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Abstract

This paper follows the evolution in understanding of the multiple mapping mondi-
tioning (MMC) approach for turbulent combustion and reviews different implemen-
tations of MMC models. As the MMC name suggests, the original version represents
a consistent combination of CMC-type conditional equations (conditional moment
closure) and generalised mapping closure. It seems that the strength of the MMC
model, and especially that of its stochastic version, lies in a more general (and much
more transparent) interpretation. In this new generalised interpretation, we can re-
place complicated derivations by physical reasoning and the model appears to be a
natural extension of modelling approaches developed in recent decades. MMC can
be seen as a methodology for enforcing certain known characteristics of turbulence
on a conventional mixing model. This is achieved by localising the mixing opera-
tion in a reference space. The reference space variables are selected to emulate the
properties of a turbulent flow which have a strong effect on reactive quantities. The
best and simplest example is an MMC model which has a single reference variable
emulating the mixture fraction. In diffusion flames turbulent fluctuations of reacting
quantities are strongly correlated with fluctuations of the mixture fraction. By mak-
ing mixing local in the reference mixture fraction space a CMC-type mixing closure
is enforced. In the original interpretation of MMC the reference variables are mod-
elled as Markov processes. Since the reference variables should emulate properties of
turbulent flows as realistically as possible the next step, and the basis of generalised
MMC, is to remove the Markovian restriction and set reference variables equal to
traced Lagrangian quantities within DNS or LES flow fields. Indeed, no Markov
value can emulate the mixture fraction better than the mixture fraction itself. (Us-
ing a Markov vector process of dimension higher than the number of conditioning
variables represents a more economical alternative for producing reference variables
in generalised MMC.) The generalised MMC approach effectively incorporates the
mixture fraction-based models, the PDF methods and LES/DNS techniques into
a single methodology with possibility of blending useful features developed previ-
ously in conventional models. The generalised approach to MMC stimulates a more
flexible understanding of simulations using sparsely placed Lagrangian particles as
tools that may provide accurate joint distributions of reactive scalars at relatively
low computational cost. The physical reasoning behind the new interpretation of
MMC is supported by example computations for a partially premixed methane / air
diffusion flame (Sandia Flame D). The scheme utilises LES for the dynamic field
and a sparse-Lagrangian filtered density function method with MMC mixing for the
scalar field. Two different particle mixing schemes are tested. Simulations are per-
formed using only 35,000 Lagrangian particles (of these only 10,000 are chemically
active) on a single workstation. The relatively low computational cost allows the
use of realistic chemical kinetics containing 34 reactive species and 219 reactions.
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modelling
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1 INTRODUCTION

In spite of the rapid progress in computer technology in recent decades, direct
numerical simulations (DNS) of fluid flows remains a challenging problem for
many practical applications. Simulating reacting flows is even more difficult: in
addition to solving for the three velocity components and pressure correction,
realistic chemical kinetics requires solutions for tens or, maybe, hundreds of
reacting species. Realistic chemical kinetics are always stiff and evaluation of
the species is computationally expensive even at a single point. The computer
power, which is needed to fully resolve the reactive scalar fields, dramatically
exceeds the computer power, which is required for velocity-only simulations.
If we can afford to achieve a certain resolution of the reacting species scalar
fields, simulating the velocity field with the same resolution is also affordable.
Thus, from the perspective of computational affordability, one may have to
deal with a well resolved (or even fully resolved) dynamic (velocity) field and
a coarser representation of the reacting species on a relatively sparse set of
points.

The requirements dictated by the physical characteristics of chemical reac-
tions in turbulent flows do not seem to match these affordability conditions:
reactions often occur within a thin reaction zones or are affected by small-
scale variations of the flow parameters. A coarse representation of the reacting
species seems inadequate. The dynamic field of turbulent flows is characterised
by a wide range of scales. Due to a degree of universality of the inertial in-
terval of turbulence, direct simulation of the smallest details of the dynamic
field can be avoided and replaced by subgrid modelling as is done in large
eddy simulations (LES). In non-premixed combustion considered here, the ef-
fect of chemical reactions on dynamics of turbulence is limited: reactions do
not radically change the properties of small-scale turbulence and do not inval-
idate application of conventional LES approaches to the velocity field. Thus
there is a fundamental contradiction in conventional LES-DNS simulations
of reacting flows: we can afford well-resolved simulations of the velocity field
and only coarse simulations of multiple species comprising a realistic chemi-
cal kinetic mechanism, while the opposite conditions are generally needed to
provide accurate simulations.

