 πR3σT 3(ΔT/Δx) → ∞ as Δx → 0. Comparing these equations indicates
that overestimation of qrad occurs for Δx < 4

3R = 2
3DR.

The final equation for the heat flux per area takes the form

ḣ = −λrad
dT

dx
, (8)

where
λrad =

16
3

σDRT 3 , (9)

is the effective the radiative conductivity (W/m-K), ḣ is the heat flux (per unit
area), σ = 5.67E-8 W·m−2·K−4 is the Stefan-Botzmann constant, DR = 2R is
the cavity diameter and T is the absolute temperature of the cavity wall. This
equation can also be approximately applied to an irregular fracture of width
DR.
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4. Model description

4.1. Governing equations
Transport and reactions in a channel are governed by the equations of con-

servation of mass
∂ρ

∂t
+ ∇·(ρv) = 0, (10)

species
∂ρi

∂t
+ ∇·(ρivi) = Wi (11)

and energy
∂ρh

∂t
+ ∇·(ρvh) − ∇· (λ∇(T )) = 0 . (12)

Here, vi, ρi and Wi are the velocity, density (mass per volume) and the chemical
reaction source term of the i’th component, respectively. The subscript index
“i” runs over all species of interest. The overall density is denoted by ρ, so
that the mass fraction Yi of the i’th component is given by Yi = ρi/ρ and v is
the overall velocity in the selected frame of reference. The diffusion coefficient,
which includes both the heat conduction term λcond and the radiation term λrad

given by Eq. (9), is denoted by λ = λcond + λrad. Under practical conditions,
the radiative term completely dominates the conductive term. The temporal
pressure derivative ∂p/∂t is conventionally neglected in the energy equation.

Now consider a flame propagating in a cylindrical channel and use the frame
of reference attached to the moving flame so that x-axis is normal to the flame
front with the positive direction coincides with that of gas stream. The y and
z axes are parallel to the flame front. We assume that there are no fluxes and
heat losses in the radial direction (see Section 2). We also assume the existence
of steady state solution. Integrating Eqs. (10-12) over (y − z)-plane within the
limits of control volume R ≤ Rcv one obtains

∂m

∂x
= 0 , (13)

∂mi

∂x
= Wi , (14)

∂mh

∂x
− ∂

∂x

(
λ

∂T

∂x

)
= 0 , (15)

Here m ≡ ρv and mi ≡ ρivi are mass flow rates, where v is the x-component
of the velocity vector v. Over-bars denote integration over the (y − z)-plane
within the control volume:

(·) =
∫

C.V.
x=const

(·) dydz (16)
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Variations of the the temperature in the radial direction is neglected as well as
radial variations of the other parameters within a selected phase (gas or solid).
That is,

λ
∂T

∂x
= λ̄

∂T

∂x
,

(
mh

)
i
= m̄ihi, (17)

etc, assuming that each of species “i” is present only in a single phase. With
the use of sensible enthalpies h(s), Eq. (15) takes the form

∂mh(s)

∂x
− ∂

∂x

(
λ̄

∂T

∂x

)
= W̄h (18)

where W̄h is the heat source which is determined in the following sections.

4.2. Reaction kinetics
The reaction mechanism in the oxidation zone is complex and includes both

heterogeneous (gas-solid interface) and homogeneous (gas phase) reactions. It
may also include phase transitions (evaporation of water or coal volatile matter,
for example). This mechanism, however, can be represented as the following
generalized reaction

μ−
g (Gas)− + μ−

s (Solid)− → μ+
g (Gas)+ + μ+

s (Solid)+ . (19)

In terms of species the above reaction takes the form
∑

i

μ−
i (Species)i →

∑
i

μ+
i (Species)i . (20)

Here and later in the paper the superscripts “−” and “+” denote values before
and after the reaction, respectively. The stoichiometric coefficients μi are on the
mass basis and μ+

i − μ−
i represents the mass change of ith component. In the

rest of the paper we put μ−
g = 1 without loss of generality. The global reaction

is presumed to be specified so that the product coefficients depend on μ−
s so

that μ±
i = μ±

i (μ−
s ) for any component “i” (or phase “i”). All of the reactions

are presumed to form a global reaction that has a single rate so that we can
write for any i and j

