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Abstract

This work investigates the problem of distinguishing modelling assumptions and numerical errors in sparse-

Lagrangian FDF (Filtered Density Function) methods. A new interpretation of sparse modelling with Curl’s

mixing, which does not require an additional observation scale nor filtering, is given. The diffusion effects induced

by mixing, which were previously interpreted as numerical errors, are now treated as modelling instruments. This

ability of controlling numerical errors with the purpose of modelling physical quantities is one of the advantages

of Lagrangian particle methods in turbulent reacting flows. The development of stochastic methods which use

Lagrangian particles has been ongoing for many years, although the exact interpretation of the nature of such

particles varies within the literature. Here we briefly discuss these interpretations and introduce the new term –

“Pope particles” – to unify terminology used for the particle simulations of turbulent reacting flows.

1 Introduction

The Filtered Density Function (FDF) methods [1–4] represent an adaptation of the Probability Density Function

(PDF) approach [5] for LES (Large Eddy Simulations [6]) conditions. LES is based on the concept of resolving

the largest scales in turbulent flows while the smallest (subfilter or subgrid) scales are modelled. In recent decades

both LES and PDF methods have undergone impressive developments stimulated by an increase in computational
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power. In the framework of LES the distinction between numerical and modelling errors is not always clear [7].

It seems that the most commonly used form of LES, with a filtering operation indivisibly attached to numerical

grid, does not represent a pure model nor a pure numerical method, but is a mixture of both. The FDF methods in

general, and especially the sparse-Lagrangian FDF methods (discussed below), are linked to the LES methodology

and hence in their applied form they too may represent mixture of a model and a numerical method. Finding an

optimal interpretation for the modelling and numerical errors in sparse-Lagrangian simulations is the subject of the

present work.

It is commonly argued that a proper scientific method should distinguish a model from its numerical imple-

mentation – this ensures repeatability and consistency of the simulations as well as adequate understanding of the

model properties. A model that is inseparably linked to its numerics is likely to be sensitive to the particulars of

a specific numerical implementation. Simulation results produced by these models can be difficult to reproduce

consistently under changing computational conditions. Increased number of particles or grid points in simulations

can be used differently in simulations. In the present work, we use the term “convergence to a model” to refer to

the case when numerical errors become negligible, although, obviously, this type convergence does not eliminate

modelling errors. Another type of convergence, brought about by increasing the number of grid points and/or

Lagrangian particles in order to resolve all of the scales of turbulence is referred to as “convergence to DNS”.

In Ref.[8] these convergencies are studied as convergence with intensification and convergence with localisation.

From an applied perspective, convergence to a model is computationally expensive and an engineer may be bet-

ter off by reducing the overall error (i.e. modelling plus numerical errors) while keeping the computational cost

relatively low. This approach, although reasonable and computationally efficient, results in a strong coupling be-

tween the model and the numerical scheme. The differences in simulation strategies noted above may be related to

methodological differences between the disciplines of Science and Engineering [9]. Science is primarily concerned

with a thorough understanding and consistent repeatability of the results while Engineering is more interested in

their practical utility and affordability.

The FDF methods for simulating turbulent reacting flows reproduce the statistical distributions of the subfilter

(or subgrid) quantities by stochastic modelling. The FDF methods (like the PDF methods from which they evolved)

are formulated from a Lagrangian perspective and the use of stochastic particles brings significant advantages.

The nature of these particles is discussed in detail in the next section. Typically, Lagrangian schemes permit a
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greater level of control over numerical diffusion than do Eulerian schemes. Perhaps the most important benefit

of the Lagrangian FDF methods is that the chemical source terms, which are highly non-linear and sensitive

to small variations in composition, are evaluated exactly. Despite these formidable advantages there is a large

computational cost associated with FDF simulations. The emergence of sparse-Lagrangian FDF methods [10, 11],

where the number of Lagrangian particles is much smaller than the number of Eulerian grid points, significantly

reduces the computational cost associated with FDF methods; it even brings the cost below the cost of evaluating

reactive scalars by Eulerian LES alone. The opposite case of having many particles per Eulerian cell is called

intensive.