The contradiction between availability of computational resources and the
need to resolve small-scale properties of reacting scalars is treated differently in
different models, which can be broadly divided into three groups: the mixture-
fraction-based models (fast chemistry[1], flamelet[2] and conditional moment
closure or CMC[3]), the probability density function (PDF) models[4, 5] and
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LES/DNS[6]. The mixture-fraction-based models are economical and provide
a good resolution in the mixture fraction space but are restrictive (formally
or practically) to cases which can be effectively parameterised by the mixture
fraction. The PDF and mixture fraction models can also be used for subgrid
evaluation of the reactive species as part of LES [6–9]. The subgrid version
of PDF models is called filtered density function (FDF) [6, 7]. These three
groups of combustion models were recently augmented by the multiple map-
ping conditioning (MMC) framework [10–18] that, arguably, has links with
all three groups discussed above. It seems that the major role of the MMC
approach is in bringing a new understanding into non-premixed combustion
modelling. This understanding is explored in the present work.

2 STRONG AND WEAK APPROXIMATIONS

Stochastic simulations may approximate a realistic process in two different
ways – strong and weak. In the case of a strong approximation, the simula-
tion approaches the full stochastic realisation of the physical process while a
weak approximation matches only stochastic distributions of the physical pro-
cess but not necessarily its realisation. For example, DNS provides a strong
approximation of a turbulent field while PDF methods deal only with weak ap-
proximations of the reacting species. The FDF methods weakly approximate
the overall distributions of reactive scalars and produce strong approximations
only for large-scale structures of turbulent scalar fields. Any strong approx-
imation is, obviously, a weak approximation at the same time but not vice
versa. In general, achieving a strong approximation may require much more
extensive computational resources compared to a weak approximation.

The terminology of weak and strong convergence is widely used in mathe-
matics but we adopt a less rigorous and more intuitive use of these terms. A
numerical scheme may work as a weak approximator and a strong approxima-
tor at the same time. In this case, the quality of the weak approximation may
be higher than the quality of the strong approximation produced by the same
scheme. In this work, we argue that achieving a complete strong approxima-
tion of the reactive species fields is, in many cases, practically excessive and
computationally prohibitive. Equivalent distributions of reactive species that
are targeted in PDF methods are perfectly sufficient to characterise all the
complexity of turbulent combustion processes (provided, of course, that these
distributions can be accurately simulated).
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3 DIRECT LAGRANGIAN SIMULATIONS

In Lagrangian simulations of a turbulent reacting flow, fluid particles move
convectively and each particle carries a full set of species. The concentrations
of species at each particle change due to chemical reactions within the particle
and due to mixing between different particles. If molecular diffusion is to be
incorporated into this consideration, the fluid particles are replaced by dif-
fusing particles, which experience small random fluctuations of their position
accounting for molecular diffusion. This physical picture of Lagrangian par-
ticles carrying concentrations of reacting species and mixing with each other
may serve as a foundation for a numerical scheme simulating transport of
reacting species. By default, we assume that a fully resolved velocity field is
available in simulations. The number of Lagrangian particles must be suffi-
ciently large and mixing between particles must comply with a set of physical
constraints to simulate the scalar transport correctly. The physical constraints
imposed on mixing, which ensure convergence of the Lagrangian simulations
to the realistic scalar fields, are discussed in Ref. [18]. Here, we specifically
mention only one of the constraints – localness. In a physical flow and in its
numerical model, two particles can be mixed only if they are located close
to each other. Enforcing this condition is important to ensure convergence to
fully resolved scalar fields. Practically, localness requires a large number of
particles in the simulations. In principle, Lagrangian simulations can resolve
scales larger than the characteristic distance between particles although it is
the characteristic distance between mixed particles that separates the resolved
and Lagrangian subgrid scales [18]. Lagrangian simulations which resolve all
the smallest scales in a turbulent flow are, in fact, Lagrangian DNS.

Under conditions of increasing numbers of particles and progressively enforced
localness of mixing, the specific algorithm used in a mixing model becomes a
secondary issue: all reasonable mixing models will behave in a similar manner
as the limit of a fully resolved scalar fields is approached (this trend was
indeed observed in practical simulations[19].) This limit provides a benchmark
for using a ”brute force” option in Lagrangian subgrid simulations: if the
required number of particles in a method is comparable to (or exceeds) the
number of particles required to fully resolve the scalar fields, the method does
not offer any savings of computer time and we probably would be better off
with complete DNS of all involved scalars.