W̄i

μ+
i − μ−

i

=
W̄j

μ+
j − μ−

j

. (21)

The rate of oxygen consumption W̄O2 in the reaction (19) is given by the
equation

W̄O2 = −ρO2
ĀK(T ) . (22)

Here, ρO2
is density of oxygen, K(T ) is a function of temperature and Ā is the

reaction pre-exponential factor. The consumption of oxygen from the injected
gas (air) mainly occurs on the channel walls. There are two major factors lim-
iting the consumption of oxygen: the combined rate of heterogeneous reactions,
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which exponentially depends on temperature, and the diffusive flux of oxygen
to the channel walls. To account for these factors, we assume that

1
K(T )

=
1

Kr(T )
+

1
Kd

, (23)

where Kd is a constant, while Kr(T ) is given by

Kr(T ) = exp (−TE/T ) . (24)

Here, TE is the activation temperature.
In Eq. (23), the constant Kd describes the the transport-limited regime and

the function Kr(T ) is related to the reaction-limited regime. For temperatures
lower than Td, which is given by Td = −TE/ ln(Kd), the rate is reaction-limited
and K ≈ Kr. For the temperatures higher than Td, the rate is transport-limited
and K ≈ Kd = exp (−TE/Td). Note that all kinetic parameters introduced here
are effective parameters that are conventionally used to approximate the average
reaction rate.

4.3. Integrals across the flame
There are two possible regimes of combustion: reverse combustion and for-

ward combustion (see, for example, Ref [25] for more details). In the former
case, the combustion temperature equals to the adiabatic temperature for a
given fuel/air ration. In the latter case, the combustion temperature exceeds
the adiabatic one. This superadiabatic effect occurs due to the fact that either
oxidant or fuel enters the reaction zone at elevated temperature. In the case of
forward combustion the travelling heat wave can generally have either reaction
leading or reaction trailing structure. As discussed in Ref [25], however, the
case of forward combustion with the reaction leading structure is not possible
in practical UCG conditions. For this reason, we exclude the reaction leading
structure from our consideration. We also exclude the fuel deficient branch of
the reaction trailing structure, since oxidant and coal can not coexist at high
temperature and coal is always present in the channel.

Integration of Eqs. (13-15) across the flame yields

m̄u = m̄b (25)

m̄i,b = m̄i,u + Qi, (26)

(m̄h)b = (m̄h)u (27)

Here, the subscript “u” (unburned) is used to denote values upstream from the
flame front, while the subscript “b” (burned) denotes values downstream from
the flame front as depicted in Fig. 1.

In Eq. (26), Qi are given by

Qi ≡
∫ b

u

W̄idx =
∫ +∞

−∞
W̄idx (28)
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Figure 1: Schematic view of the gasification channel.

The analysis of the enthalpy equation (15) can be performed similar to that
in Ref. [26] by representing the total enthalpy hi of any component “i” as a sum
of sensible enthalpy h

(s)
i and the enthalpy of formation h

(f)
i (see Ref. [26] for

more details). The overall heat released in the reactions is

Qh ≡
∫ +∞

−∞
W̄hdx = m̄g,uH(μ−

s ) . (29)

Here, W̄h = θW̄O2 is the enthalpy source and m̄g,u is the mass flow rate of
unburned gas. The enthalpy of the reaction H(μ−

s ) is given by

H(μ−
s ) ≡

∑
i

(
μ−

i − μ+
i

)
h

(f)
i (30)

and

θ ≡ H(μ−
s )

μ−
O2

− μ+
O2

. (31)

4.4. The released heat
We conventionally use the traditional Zeldovich high activation energy asymp-

totics [27] to approximate the overall heat release. These equations were mod-
ified slightly to account for reduced influence of upstream diffusion of oxygen
in gasification conditions — the details are given in Ref. [26], while the math-
ematical approach used in this work is presented in Refs. [7, 28]. Two usual
zones are distinguished in the flame: the preheat zone, where reactions are not
intense, and the reaction zone, where reactions are most intense. Note that in
a gasification flame these zones are followed by the reduction zone, which has
a lesser effect on the flame speed. The equations for the heat release in the
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reaction zone are written as [26]