It is generally assumed that an insufficient number of particles or grid points will induce large numerical

errors. As the number of particles is relatively small under sparse conditions, this inevitably brings questions

about numerical accuracy and the separation of modelling and numerical errors. However, the Lagrangian FDF

approach includes the option of utilising the stochastic fluctuations (which from a more conventional perspective

would seen as numerical errors) as modelling tools. This conversion of a weakness into a strength is an inherent

feature of the FDF methodology. Of course we do not rule out the possibility of interpreting the numerical errors

in Eulerian LES in this FDF-like manner (i.e as fluctuating quantities modelling subgrid behaviour). In fact there

are some reports that numerical errors may be used to partially offset modelling errors in conventional Eulerian

LES [12, 13]. If this is the case, the useful fraction of the errors have to be separated from the rest of the numerical

method, then analysed and explicitly labelled as modelling quantities. Here this separation, analysis and labelling

of is performed only for the sparse-Lagrangian FDF approach.

In the present work, we consider convergence to a model under conditions of a sparse distribution of particles.

Our consideration is conceptual and performed for the case of constant density. The errors, which were previously

seen as numerical errors, are now analysed and treated as modelling instruments. The issue of numerical con-

vergence and accuracy in intensive FDF methods was previously analysed in Ref.[3, 4]. Convergence to DNS in

sparse simulations was investigated in Ref.[8]. Our present interpretation of the sparse-Lagrangian methods differs

from Ref.[14]: the present treatment is more direct, does not involve an additional observation scale and does not

need explicit filtering of the simulated functions at that observation scale.
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2 Pope particles

Particles have traditionally played a prominent role in Fluid Mechanics. Fluid particles move with the local

velocity of the fluid while Brownian particles not only move with the fluid velocity but are also engaged in a

random walk, which continuously alters their positions and corresponds to the process of diffusion. The exact

interpretation of the nature of these particles may vary. For example Brownian particles may be models for fluid

molecules or small physical particles which are immersed in a flow, alternatively Brownian particles may be purely

notional particles that are defined from a mathematical perspective. Fluid and Brownian particles do not possess

scalar properties and can represent scalar concentrations only collectively by their number density.

The remarkable expansion of Lagrangian PDF methods during the last few decades is associated with another

type of particles. The term “stochastic particle” was introduced in the review [5] which laid the foundations of

the Lagrangian PDF methods. According to this review, the stochastic particles are interpreted as models for the

motion of fluid particles and scalar values (i.e. the thermochemical composition of the fluid) evaluated at particle

locations. The model is a Markov process which involves continuous movements in physical space and possibly

discontinuous mixing between particles. The particle distributions are determined in a numerically efficient way

by solving stochastic differential equations. The governing PDF equation for stochastic particles involves both

Fokker-Planck and Poisson-type terms [5]. The parameters of the stochastic process are selected to consistently

match the PDFs of the particles with the PDFs of the physical scalars and velocities in the turbulent flow.

The subsequent development of Lagrangian methods has resulted in the evolution of that original stochastic

particle concept. Application to boundary layer conditions required the introduction of particles whose position

in physical space is subject to Brownian fluctuations [15]. Stochastic particles became a part of hybrid methods

that combine Lagrangian stochastic simulations of the PDF of reacting scalars with Eulerian solutions of the

Navier-Stokes equation [16]. The hybrid FDF approach [3, 4] adapts the concept of this hybrid PDF models

for LES conditions. The particles, which are used in the stochastic formulation of the FDF concept [3], follow

the LES resolved large-scale motions in physical space and model the subgrid fluctuations. The emergence of

sparse-Lagrangian FDF methods [10, 11] resulted in consideration of sparse particle systems that are moved on the

background of Eulerian velocity fields that are much better (or fully) resolved. Under these conditions, stochastic

particles follow the trajectories of Brownian or fluid particles and may serve not only as models but also as tools

of direct numerical simulation (DNS) of scalar transport [8]. The development of hybrid methods has resulted
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not only in the convergence of PDF, RANS and LES/DNS but also in the synergy of PDF methods and models

based on the use of the mixture fraction — namely the Flamelet [17, 18] and CMC [19] methods. Particles used

in the MMC approach [20], which effectively unifies PDF and CMC methodologies, are traced in an extension of

the physical space by MMC reference variables [10]. We refer to this combined physical/reference space as the

extended physical space.