Even if convergence of Lagrangian simulations to fully resolved scalar fields
can not be achieved in practical applications, it has implications for comparing
different mixing models. An inferior model can perform better if it uses more
particles in the simulations. A good mixing scheme should be able to perform
well with relatively fewer particles. Two mixing models can be directly com-
pared only if they use a similar number of particles, otherwise we compare
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computational performances rather than the mixing models themselves. The
number of particles determines how well the scalar fields are resolved. It could
be the case that different models (or different versions of a specific model) may
be specifically adapted to deal with a high or low degree of resolution of the
scalar fields. It is not inconceivable that even the most sophisticated sparse
mixing models may appear to be inadequate to treat most complex combus-
tion cases with a small number of particles. The intensive option of improving
simulations by increasing the number of particles is always available for these
cases.

It seems, however, that achieving the limit of Lagrangian DNS is more of a
hypothetical than practical possibility as this would require enormous compu-
tational resources. High quality practical simulations can be performed with
a much smaller number of particles. We use the term “sparse-Lagrangian sim-
ulation” to refer to simulations with fewer Lagrangian particles than Eulerian
grid points while the opposite case of having many Lagrangian particles in
a single Eulerian cell can be called “intensive-Lagrangian simulations”. It is
inevitable, of course, that the sparse simulations can not resolve details of the
scalar fields between particles and, thus, can not provide a strong approxi-
mation for the small-scale features of these fields. The sparse simulations can
characterise the large-scale structures in realisations of the scalar fields but
not the small-scale structures. We will argue, however, that sparse simulations
may still provide reasonable weak approximations for the reacting flow. These
arguments can be deduced from consideration of the MMC approach.

4 THE MMC APPROACH

The MMC approach was originally suggested [10] as an effective combination
of CMC, which is used for evaluation of reactive scalars, and generalised map-
ping closure (MC), which is used for consistent modelling of the conditional
dissipation and PDFs of the conditioning variables. The MMC approach al-
lows for a stochastic implementation that converts this model into a PDF
model. The MMC links with CMC and MC are obvious but as a PDF method
MMC has a notable degree of similarity with the EMST (Euclidean minimum
spanning trees) model [20] – both models use the MC concept and localise
particle interactions but implement these ideas differently. The MMC uses ref-
erence variables simulating properties of turbulent flow that are different from
reactive scalars but deemed to be important for combustion processes. The
original MMC approach requires that the group of reference variables forms a
Markov family (in practice this means that these variables can be simulated
by a system of stochastic Ito equations). The MMC-Curl version [14, 15] of the
stochastic MMC model, which uses Curl’s mixing, has many common prop-
erties with the original and modified Curl’s models [21]. The MMC model
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is a versatile model that can emulate Curl’s model, CMC or any effective
combination of these two models. In the same way, the MMC-IEM version
of model [13, 14], which uses IE(C)M mixing, has many similarities with the
IE(C)M model [22–25]. The authors’ understanding of MMC has evolved to
some extent since the original formulation of the model was suggested [10]. The
main difference from old MMC is that the Markov restrictions are no longer
applied to the reference variables in the generalised version of the model. This
new more general understanding is discussed below.

Simulated mixing between particles (Curl’s mixing, for example) may satisfy
several important mixing constraints but is different from physical mixing
occurring in a turbulent flow. We can, however, enforce additional conditional
properties on the mixing model by emulating a selected Lagrangian property
(or properties) ξ(t) of turbulence, and requiring that mixing is localised in the
ξ-space. In MMC, ξ is called a reference variable and it does not coincide with
any of the simulated stochastic reactive scalars. The selection of the reference
variable is meaningful only if the property represented by this variable has
a strong effect on combustion processes, otherwise the localisation procedure
would have trivial results with reactive scalars being independent of ξ. In non-
premixed combustion, the most logical choice for ξ is the mixture fraction
but this variable must be obtained separately from the mixture fraction Z
that is simulated stochastically along with the reactive scalars. (in general,
MMC can also use reference variables effectively representing fluctuations of
velocity, scalar dissipation, sensible enthalpy or other useful quantities [14, 16,
17]) Thus, MMC has two mixture fractions, one is the mixture-fraction-like
reference variable, ξ, and another one is the simulated mixture fraction, Z,
which is treated as a real mixture fraction for the purposes of evaluating the
chemical source terms. MMC ensures that mixing does not disturb the values
of reactive scalars, Y , conditioned on the reference variable. The required
expectations of reactive scalars conditioned on the values of reference variables
are enforced by accurate emulation of the reference variables [14].