Qh(Tb, ...) =
(

λ̄
∂T

∂x

)
(−r)

=
√

(ρO2)0 Āθλ̄rΦ(Tb) (32)

where the subscript “−r” denotes a value just upstream the reaction zone (i.e.
between the reaction zone and preheat zone), λ̄r is the value of λ̄ in the reaction
zone, (ρO2)0 is the initial mass concentration of oxygen and Φ(Tb) is given by

Φ(Tb) =
∫ Tb

−∞
K(T )dT =

Kd

Z
ln

(
1 +

Kr(Tb)
Kd

)
, (33)

In Eq. (33), Ā, K(T ), Kr and Kd have the same meaning as in Eqs. (22) and
(23), Z ≡ TE/Tb

2.

4.5. The velocity of the flame front
Let u be the absolute velocity of gas and s be the flame front velocity in a

stationary system of coordinates (see Fig. 1). The velocity of gas vg and solid
vs phases in the moving frame of reference (attached to the flame front) is given
by

vg = u − s , vs = −s . (34)

Note that the value of s is positive, when the flame propagates downstream. In
the opposite case, the value of s is negative. Typically, u is much higher than s
and the difference between u and vg can be neglected for all practical purposes.

Similar to the previous paper [26], the flame front velocity can be obtained
without specific analysis of the preheat zone. Recalling that μ−

g = 1, one verifies
that for any i representing different species or phases the reaction coefficients
μi are related to the mass flow rates by the following equations

μ+
i =

m̄+
i

m̄−
g

, μ−
i =

m̄−
i

m̄−
g

. (35)

Here, the superscript “−” denotes the mass flow rates of the reactants entering
the reaction zone, while the superscript “+” denote the mass flow rates of
products leaving the reaction zone. Note that all m̄−

i and m̄+
i are always non-

negative, while mass flow rates of solid species denoted by subscripts “u” and
“b” are negative in the case of forward combustion. That is, m̄−

s = −m̄s,b

and m̄+
s = −m̄s,u, in the case of forward combustion, while m̄−

s = m̄s,u and
m̄+

s = m̄s,b, in the opposite case. For gaseous species, m̄−
g = m̄g,u and m̄+

g = m̄g,b

in both cases.
The enthalpy equation (27), can be expressed in terms of hi and divided by

m̄g,u, determines the temperature of the products Tb as a function of fuel/air
ratio μ−

s and other parameters. That is, Tb = Tb(μ−
s , ...).

Using Eq. (35), neglecting the variation of ρs across the flame and taking
into account that ρs � ρg, while μ−

s is of the order of unity, one can obtain

s = ±m̄−
s − m̄+

s

ρsScons
, (36)
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where

m̄−
s − m̄+

s = (μ−
s − μ+

s )m̄−
g , m̄−

g =
Qh(Tb, ...)

H(μ−
s )

. (37)

In Eq. (36), Scons is the area occupied by coal burned by the flame as it enters the
control volume and the sign “+” corresponds to the case of forward combustion,
while sign “−” is used in the case of reverse combustion.

4.6. The energy balance equation for a cylindrical channel
As discussed in Section 2, we assume that there is a hot layer of coal (at

temperature Tb) of thickness δ surrounding the cylindrical gasification channel
downstream from the flame front. The thickness δ is an adjustable parameter
of the model that is related to the thickness of the “steam jacket”. The rest of
coal is assumed to be at the ambient temperature Tu. The velocity of the flame
front depends on the temperature of the products Tb, which, in its turn, depends
on the fuel/air ratio μ−

s and the parameter δ. The functions Tb(μ−
s , δ, ...) and

Qh(Tb, ...) also depend on other parameters, such as Tu, Ā, TE , and initial
compositions of coal and air that are fixed and selected to match the conditions
in practical UCG operations. In order to elaborate the functions Tb(μ−

s , δ, ...), we
consider reverse combustion (the flame front propagates upstream) and forward
combustion (the flame front propagates downstream). We assume that the
density of coal, its heat capacity and velocity do not change across the flame.
That is, ρs,u = ρs,b = ρs, hs,u(T ) = hs,b(T ) = hs(T ) and vs,u = vs,b = vs.