The previous paragraphs illustrate the great breadth of use of stochastic particles since their conceptualisa-

tion. It should be noted that the term “stochastic particles” was not universally accepted beyond the area of Fluid

Mechanics despite the cross-disciplinary use of this term, to refer to particles of any kind that exhibit some sort

of stochastic behaviour. Even in the literature dedicated to stochastic modelling of reacting flows, the use of the

term “stochastic particles” is often mixed up with other similar terms. The subsequent major reviews and books

on modelling of reacting flows [17, 21–26] use various terms (Lagrangian particles, notional particles, stochastic

trajectories, etc) to denote essentially the same thing — the stochastic particles introduced by Pope [5]. In publica-

tions on atmospheric dispersion, the term “marked particles” is reserved for notional particles without properties or

mixing while the stochastic particles with properties and mixing are used without any specific term being assigned

to them [27]. The existing terminological uncertainty indicates the need for a more general name for particles

used in stochastic simulations of reacting and non-reacting flows that can encompass and unify the different terms.

Therefore, we suggest the term “Pope particles”, which is accurately defined below, and believe that this definition

directly addresses the need. It is also intended that the term “Pope particles” will serve as an acknowledgment of the

outstanding contribution of S.B. Pope to Science and Engineering and especially to his crucial role in introducing

the methodology and establishing the principal framework for stochastic Lagrangian modelling of reacting flows.

It is expected that the term “Pope particles” will receive cross-disciplinary recognition and that interpretations of

Pope particles will continue to evolve in line with future developments in the area.

Pope particles are used to simulate a variety of properties in turbulent reacting flows. Unlike marked particles

which are fully characterised by their locations, Pope particles have a set of properties and values of these properties

are assigned to, or modelled by, each of the particles. These properties include scalars and, possibly, velocities and

other flow parameters needed in simulations. Since fluid velocity and scalars are continuous fields when considered

from the Eulerian perspective, the assigned properties are understood as the values of these fields evaluated at the

location of the particles.
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We now define Pope particles as notional particles with assigned properties that

1. model or follow the trajectories of fluid particles, Brownian particles or molecules in physical or extended

physical space;

2. model the assigned properties with the assistance of a mixing model;

3. in reacting flows evolve due to chemical reactions.

The essential and distinctive features of Pope particles are that they have a set of assigned property values

and a mixing operation is performed on them which affects the values of those properties. Mixing may involve

various forms of direct exchanges between particles or interactions with mean values. The mixing models that are

commonly used in Lagrangian simulations (Curl’s and modified Curl’s models, IEM, EMST, MMC and others)

are repeatedly reviewed in publications [5, 17, 21–26].

In the present work we use Pope particles in the context of hybrid sparse-Lagrangian FDF/LES methods. The

particles have a certain PDF which, with the appropriate selection of parameters, is a model for the FDF. Each

particle is representative of the PDF, but due to the low number of particles used in sparse simulations we may

not be able to evaluate that PDF locally and instantaneously. Irrespective of our ability to evaluate it the particle

PDF exists whether we know its distribution or not. Statistical quantities of interest (i.e. moments of the PDF)

can be accumulated locally over a long period of time or instantaneously over a larger volume containing a greater

number of particles. Alternatively, many particles can be used under conditions of convergence to a model to

populate the simulations and visualize the PDF both locally and instantaneously. Obviously, this latter option

imposes a significant computational cost.