In conventional MMC [10], a Markov process is used to simulate ξ. This cor-
responds to a diffusion-type approximation of conditional fluxes of reactive
scalars in both ξ-space and Z-space [10, 13]. The diffusion-type approxima-
tion of the fluxes in the mixture fraction space is effectively CMC. Thus, the
MMC model with Markov emulation of the mixture-fraction-type reference
variable enforces CMC treatment of conditional expectations on conventional
mixing models. It should be noted that in the true MMC regime, the intensity
of mixing is not determined by the dissipation rate of the mixture fraction.
The intensity of mixing should be determined to match the expected value of
conditional fluctuations Y ′′ = Y − 〈Y |Z〉 . Accurate simulation of conditional
fluctuations is important in reacting flows close to extinction [13–15, 18], is not
automatically enforced by the MMC model and requires proper selection of
the intensity of MMC mixing. This issue is specifically addressed in Section 6.
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If we consider real mixture fraction evaluated along trajectories of Lagrangian
particles, these stochastic processes do exhibit some features of a Markov
process but in a real flow they never become fully Markovian. In general,
the reference variable does not have to be represented by a Markov process
and removing this restriction corresponds to a generalised understanding of
MMC [14, 18]. A better emulation of the mixture-fraction reference variable
ξ(t) (i.e. closer to real Lagrangian trajectories in the mixture-fraction space)
makes it easier for MMC to simulate the properties of Z correctly since the
difference between ξ and Z are kept small. Emulation of the process ξ(t) can
be improved by using a Markov vector process of higher dimension while se-
lecting only some of the Markov variables for MMC conditioning. It seems,
however, the best logical way to emulate ξ(t) is to trace Lagrangian particles
in a realistic mixture fraction field produced by DNS. The best approxima-
tion for any process is the process itself! The DNS-simulated mixture fraction
is treated in MMC not as a actual mixture fraction but as a reference vari-
able. The DNS (reference) mixture fraction is used only for localisation of
the mixing operation: two particles are allowed to mix only if they are close
to each other in the DNS mixture fraction space and in physical space. LES
can also produce a good reference variable for MMC that is different from
DNS-produced variable only in the range of subgrid scales.

5 WHAT DO WE SIMULATE?

The answer for this question may seem trivial – turbulent combustion, of
course. It should be noted, however, that various answers for this question
are possible and different answers can be correct at the same time. MMC is a
weak simulator. From an MMC perspective, we simulate only distributions of
reactive scalars but not the scalar fields. The velocity and the reference mix-
ture fraction fields are needed only to produce realistic Lagrangian reference
variables which, in principle, could have been produced in some other way
without calculating the whole fields. The reference variables are used to en-
force desired conditional behavior on the reactive scalars while the conditional
variance around these conditional values is adjusted in a more empirical way
to match the overall joint PDFs. As a result of MMC simulations we obtain
only distributions but not the fields and we wish to see that these distributions
are as realistic as possible. The DNS/LES perspective on the same model is
different. The strong approximations are provided only for the fields of veloc-
ity and reference mixture fraction. The reactive scalars, given only at a sparse
set of Lagrangian particles, are under-resolved compared to the dynamic field.
Strong approximations for the reactive scalars are obtained only at the largest
scales. If we combine the MMC and DNS perspectives then the reactive scalar
values given at a sparse set of points can be seen as being an FDF representa-
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tion. The method provides a strong approximation for large-scale structures of
reactive scalars and a weak approximation for the overall distributions of these
scalars. This FDF understanding is not necessarily linked to MMC models but
can be seen as a general attribute of all sparse-Lagrangian simulations.

Sparse-Lagrangian simulations are economical when dealing with realistic chem-
ical kinetics. We can not expect that these simulations will produce complete
information about the finest details of reacting scalar fields, but we should
require that realistic joint distributions of the reactive scalars are produced.
The MMC-DNS or MMC-LES models seem to be a natural choice for accurate
and economical sparse-Lagrangian simulations.