The case of reverse combustion is schematically depicted in Fig. 2(a), where
the control volume of the radius Rcv = Rb + δ is presented as the shaded area.
As can be seen in this figure, air and coal enter the control volume at the ambient
temperature Tu. Unreacted coal and product gas leave the control volume at
the temperature Tb. In the case of reverse combustion, Tb is the adiabatic
temperature.

The schematic view of forward combustion, when Rb + δ ≤ Ru is given in
Fig. 2(b). In this case, we select the control volume of the radius Rcv = Ru. As
shown in Fig. 2(b), some part of coal entering the control volume is preheated
to the temperature Tb. The other part of coal entering the control volume is
at the ambient temperature. Note that all coal reacts in the control volume.
Air enters the control volume at the ambient temperature, while product gas
leaving it at the temperature Tb. The burned temperature Tb is superadiabatic,
since part of coal entering the reaction zone is preheated.

Now consider the case of forward combustion, when Rb + δ > Ru. As shown
in Fig 2(c), we select the control volume of the radius Rcv = Rb + δ. All
coal enters the control volume at Tb, while air enters the control volume at
the ambient temperature. Unreacted coal leaves the control volume at ambient
temperature Tu, while product gas leaves it at the temperature Tb. Note that
Tb is superadiabatic and even higher than in the previous case, since all coal
entering the reaction zone is preheated.

The heat balance equation (27) reads

(m̄shs)u + (m̄ghg)u = (m̄shs)b + (m̄ghg)b . (38)
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(a)

(b)

(c)

Figure 2: Schematic representation of flame propagation regimes in cylindrical gasification
channel. (a) – Reverse combustion. (b) – Forward combustion in cylindrical gasification
channel when Rb +δ ≤ Ru. (c) – Forward combustion in cylindrical gasification channel when
Rb + δ > Ru.
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Note that the velocity of coal vs and the radii difference (Rb −Ru) are negative,
when flame propagates downstream, and are positive otherwise. If known, the
heat losses can be easily accommodated in Eq. (38). In the case depicted in
Fig. 2(b), only some part of the coal enters the control volume preheated, while
the rest of coal enters the control volume at the ambient temperature. Then,
Eq. (38), being written for the appropriate control volume, takes the following
form in all three cases considered above.

vsρsπ((Rb + δ)2 − R2
u)hs(Tu) + m̄g,uhg,u(Tu)

= vsρsπ((Rb + δ)2 − R2
b)hs(Tb) + m̄g,bhg,b(Tb) .

(39)

Here, m̄g,u = (vgρg)uπR2
u and m̄g,b = (vgρg)bπR2

b .
The amount of coal m̄cons

s consumed in the appropriate control volume per
unit time is given by

m̄cons
s = vsρsπ(R2

b − R2
u) = m̄g,u

(
μ−

s − μ+
s

)
, (40)

where Eq. (35) has been used. Note that m̄cons
s is always positive, since vs

and (Rb − Ru) are either both positive (reverse combustion) or both negative
(forward combustion). The influx of hot coal to the control volume m̄hot

s is
given by

m̄hot
s = −vsρsπ((Rb + δ)2 − R2

b) . (41)

Note that m̄hot
s is negative for reverse combustion, since hot coal leaving the

control volume in this case.
Now, we introduce the parameter β, which is the ratio of the hot coal influx

to the amount of coal consumed per unit time. That is,

β ≡ m̄hot
s

m̄cons
s

= −vsρsπ((Rb + δ)2 − R2
b)

vsρsπ(R2
b − R2

u)
. (42)

The parameter β is negative in the case of reverse combustion and positive
otherwise. Note that the ranges β < 0, 0 < β < 1 and β > 1 correspond to
figures 2(a), 2(b) and 2(c), respectively. The value β = 1 corresponds to the
case, when (Rb + δ = Ru). Rigorously, the problem is not defined, when β = 0.
In this case, the flame speed is zero and coal enters the control volume from the
radial direction. Eq. (39), being expressed in terms of β, takes the form