The random walk of particles p = 1, ..., n with scalar properties and mixing is represented by the following

stochastic Ito equations

dxip = Ai (xp, t) dt+ bij (xp, t) dωjp (1)

dZ
(α)
p

dt
= W (α)

p +

[
dZ

(α)
p

dt

]
mix

(2)

Here xip is ith physical coordinate of particle p and Z(α)
p represents the scalar properties of this particle. The

summation convention over repeated indices applies here and further in the paper. The particle PDF is given by

P (Z,x; t) = PZ(Z|x; t)Px(x; t) where Px is linked to particle number density ρn and the overall number of
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particles n by Px = ρn/n. Both Px and ρn are constant in a constant density flow. The PDF PZ is evaluated for a

given realisation of the velocity field and governed by a modified Fokker-Planck equation

∂PZ
∂t

+
∂AiPZ
∂xi

− ∂2BijPZ
∂xi∂xj

+
∂W (α)PZ
∂Z(α)

=
[
dPZ
dt

]
mix

(3)

Here, ωjp represent Wiener processes, Z = {Z(1), ...Z(nZ)} are simulated scalar values assigned to the particles,

W = W (Z) is the chemical source term, Ai is the drift coefficient linked to fluid velocity, Bij = bilbjl/2 is

the diffusion coefficient, and [·]mix represents the mixing operation. Note that notation
[
dZ(α)/dt

]
mix is symbolic

and does not necessarily imply that conventional derivatives dZ(α)/dt exist. The specific forms of the model

parameters are discussed further in the remaining sections.

3 Convergence to a model in sparse-Lagrangian simulations

The number of Pope particles under sparse conditions is much smaller than the number of Eulerian grid points.

Hence, the velocity field evaluated on the Eulerian gird is much better resolved than the reacting scalars evaluated

on the particles. In our present consideration, we assume that a fully resolved velocity field is available in the

simulations; that is the Pope particles are transported within a DNS-simulated velocity field. That assumption,

rather than the more practical case of a filtered velocity field by LES, is a conceptual simplification that avoids the

added confusion of there being several (Lagrangian and Eulerian) filter scales. We consider the case of constant

density, which is another simplifying assumption. In practical applications, sparse-Lagrangian simulations are

coupled to an LES-simulated velocity field and the molecular diffusion coefficient in the FDF transport equation

is replaced by a turbulent diffusion coefficient associated with the Eulerian LES filter scale.

Convergence to a model implies increasing the number of Pope particles to a very large value in a way that

reduces numerical error but does not significantly alter the substance of the model. As discussed above, this

type of convergence is not particularly useful from a practical perspective — many particles produce modelling

effects which are similar to those for relatively few particles and furthermore convergence to a model would be

difficult to achieve due to practical limitations on computing resources. A larger number of particles can be more

efficiently used to progressively resolve the finer turbulent scales and effectively approach the DNS limit. This

convergence of Lagrangian simulations to DNS was analysed in Ref.[8] and is not considered further in the present

work. From a theoretical perspective, however, convergence of a numerical scheme to a model permits a thorough
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characterisation of that model. For sparse simulations an analysis of this type of convergence removes the main

conceptual difficulty — although properties of the flow exist locally and instantaneously those properties are known

accurately only at a fairly sparse set of particles and evaluation of all local and instantaneous properties is possible

only if the observation scales are increased or more particles are added.

The sparse particle distribution effectively applies a filtering operation on the field as explained below. The

fluctuations at the sub-Lagrangian-grid (or Lagrangian filter) scale are modelled by the fluctuations of the particle

values z = Z − 〈Z〉. In this section, we consider a selected scalar and the index ”α” is omitted for clarity. In

the stochastic differential equations (1) and (2) governing the Lagrangian FDF the mixing operator is the only

term which involves an interaction between particles (either directly or via a mean) and the remaining spatial

transport and chemical reaction terms are applied to individual particles in isolation. Therefore it is only the

mixing operation which is affected by the spacing between particles and hence affected the number of particles

used in the simulations. The practices employed in sparse simulations [11], when very few particles are present, is