6 EXAMPLE MMC-LES SIMULATION FOR A JET DIFFUSION
FLAME

We demonstrate the philosophy of sparse-Lagrangian simulations with a gen-
eralised MMC mixing model by way of example calculations for a piloted
methane / air jet diffusion flame (Sandia Flame D) [26, 27]. As the Lagrangian
simulation of the scalar distributions requires only 35,000 particles (of these
only 10,000 are chemically active) it is possible to use realistic detailed chem-
istry and perform calculations on a single processor. Flame D is considered to
be an appropriate flame for the following reasons. Firstly, a detailed exper-
imental database for this flame is available online [28] and has been widely
disseminated. Secondly, Flame D has been the object of numerous modelling
attempts including FDF simulations [29] and this allows us to judge the merits
of our new method. Thirdly, as the flame exhibits low levels of local extinction
then conditioning on a reference variable representing LES-simulated mixture
fraction is sufficient.

6.1 The FDF model

The Lagrangian particle scheme is governed by the following system of stochas-
tic differential equations

dx∗ =

[
ũ+

1

ρ
∇ρ (D +Dt)

]
dt+

√
2 (D +Dt) dω

∗ (1)

dφ∗ = [W (φ∗) + S(x∗,φ∗)] dt (2)

The asterisk superscript denotes stochastic values, ũ are the filtered velocity
vector, W is the reaction rate for the multi-scalar composition space φ, D
is the molecular diffusivity, Dt is the Smagorinski turbulent diffusivity and ω
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is a Gaussian Weiner process. Conditional scalar dissipation is simulated by
the particle mixing operator denote by S. In addition to the evolving scalar
composition, each particle carries a stochastic reference variable and mixing
is enforced between Lagrangian particles with similar ξ̃∗. Here we use a one-
dimensional reference space set equal to the filtered mixture fraction from the
LES (i.e. ξ∗ = f̃ ∗ = f̃(x∗, t)). At each time step all particles in the domain are
grouped in pairs without replacement. Particle pairs (p and q) are selected so
that the normalised square distance

d̂2
(p,q) =

1

1 + λ2 ×

 3∑
j=1

x∗(p)
j − x∗(q)j

Lx

2

+ λ2

(
f̃ ∗(p) − f̃ ∗(q)

Lf

)2
 (3)

is minimised. In Eq.(3) Lx and Lf are characteristic physical and reference
scales, and λ is a parameter which determines the relative localisation in physi-
cal and reference spaces respectively. Pair selection is illustrated schematically
in Fig.??. The contour plot shows a 2D region of the instantaneous f̃ -field and
A, B, C and D are the locations of four Lagrangian particles. Each particle
has a physical location, x∗, and a reference location, f̃ ∗. The latter is interpo-
lated between LES cell centres. All particles in the field must be grouped in
pairs but to illustrate the process we concentrate on the selection of a partner
for particle A. Note that particle density is much higher in the simulations. If
λ = 0 then localisation is in physical space only and particle B, being the clos-
est in x-space is selected. For sparse modelling localisation in physical space
does not enforce compositional locality (note the wide f̃ -space separation of
particles A and B). Thus reactive species predictions are not expected to be
good. Our sparse simulations for Flame D with λ = 0 produce global extinc-
tion. For λ =∞ localisation is in f̃ -space only and particle C is chosen to mix
with particle A. This imposes a flamelet-type closure on the mixing model.
Real mixing obviously occurs in physical space. For particle mixing to mimic
real fluid mixing, pairs should be as physically local as possible without com-
promising compositional locality. This is achieved in Eq.(3) by choosing finite
λ resulting in mixing between particles A and D. In the present simulations
we set λ = 1. Further work is required to determine if modelling is sensitive
to alternative (finite) λ.

Selected particle pairs mix linearly according to

φ∗(p) new = φ∗(p) + α
(
φ̂
∗(p,q)

− φ∗(p)
)

φ∗(q) new = φ∗(q) + α
(
φ̂
∗(p,q)

− φ∗(q)
)

(4)

where φ̂
∗(p,q)

is the two particle average and α is the mixing extent (α = 1
gives complete mixing, and α = 0 gives no mixing). We test two different
mixing schemes for α:
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Scheme 1 – at each time-step all particles mix with extent α = α0;
Scheme 2 – at each time-step all particles mix such that α = 1 with proba-

bility α0 and α = 0 with probability 1− α0.