(1 − β)hs(Tu) +
1

μ−
s − μ+

s
hg,u(Tu) = −βhs(Tb) +

μ+
g

μ−
s − μ+

s
hg,b(Tb) . (43)

Here, we use Eqs. (35) and (40), recalling that μ−
g = 1. Note that μ−

s = μ−
s (β),

while μ−
s − μ+

s is a constant determined by the stoichiometric conditions. It is
important to note that Eq. (43), while being obtained for a cylindrical channel,
is general and can be applied for channels of arbitrary geometry, as soon as m̄hot

s

is known.
Using Eq. (43), the burned temperature Tb can be computed. The results of

the calculations, which have been preformed for the conditions similar to those
in the previous papers [25, 26], are given in Fig. 3(a).
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Figure 3: Parameters (a) the burned temperature Tb and (b) the burned radius R+ as functions
of the parameter β.

The value of Tb increases with β since less cold coal or more hot coal is
delivered to the control volume at larger β. The temperature Tb at β = 0
corresponds to adiabatic temperature in stoichiometric conditions, while Tb at
β = 1 is superadiabatic.

We introduce the initial radius of the channel R− = min(Ru, Rb) and the
radius after gasification R+ = max(Ru, Rb). In the case of the reverse combus-
tion R− = Ru and R+ = Rb, while R− = Rb and R+ = Ru for the forward
combustion. The dependence of R+ on the parameter β is presented in Fig. 3(b).

One can note that R+ becomes infinitely large at β = 0 and this indicates
that steady-state approach is not applicable to this case. The corresponding
corrections to the theory are considered in the following sections.

5. Primary physical factors determining the flame propagation speed.

The velocity of the flame front s is determined by Eq. (36) that after sub-
stitution of Scons = π(R2

+ − R2
−) = ±π(R2

u − R2
b) takes the form

s =
μ−

s − μ+
s

πρs(R2
u − R2

b)
Qh(Tb, ...)

H(μ−
s )

(44)
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Fig. 4 shows the mass flow rate M = m̄g,u of the injected air and the velocity
of the flame front s in a cylindrical gasification channel as a function of the pa-
rameter β. Positive values of the velocity mean that the flame front propagates
downstream, while negative values imply that the front moves upstream.
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Figure 4: The mass flow rate of air (a) and the speed of the flame front (b) as functions of
the parameter β.

The possibility of a flame propagation against the gas flow being slowed
down by higher air velocity agrees with intuition. This intuition is based on the
fact that, with increased u, the gas velocity relative to the flame vg,u = u − s
can remain the same provided s is increased (that is the absolute value of s is
decreased when s is negative). In fact, s is very small compared to u and this
effects is fully negligible. Practically, we do not need to distinguish vg,u and u.
The same applies to the mass flow rates: the absolute mass flow rate of air M
is (nearly) the same as its relative rate M = m̄g,u. The flame speed is affected
by the air flow rate trough energy balance in the channel.

The superadiabatic effect is induced by recycling the heat: coal is first heated
by hot product gasses and then enters the combustion zone. Due to this effect,
propagating downstream is thermodynamically beneficial for the flame, while
the flame propagating upstream expends the heat on heating coal along its way.
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Higher temperatures in the combustion zone induce more intense reactions and
increase the burning rate Qh. A higher M needs greater burning rate to sustain
combustion. If the flame temperature is low, this flame can not move at an
appreciable speed upstream since this would induce further heat losses. Very
low temperatures and air flow rates correspond to practically extinct flames. As
air flow increases, the flame temperature increases. This flame can now afford
a heat loss associated with upstream motion and s < 0 becomes substantial as
shown in Fig. 4. (This figure is plotted for constant values of parameters Ā and
λ̄r). A further increase in the air flow rate requires higher temperatures. This
can be achieved only if the flame slows down or, at even higher flow rates, moves
downstream.