to select particles for mixing which are closest to each other in the extended physical space. This space is defined as

the product of physical space and MMC reference space. We denote the characteristic mixing distance in physical

space as rm. For sparse simulation conditions rm coincides with the characteristic distance between the mixing

particles. The characteristic time of the mixing operation should be selected in compliance with the relationships

of the inertial interval

τmix ≡
〈
z2
〉

N̄
∼ τm ≡

(
r2
m

ε̄

)1/3

(4)

where N̄ and ε̄ are the filtered averages of scalar dissipation and dissipation of kinetic energy, respectively. Here,

the angular brackets denote averages over the ensemble of realisations of the stochastic processes ωjp while the fil-

tering operation is introduced in the following section. The sparse model does not resolve scalar fields at distances

r ≤ rm.

Mixing between particles separated by a finite distance generates a substantial diffusion which was called

”numerical diffusion” in previous publications [8, 28]. In the present work, this diffusion will be interpreted

differently and is referred to as mixing-induced diffusion. As the number of Pope particles increases, we have two

major options: I) to reduce the mixing distance; or II) to keep the mixing distance approximately the same. In

case I we keep τmix unchanged from its value for sparse conditions; indeed, if we reduce τmix, this would enforce a

new model, similar to the original sparse model but with a higher resolution. Progressive refining of the resolution
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corresponds to convergence to DNS and is not of interest here. Reducing the mixing distance while keeping τmix

the same will result in inconsistent modelling unless the model is modified in some other way — mixing induced

diffusion is negligible under conditions of complete localization and 〈Z〉 represents a fully resolved scalar field but

since τmix is not reduced an excessive variance
〈
(z)2

〉
= N̄τmix will be present in the simulations. Thus consistent

modeling for case I requires the introduction of a modified turbulent diffusion associated with the scale rm and

defined by

Dt ∼
(
ε̄r4
m

)1/3
=
r2
m

τm
(5)

The turbulent diffusion removes the smallest fluctuations from 〈Z〉 and these are emulated instead by the fluctu-

ations z. As shown in the next section the modification required for case I is achieved by selecting A = Ū and

using B = D + Dt. The small-scale fluctuations induced by u = U− Ū are now modelled by the turbulent

diffusion Dt and setting A = U instead would result in an excessive level of small-scale random particle motions.

(As previously noted, we assume that fully resolved velocity fields are available in the simulations.)

The other approach, case II, preserves the original mixing length given by rm although this length is not

linked any more to the distance between the particles. This means that within a distance of rm of a given particle

there are many particles of which any one can be selected randomly for mixing. In this case, mixing-induced

diffusion with coefficient Dm plays the role of turbulent diffusion. This convergence case is the closest of the two

cases to the conditions observed under the (original) sparse simulation conditions. The differences to the original

conditions are related to variations of distances between the particles. Indeed, under the original sparse conditions,

mixing couples are formed by the closest particles. The PDF of a distance between closest particles can be easily

determined as follows. Since positions of randomly walking particles are statistically independent from each other,

the probability of having no other particles in a volume Vr around a given particle is given by

P(nVr
= 0) =

(
1− Vr

Vn

)n
=
(

1− ρn
Vr
n

)n
→
n�1

exp (−ρnVr) . (6)

Here, ρn is the number density of particles, Vn = n/ρn is the effective volume of the domain containing n particles

and we assume that the number of particles n is large so that n−1 ≈ n. The volume, Vr, depends on the parameter

r which can be selected as the physical distance between particles or in any other suitable way. The distribution of

distances between closest particles, which is linked to the probability of having no other particles within volume
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Vr is given by

Pr =
∣∣∣∣∂P(nVr

= 0)
∂r

∣∣∣∣ =
∂Vr
∂r

ρn exp (−ρnVr) . (7)

If we increase the number of particles and specify mixing vicinity by condition r ≤ rm, the distribution of dis-

tances between particles is subject to changes. Since the model for case II is close to the original sparse model the

→differences between two such simulations are interpreted as numerical errors according to our present consid-

erations. As noted previously, the numerical errors do not always represent a negative feature of the simulations.