Here we denote α0 ≡ ∆t/τL. Scheme 2 is more conventional for Curl-type
mixing while Scheme 1 was used in the first sparse-Lagrangian simulations
[30]. According to ref.[14] the generation of conditional fluctuations Y ”is pro-
portional to 〈γ2〉 / 〈γ〉2 where γ = 2α − α2. Since 〈γ2〉 / 〈γ〉2 = 1 for Scheme
1 and 〈γ2〉 / 〈γ〉2 = 1/α0 ≥ 1 for Scheme 2, the generation of conditional
fluctuations is expectably greater for the second scheme. The mixing time
scale, τL, controls the dissipation of minor fluctuations (i.e. fluctuations with
respect to averages conditioned on f̃). Minor fluctuations are mathematical
artifacts only. It is the conditional fluctuations (i.e. conditioning with respect
Z) which are the physical quantities we wish to predict. Although there is
not a fixed ratio between minor and conditional fluctuations the trends for
each are the same [13–15]. Lower values of τL reduce the extent of mixing
resulting in increased levels of both minor and conditional fluctuations. Con-
versely greater τL reduces those fluctuations. Following convention τL is made
proportional to the turbulence time scale, τ = k/ε, where k is the turbulent
kinetic energy and ε is its dissipation. For a certain physical distance between

mixing particles, ∆L, it follows that τL ∼ (∆2
L/ε)

1/3
. Similarly we can define

the Eulerian mixing time scale, τE, which scales as (∆2
E/ε)

1/3
where ∆E is

the LES filter width. τE is the mixing time scale associated with the refer-
ence mixture fraction and can be defined as the ratio of the filtered mixture
fraction variance and its dissipation so that we additionally have the scaling
τE ∼ ∆2

E/2 (D +Dt). With these scaling relations and assuming ∆L and ∆E

are within the inertial interval where ε is constant, the model for τL is

τL = C−1
L

(
∆L

∆E

)2/3 ∆2
E

2 (D +Dt)
(5)

The value of the constant CL which gives the best results will vary for different
values of the localisation parameter λ. In the case of Scheme 1 and λ =
0, a reasonable agreement with experimental data occurs for CL = 5. For
λ = 1 the passive scalar predictions are less sensitive to changes in CL and
values between 25 and 500 are possible. The reactive scalars, in particular
their conditional fluctuations with respect to Z, are sensitive to the choice of
CL [30]. Conditional fluctuations in Flame D are significantly under-predicted
with CL = 500. For CL = 25 conditional fluctuations are under-predicted by
about half in the near nozzle region and only slightly under-predicted further
downstream. In the present paper we use λ = 1 and CL = 25 and compare
results for mixing schemes 1 and 2.
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6.2 Numerical details

The Eulerian filtered flow field equations are solved using the Flowsi LES
code [31, 32]. A cylindrical domain 0.5m (70 jet diameters) in length and with
radius 0.25m has 1024 axial, 55 radial and 32 azimuthal finite volume cells. The
smallest cells are 0.5mm x 0.5mm x π/32 radians. Details of the discretisation
and integration schemes, and the accuracy of velocity and filtered mixture
fraction predictions for Flame D can be found in ref. [32].

For the composition field there are nominally 35,000 Lagrangian particles dis-
tributed within a domain extending 0.1m radially. To reduce computational
effort, reaction rates are calculated for 0.05 < Z∗ < 0.95 leaving about 10,000
reacting particles. To ensure sufficient Lagrangian resolution in the high-
temperature, low-density flame regions the numerical scheme uses weighted
particles and a particle number control algorithm [29]. Particle pairs for the
mixing model are selected to minimise d̂ in Eq.(3) by way of a low-cost ’divide
and conquer’ method similar to the k-d tree [33]. The characteristic physical
length scale, Lx is set to the experimental steady-state stoichiometric flame
length and the corresponding value for Lf is 1−Zst. Chemical source terms are
determined from a detailed kinetics scheme (GRI-3.0) [34] containing 34 reac-
tive species and 219 reactions (NOx excluded) and radiation is modelled using
the optically-thin assumption and absorption coefficients given in ref.[35]. As
particle densities are stochastic values, direct density coupling back to the LES
solver can be destabilising. Here density is obtained from a flamelet table and
full coupling has not been achieved. This can be justified for the present flame
case where local extinctions are low and flamelet approximations are reason-
able. Simulations of flames with higher levels of local extinction will require
density coupling which should be obtained through local conditional averaging
or methods such as solving an Eulerian equivalent enthalpy equation [29].