As it can be seen from Eq. (32), the heat flux into the upstream cold region is
higher for greater Qh. If, due to a heat loss, the temperature of the flame is below
the temperature, which is required for steady propagation, Qh and the heat flux
into upstream regions is also smaller than required. The flame preheat zone cools
down by the air stream causing oxygen to propagate further downstream. This
either slows the flame propagation upstream or moves the flame downstream.
As discussed previously, the flame temperature then increases compensating for
the initial heat loss. A similar effect balances a possible overheat of the flame
by propagating the flame upstream at a faster rate.

If the temperature of the flame is very high, the combustion becomes lim-
ited not only by the reaction rates but also by the rate of diffusion of oxidizer
to the walls. This corresponds to large temperature gradients as compared to
the channel width. As discussed in Section 3, the diffusion approximation of
the radiant flux overestimates the value of the radian heat transfer when the
temperature gradients are large. Thus, any further increase of the flame propa-
gation speed is moderated by the rate of oxidizer diffusion and by the radiative
heat transport. This effect is, to a certain extent, accounted for by introducing
the parameter Kd in Eq. (23). It should be noted that the whole solution based
on using values averaged across the channel becomes inaccurate for very high
reaction rates since, in this case, the temperature distribution is highly non-
uniform across the channel. This case is specifically considered further in this
work.

6. Unsteady flame propagation.

Figure 3 (b) indicates that R+ becomes infinite, when β = 0. Since Rcv ≥
R+, we note that s = 0 corresponds to β = 0. Large R+ indicates that the
theory based on a steady-state propagation of the flame becomes inapplicable
when β → 0. In a practical case, gasification starts in a channel of radius
R− and the initial channel burns not only in the axial but also in the radial
direction. When combustion reaches the radius R+, the flame can move steadily
in the axial direction. If the air injection rate corresponds to β = 0, then the
radius R+ = ∞ can never be reached and a steady propagation is impossible. A
similar restriction applies to small values of β and large values of R+. A steady
solution exists in this case but remains impractical, since it would take a very
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long time to reach this solution. Thus, the developed theory based on axial
propagation of the flame is practically limited only to the cases of sufficiently
large absolute values of β, while radial propagation of the flame must be taken
into account, when β is small.

Let us assume that, at a given moment t, the current actual radius of the
burned flame section is Rf+ ≤ R+. Coal is consumed at the rate of m̄cons

s =
m̄−

s −m̄+
s = sρsScons, where Scons = π(R2

+−R2−) is the area of coal consumption
in a steady flame. If Rf+ < R+, then the fraction γ of m̄cons

s is burned due to
axial motion of the flame

m̄1
s = sρsπ(R2

f+ − R2
−) = γm̄cons

s (45)

where

γ =
R2

f+ − R2
−

R2
+ − R2−

(46)

The remaining fraction 1 − γ has to enter the combustion zone from other
directions. Assuming the flame has the axial length of Lf and the volume of
Vf = πR2

f+Lf we obtain that (1 − γ)m̄cons
s = ρsdVf/dt. The value of Lf is

introduced as the overall length of the flame (involving oxidation and reduction
zones) as can reasonably defined by the observer. This length is known to
increase with Rf+ so we can put Lf = CfRf+. The constant Cf is determined
by the definition of the flame length and, as it is shown below, does not affect the
outcomes. Since dVf/dt = 3πCfR2

f+Ṙf+ = 3πR2
f+L̇f where L̇f = dLf/dt and

Ṙf+ = dRf+/dt we can write (1 − γ)m̄cons
s = 3πR2

f+L̇fρs. With introduction
of the velocity of the downstream end of the flame sb = s + L̇f , we obtain

sb = s +
R2

+ − R2
f+

R2
+ − R2−

m̄cons
s

3πR2
f+ρs

. (47)

This equation determines the propagation speed of the downstream end of the
flame which does not coincide with s when Rf+ < R+ and is the same as s
when Rf+ = R+. Here, we imply that s does not change significantly due to
the following arguments. If Rf+ < R+, coal enters the control volume from
all directions. Coal that enters the volume in the radial direction has the same
temperature as coal on the upstream side of the flame and this does not change
the energy balance. Coal that enters the control volume from the downstream
end has a high temperature but this additional energy is compensated by the
increase of the total thermal energy within the control volume due to increase
in the flame length. This allows us to keep the equation for s without change
as the first approximation. Finally, we consider what can happen if Rf+ > R+.
In this case Rf+ can not decrease with time and a narrower channel, which has
radius R+, is burned into the virgin coal surrounding the channel of radius R−,
while a wider cavity of radius Rf+ remains unaffected.