In principle, particle mixing pairs in a case II simulation can be selected in accordance with the PDF Pr given by

(7). However, as the magnitude of the characteristic distance between mixing particles has a far more significant

impact on simulations than does the PDF of this distance, such a selection algorithm seems unnecessary.

To summarise, we consider two limiting approaches for convergence to a model

Case I) subfilter turbulent diffusion is modelled by particle random walk and

Case II) subfilter turbulent diffusion is modelled by mixing-induced diffusion (previously called ”numerical dif-

fusion”)

Case II is closes to the conditions in the original sparse simulations while the modelling strategy of case I is

closer to conventional (intensive) simulations.

4 Modelling the FDF equation

For the reactive scalars Y (α) which are governed by the equation

∂Y (α)

∂t
+
∂Y (α)U i

∂xi
−D0

∂2Y (α)

∂xi∂xi
= W (α) (8)

the FDF transport equation is given by [3, 4]

∂F̄

∂t
+∇ ·

(
ŪY F̄

)
+
∂(W (α) +D0(∇Y (α))Y )F̄

∂Y (α)
= 0 (9)

where

F ≡ δ(Y −Y◦) (10)

is the fine grained distribution, whose filtered average F̄ represents an FDF. In the above a sum is evaluated over

repeated indicies. The variable Y◦ is the sample space variable for Y, although we omit superscript ”◦” when the
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use of sample space variables is obvious from the context. The subscript “Y ” is used to denote filtering conditional

on Y

ϕY =
ϕF

F̄
(11)

for any ϕ. The filtered quantities are introduced by applying the following filtering operation

ϕ(x) =
∫
∞
ϕ(x◦)Ψr(x− x◦)dx◦ (12)

to any fully resolved field ϕ(x) where the filter kernel Ψr is characterized by the filtering scale r. As differential

diffusion effects are neglected here, the FDF governing equation can be rewritten in the form

∂F̄

∂t
+∇ ·

(
ŪY F̄

)
+
∂W (α)F̄

∂Y (α)
= D0∇2F̄ −

∂2N̄
(αβ)
Y F̄

∂Y (α)∂Y (β)
(13)

where N (αβ) = D0∇Y (α) · ∇Y (β) is the dissipation tensor and D0 is assumed to be constant.

4.1 Model for Case I dominated by the random walk

The random walk model (case I) simulates subfilter turbulent diffusion by the random walk of Pope particles and

presumes the following approximations

Ai = Ū i (x, t) +
∂B

∂xi
, Bij = δijB, B = Dt +D0 (14)

where Dt is the effective turbulent diffusion coefficient for subfilter fluctuations. The PDF equation (3) takes the

form

∂PZ
∂t

+∇ · (ŪPZ) +
∂W (α)PZ
∂Z(α)

= ∇ · (B∇(PZ)) +
[
dPZ
dt

]
mix0

(15)

Here, we use the index “mix0” to stress that mixing is fully localized (i.e. performed between particles located at

distances r → 0). The specific form of mixing in this equation is not important for matching the FDF equation as

long as mixing is compliant with the well-known mixing constraints [3, 4]. Here, we stress two of these constraints∫ [
dPZ
dt

]
mix0

dZ = 0 (16)

and ∫
Z(α)

[
dPZ
dt

]
mix0

dZ =

[
d
〈
Z(α)

〉
dt

]
mix0

= 0. (17)

One can see that equation (15) is a consistent model for equation (13) with the following modelling approximations

−ūY F̄ ' Dt∇PZ (18)
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and

−
∂2N̄

(αβ)
Y F̄

∂Y (α)∂Y (β)
'
[
dPZ
dt

]
mix0

(19)

where ūY ≡ ŪY − Ū and the symbol “'” means “is modeled by”. These approximations are conventional in

FDF modelling [3, 4, 25, 29].