Computations are made on an AMD64 Opteron workstation with two dual-
core processors operating in parallel. Both the Eulerian and Lagrangian do-
mains are divided into four regions and boundary information is passed be-
tween processors. After the fields reach steady-state samples are taken over
approximately one domain flow-through requiring approximately 50 hours of
computing time.

6.3 Results

Figures ?? through ?? show experimental and simulated scatter plots of tem-
perature, and mass fractions of O2 and H2 versus mixture fraction, Z, at 7.5,
15 and 30 jet diameters downstream of the nozzle. MMC predictions are shown
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for both mixing schemes 1 and 2. The first observation we make is that the
overall trends are correctly predicted for the quantities shown and also for
other major and minor reactive scalars. A closer analysis reveals that peak
rich-side H2 at x/d = 7.5 and 15 is over-predicted by about 40% which is con-
sistent with earlier FDF [29] and filtered CMC [8] predictions for this flame.
At x/d = 30 the peak H2 is only slightly over-predicted. Although not shown,
CO predictions are generally in very good agreement with experimental data.

At the three axial locations the level of conditional fluctuations measured in
experiments are of similar magnitude. In contrast the two different mixing
schemes yield increasing levels of conditional fluctuations with downstream
distance. At x/d = 7.5 Scheme 1 under-predicts conditional fluctuations con-
siderably while for Scheme 2 conditional fluctuations are of similar order to (or
slightly greater than) experimental fluctuations. The rms of conditional fluc-
tuations (not shown) by Scheme 1 is approximately half that of experiments
at x/d = 15 while Scheme 2 over-predicts them by about 10 or 20%. Further
downstream Scheme 1 performs better predicting the level of conditional fluc-
tuations quite well at x/d = 30 while Scheme 2 produces approximately twice
that level of local extinction.

A number of observations are made based on the scatter plots discussed above.
The first observation is that MMC is a quality mixing model which is able to
produce physically realistic results with a relatively small number of parti-
cles and thus at lower computational cost than conventional mixing models.
Secondly, MMC is able to realistically model a range of turbulent flame con-
ditions between those that are fully burning and flames with significant local
extinction. The third observation is that for mixing governed by the time scale
in Eq.(5), CL does not appear to be universal; not even within the one flame.
In addition the correct choice of CL will vary for different mixing schemes.
Given that τL is a (minor) dissipation time scale, a better approach [14] may
also consider the generation of conditional fluctuations in its formulation. The
current analysis suggests that Scheme 1, whereby all particles mix to a certain
extent, generates approximately half the level of conditional rms than does
Scheme 2, where a certain number of particles mix to a full extent and the
remainder are unmixed.

As many other models, the presented version does not incorporate the influ-
ence of Reynolds number on combustion processes. The turbulent fields in
these simulations are very far from being resolved to the level that can allow
for direct incorporation of changes in Reynolds number. Nevertheless, it is
possible to account for some of the effects that these changes may cause in
combustion processes by adjusting the model. For example, higher Reynolds
numbers correspond to larger fluctuations of the scalar dissipation and this is
likely to generate larger conditional fluctuations of reactive species. In MMC
simulations, this can be accounted for by relaxing τL. Effectively, we assume
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that the minor dissipation time τL depends on the Reynold number.

The model presented here is dependent on the number of particles in its nu-
merical implementation. In this implementation, the characteristic distance
between mixed particles dm is dependent on the characteristic distance be-
tween two closest particles as the used algorithm is aimed at selecting the
closest particles for mixing (as determined by the distance (3)). The param-
eters of the model will change as number of particles increase and the model
will approach DNS as the number of particles becomes very large (provided
the velocity field is fully resolved in simulations) [18]. This scheme provides for
most efficient use of the limited number of particles available in simulations.
The version of MMC model, which is independent of the number of parti-
cles, can be constructed by fixing dm. As the number of particles increases,
a mixing partner for a particle is selected randomly among many particles
located at a distance less than dm from the particle. The limit achieved by
this version of the model is independent of the number of particles but it does
not coincide with the limit of DNS as the fields are smoothed by mixing over
distances less than dm and dm does not tend to 0. This situation is very simi-
lar to the well-known dilemma of connecting or disconnecting the filter scale
and the computational grid size in LES. In practice, the former choice is often
preferred to provide the best possible resolution within the limits of given com-
putational resources while the latter choice is consistent with the theoretical
principle of independence of a model and its finite-difference implementation.