The effective kinetic parameters are now evaluated

λ̄r =
32
3

πR3
f,uσT 3

b , Ā = ARf+ (48)
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Td = − TE

ln
(

M
ρgĀΔxd

) , Δxd ≡ M

ρgĀKd
= CdR− , (49)

where A is constant and Rf,u = R− for reverse combustion and Rf,u = Rf+ for
forward combustion. Here, we use that the heterogeneous reaction rate is pro-
portional to the surface of the wall at a given x-location. Values of the effective
kinetic parameters A and TE depend on coal properties. The integral of the
effective conductivity across the flow is determined with the use of Eq. (6) and
using Tb as a characteristic temperature (while this approach is conventional for
kinetically limited flames, the wall temperature is close to Tb for diffusion-limited
flames). The value Δxd has the dimension of length and can be interpreted as
the characteristic length of leading section of the flame which is responsible for
the radiative heat flux directed upstream. Since R− is the only parameter of the
channel (before burning takes place) that has the dimension of length and can
affect Δxd we put Δxd = CdR− where Cd is constant. In the kinetically limited
regime Δxd would be the length of the preheat zone but here we are interested
in the diffusion-limited case, since this case is linked to the parameter Kd. At
the limit of fast kinetics and slow diffusion, the leading zone is formed by areas
of high temperature on the walls, while the air stream is still cold in the core
of the flow. According to the analysis of Section 3, the maximal radiative heat
flux corresponds to the effective length of disturbance given by Δx = 4

3R and
we put Cd = 4/3. Note that in any case Δxd can not be greater than the length
of the oxygen zone ΔxO2 (that is the sum of preheat and reaction zones, where
oxygen is present). Since ΔxO2 ∼ 40R this imposes the upper limit on possible
values for Cd. In fact, when reactions are fast, Δxd is much smaller than ΔxO2:
oxygen is present in the core of the flow in the same cross-sections where wall
temperatures are already very high.

The premixed-type flames are characterized by balance of reaction, heat
conduction and heat convection — the terms characterizing all three processes
are of the same order. Premixed combustion is impossible if one of these terms
is negligible everywhere in the flow. The length of the reaction zone Δxr can
be estimated by diffusion/reaction balance of the heat

∂

∂x

(
λ̄

∂T

∂x

)
∼ W̄h ∼ Rf+AK(T ) . (50)

Considering that λ̄ ∼ R3
f+ and W̄h ∼ Rf+A, we obtain Δxr ∼ (λ̄/W̄h)1/2 ∼

Rf+. This gives a justification for assuming Lf ∼ Rf+ in the reaction-limited
regime. For the diffusion-limited regime, this estimate follows from basic prop-
erties of turbulence discussed in the next section.

7. Comparison with experimental observations

The suggested theory is in agreement with qualitative observations by Cherny-
shev [8], who noted that if the air injected into a gasification channel at a low
speed, the flame tend to propagate towards the injection point but, if the air rate
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Figure 5: Dependence of a burn velocity on the air flow rate: (a) Data from Skafa [9], (b) and
(c) Present theory, plotted with with different limits

increases, the cavity tend to grow in the downstream direction. It is also known
that flame propagation is faster when oxygen is used instead of air[9]. This
behavior is also expected since oxygen-fed flames are hotter and have higher re-
action rates. We now perform a more quantitative comparison with experiments.
Fig. 5(a) demonstrates two burn velocities s and sb as function of the injection
air speed u0 = M/(πR2