4.2 Model for Case II with diffusion generated by mixing

In this case the subfilter turbulent diffusion is simulated using diffusion induced by mixing, which is not fully

localized. Unlike in Ref.[14], we do not apply any explicit filtering operation to PZ while implicit filtering is ef-

fectively performed by non-local mixing effects. The scales smaller than the mixing distance, which is assumed to

belong to the inertial interval of turbulence, can be called “submixing” scales in accordance with conventional LES

terminology. Surrounding each particle is a mixing volume or mixing vicinity from which mixing partners for that

particle are selected. The size of mixing volume is determined by mixing distance. The modelling approximations

depend significantly on the type of mixing used in the simulations. In this work, we consider only Curl’s mixing

[30] (or modified Curl’s mixing [31]) which can be specified by the following equations for mixing of any two

particles denoted here as particles “1” and “2” [8]

Z1 = Z◦1 + η̃(Z◦2 − Z◦1) (20)[
dPZ(Z|x1)

dt

]
mix

= (n− 1)Px
∫
θ12 [PZ(Z|x1) ∗ PZ(Z|x2)]mix dx2

[P1(Z1|x1) ∗ P2(Z1|x2)]mix ≡
∫
Pt (Z1|Z◦1 , Z◦2 )P1(Z◦1 |x1)P2(Z◦2 |x2)dZ◦1dZ

◦
2

where the superscript “◦” is used to denote the values before mixing, parameter θ determines intensity of mixing

as discussed in Ref. [8], Pt is transitional probability, and a new operator [P1 ∗ P2]mix has been introduced for

convenience of notation. We presume that the extent of mixing η is randomly selected as suggested in modified

Curl’s model [31]. As previously noted, the particle values are treated as being statistically independent; that is

P (Z1,x1, Z2,x2) = PZ(Z1,x1)PZ(Z2,x2). We also use Bayes theorem P (Z◦1 ,x1) = PZ(Z◦1 |x1)Px and note

that

Px

[
dPZ(Z|x1)

dt

]
mix

=
[
dP (Z,x1)

dt

]
mix

= (n− 1)
∫
θ12 [P (Z,x1) ∗ P (Z,x2)]mix dx2.

As shown in the Appendix, the mixing operator can be represented by the following expansion[
dPZ
dt

]
mix

=
[
dPZ
dt

]
mix0

+
[
dPZ
dt

]
mix2D

+
[
dPZ
dt

]
mix2N

+ ...
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where “mix0” denotes a fully localized mixing compliant with the constraint (17), “mix2D” denotes the diffusive

effect of mixing and “mix2N” denotes a diffusion-related generation or dissipation term[
dPZ
dt

]
mix0

= θ̂ [PZ ∗ PZ ]mix

[
dPZ
dt

]
mix2D

= ∇ ·

(
θ̂I

2
[PZ ∗ ∇PZ ]mix

)
(21)

[
dPZ
dt

]
mix2N

= − θ̂I
2

[∇PZ ∗ ∇PZ ]mix (22)

where I = r̂2
1 is dependent on the radius of the mixing volume which is assumed to be spherical with r̂1 ∼ rm. A

more complete set of equations that presented above can be found in the Appendix and also Ref. [8]). All of these

terms are compliant with constraint (16). The term “mix2D” is diffusive and changes the mean values,
〈
Z(α)

〉
,

while the term “mix2N” satisfies (17) and represents a generation of variance due to non-localness of mixing.

Existence of this term can be illustrated by applying a Curl’s mixing operation to a field with z = 0 and a constant

gradient ∇Z = const. Mixing that is not fully localized results in appearance of some variance z2 > 0 due to

exchanges between particles with different values of Z.