7 CONCLUSIONS

This paper follows the evolution in understanding of the MMC approach for
turbulent combustion and reviews different implementations of MMC mod-
els. In stochastic form, MMC is a joint PDF method which enforces mixing
between Lagrangian particles closely located in a reference space. The refer-
ence space variables are selected to emulate the properties of a turbulent flow
which have a strong effect on reactive quantities, such as the mixture fraction.
In the original interpretation of MMC the reference variables are modelled as
Markov processes. Here a new generalised interpretation of MMC has been
implemented where the reference variables are traced Lagrangian properties
from a well resolved (LES) dynamic field. The most wonderful feature of the
generalised understanding of MMC is that this model naturally blends and
unifies nearly all major existing approaches to modelling of turbulent reacting
flows (CMC, PDF, LES).

The quality of a mixing model determines the computational effort required.
Localness of mixing is of particular importance. Lagrangian simulations re-
solve turbulence scales down to the level of separation between particles.
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At the Lagrangian DNS limit, where all scales of turbulence are resolved,
then all conventional mixing models become local. As a high quality mixing
model, MMC can perform well with fewer particles making practical combus-
tion applications with realistic chemistry computationaly affordable. Here, we
have introduced sparse-Lagrangian simulations where the characteristic par-
ticle spacing is larger than the grid size of the DNS or LES dynamic field.
With such a coarse representation of the reactive scalars we do not intend to
model the finest details of their turbulent fields, but rather to accurately model
the joint distributions of scalars. With this perspective the sparse-Lagrangian
simulations represent an FDF model.

The generalised MMC concept is tested for a partially premixed jet diffusion
flame (Sandia Flame D). The scheme utilises LES for the dynamic field and a
sparse-Lagrangian MMC method for the scalars. The reference space consists
of a single variable set equal to the LES filtered mixture fraction. Simulations
are performed using only 35,000 Lagrangian particles (of these only 10,000 are
chemically active) on a single workstation. The relatively low computational
cost allows the use of realistic chemical kinetics containing 34 reactive species
and 219 reactions. Two different particle-pair mixing schemes are tested: the
first mixes all particle-pairs to a certain extent; and the second (which is
more similar to conventional versions of Curl’s model) mixes a certain number
of particle-pairs fully and leaves the remaining pairs unmixed. The results
show that sparse-Lagrangian MMC is able to produce realistic conditional
distributions of reactive scalars at a relatively low computational cost. The
mixing scheme can be tuned to produce varying levels of local extinction; here
we showed that the second mixing scheme produces about twice the level of
conditional rms fluctuations despite having the same minor dissipation time
scale. Although nominating the optimal set of parameters that enforces the
”correct” level of conditional fluctuations can be achieved only on the basis
of extensive MMC/LES simulations of different test cases and is evidently
premature at this stage, the presented work demonstrates the MMC ability
of controlling these fluctuations in a very realistic manner and using a small
number of particles.
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9 List of Figure Captions

(1) Schematic of generalised MMC localisation. The contour plot is a 2D
region of the MMC reference field given by the filtered mixture fraction.
Points A through D denote the location of four Lagrangian particles.

(2) Scatter plots of temperature, O2 and H2 versus Z at x/d = 7.5. Exper-
imental data – left; MMC with mixing scheme 1 – middle; MMC with
mixing scheme 2 – right.

(3) Scatter plots of temperature, O2 and H2 versus Z at x/d = 15. Exper-
imental data – left; MMC with mixing scheme 1 – middle; MMC with
mixing scheme 2 – right.

(4) Scatter plots of temperature, O2 and H2 versus Z at x/d = 30. Exper-
imental data – left; MMC with mixing scheme 1 – middle; MMC with
mixing scheme 2 – right.
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Figures

Fig. 1. Schematic of generalised MMC localisation. The contour plot is a 2D region
of the MMC reference field given by the filtered mixture fraction. Points A through
D denote the location of four Lagrangian particles.
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Fig. 2. Scatter plots of temperature, O2 and H2 versus Z at x/d = 7.5. Experimental
data – left; MMC with mixing scheme 1 – middle; MMC with mixing scheme 2 –
right.
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Fig. 3. Scatter plots of temperature, O2 and H2 versus Z at x/d = 15. Experimental
data – left; MMC with mixing scheme 1 – middle; MMC with mixing scheme 2 –
right.
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Fig. 4. Scatter plots of temperature, O2 and H2 versus Z at x/d = 30. Experimental
data – left; MMC with mixing scheme 1 – middle; MMC with mixing scheme 2 –
right.
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