−) in the upstream undisturbed section of the channel.
These results are reproduced from the book by Skafa [9], although we changed
the sign of s in agreement with notations that we use in the present work.
Fig. 5(b) presents velocities s and sb obtained from Eqs. (44) and (47) for the fol-
lowing values of the model parameters: A = 1.3e4s−1, TE = 7700K, Tu = 300K,
R− = 0.5m, Rf+/R− = 2.5. If u0 tends to zero and no air is supplied, this ex-
tinguishes the flame and s tends to zero as well. Qualitative agreement between
these figures is obvious, although the theory predicts the possibility of negative
values for sb and positive values for s which is not shown in Fig.5(a). While
existence of negative sb is physically obvious — the velocity of the downstream
end of the flame is not likely to jump from negative s to zero for a minor change
in the air speed, the possibility of moving the whole flame in the direction of
the flow, which corresponds to positive s, warrants a special discussion.
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One can note that as s approaches zero from negative side, s remains small
for a range of air velocities (Fig. 5(b)). While the upstream end of the flame
remains steady, the channel grows in the radial direction and also increases its
length. If the air speed is increased further, can the upstream end of the flame
start moving in the forward direction? Physically, this is possible only if the
air flow cools the upstream end of the flame and flame has to retreat in the
direction of the air stream were unburned coal is hot and this restores the heat
balance. This can happen if the flame is controlled by the reaction rates (the
flame is not very hot) and cooling effect of the air flow is strong. This slows
down the reaction and oxygen penetrates further downstream. Effectively the
flame is locally extinguished by the flow upstream and reestablishes itself in a
hotter place downstream. Fig. 5(c) presents the same plot as 5(b) but using
extended limits. Note that this figure indicates the possibility of positive s for
very high injection rates.

The situation is, however, different, if the flame is very hot and controlled
by diffusion. We consider the limit of high temperatures, high activation energy
and a strong air flow. Under these conditions, the surface of the channel has
two zones cold and hot. The temperature is insufficiently high in the cold zone
to initiate reactions, while in the hot zone any oxygen on the surface reacts
instantly. Since the activation energy is high, these zones are separated only
by a very small distance. The overall reaction rate is determined by the rate
of diffusion of oxygen to the hot zone, while the oxygen concentration on hot
walls is essentially zero. The temperature is very high near the surface and
is much lower in the middle of the air stream. Rigorously, averaging of the
flow parameters across the channel is not applicable to this regime. The flow
in a gasification channel is turbulent, otherwise laminar diffusion would not be
able to deliver oxygen at appreciable rates. If the flow rate is increased by the
factor of 2, the average parameters of this flow remain the same since large-
scale structures of turbulence are invariant with respect to changes in Reynolds
number. In simple terms, the turbulent diffusion coefficient is also doubled.
The walls are rough and this eliminates any viscous sublayer effects on the flow.
Hence the flame position does not change under these conditions and does not
move downstream, although the overall burning velocity increases. Similarly, if
the air velocity is decreased twice the flame does not move upstream (although
a large reduction in velocity can result in attenuation of turbulence and this
would affect the flow). Hence, for this limit of a turbulent flame fully controlled
by diffusion, there is no control over the flame position by means of changing the
injection rate. Combustion of a real coal starts from devolitalization reactions
at low temperatures and can be cooled by the air stream. If these reactions
play a noticeable role in initiating the rest of oxidation process or in the overall
energy balance, the flame position is affected by the air speed and becomes
controllable.

When the flame is ignited, Rf+ is approximately the same as R−. The
present theory predicts positive sb and negative s for a wide range of u0. This
initial trend of the flame to propagate in all directions was noted by Skafa [9].
Since the channel walls downstream are initially cold, this imposes an additional
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energy penalty, which is determined by the need to heat the expanding flame
area, and the reaction rates are lower than under developed conditions.

8. Conclusions

A theoretical model, which describes propagation of the flame front through
a channel with reacting walls, is suggested in the present study. Simplifying
assumptions are made to allow for compact analytical representation of the
results, while retaining main physical effects that are of primary importance
to the phenomena in question. The suggested theory, which is based on the
analysis of energy balance in a gasification channel, explains the major physical
factors that are responsible for the flame speed and is in a qualitative agreement
with experimental observations obtained in practical UCG operations.
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