With the following selection of the parameters

A = Ū (x, t) , B = D0 (23)

where formula for Ai does not involve gradients of density ρ and molecular diffusivity D0 since these values are

assumed constant. The PDF equation now takes the form

∂PZ
∂t

+∇ · (APZ) +
∂W (α)PZ
∂Z(α)

=
[
dPZ
dt

]
mix0

+
[
dPZ
dt

]
mix2N

+

+∇ ·

(
B∇PZ +

θ̂I

2
[PZ ∗ ∇PZ ]mix

)
(24)

This equation is consistent with the exact FDF equation (i.e. PZ ' F̄ ) by making the following modelling

approximations:

−ūY F̄ '
θ̂I

2
[PZ ∗ ∇PZ ]mix (25)

−
∂2N̄

(αβ)
Y F̄

∂Y (α)∂Y (β)
'
[
dPZ
dt

]
mix0

+
[
dPZ
dt

]
mix2N

(26)

We note that the modelled turbulent transport terms of (25) appear in the FDF/PDF equations in a consistent

divergent form (see discussion in the appendix) and that the modelled terms of (26) preserve mean values (Ȳ and

〈Z〉).
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Another issue relevant to convergence to a model that needs to be mentioned here is generation of conditional

fluctuations by the mixing operators — the performance of Curl’s mixing in this respect is dependent on the details

of the mixing scheme. As the number of Pope particles increases, generation of conditional fluctuations by Curl’s

mixing needs to be controlled. Generation of conditional fluctuations was specifically analysed in Ref.[32] and is

not further considered here.

5 Equations for the scalar mean and variance

In this section we investigate how the two models (cases I and II) perform in simulating transport of means and

variances. For the sake of simplicity, the index ”α” is again omitted although equations are valid for any of the

scalars α = 1, ..., nZ The equations for the first and second moments can be derived from the FDF equation as

∂Y

∂t
+∇ ·

(
UY

)
−D0∇2Ȳ = W (27)

and

∂Y 2

∂t
+∇ ·

(
UY 2

)
−D0∇2Y 2 = 2WY − 2D0(∇Y )2

. (28)

The equation for the variance can be obtained from the moment equations as

∂
〈
y2
〉
F̄

∂t
+∇ ·

(〈
Uy2

〉
F̄

)
−D0∇2

〈
y2
〉
F̄

= 2 〈wy〉F̄ − 2∇Ȳ · 〈uy〉F̄ − 2D0

(
(∇Y )2 − (∇Y )2

)
(29)

were y = Y − Ȳ and the angular brackets indicate averaging by integration with the FDF [33, 34], for example

〈
Uy2

〉
F̄

=
∫

(Y − Ȳ )2ŪY F̄ (Y )dY. (30)

Although 〈Y 〉 = Ȳ , this is not necessarily valid for other quantities. For example, 〈y〉 = 0 but ȳ 6= 0. Note that

some of the quantities (e.g. (∇Y )2) may be not defined in terms of F̄ (Y ).

The corresponding moment and variance equations for the models are given by

∂ 〈Z〉
∂t

+∇ · (Ã 〈Z〉)−∇(B∇〈Z〉) = 〈W 〉+
[
d 〈Z〉
dt

]
mix

(31)

∂
〈
Z2
〉

∂t
+∇ · (Ã

〈
Z2
〉
)−∇(B∇

〈
Z2
〉
) = 2 〈WZ〉+

[
d
〈
Z2
〉

dt

]
mix

(32)

∂
〈
z2
〉

∂t
+∇ · (Ã

〈
z2
〉
)−∇(B∇

〈
z2
〉
) = 2B (∇〈Z〉)2 + 2 〈wz〉+

[
d
〈
z2
〉

dt

]
mix

(33)

where we introduce Ã = A−∇B.
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5.1 Mean and variance for model case I

In the model case I dominated by the random walk we obtain

∂ 〈Z〉
∂t

+∇ · (Ū 〈Z〉)−∇(B∇〈Z〉) = 〈W 〉 (34)

∂
〈
z2
〉

∂t
+∇ · (Ū

〈
z2
〉
)−∇(B∇

〈
z2
〉
) = 2B (∇〈Z〉)2 + 2 〈wz〉 − 2

〈
z2
〉

τmix
(35)

where

Ū = A−∇B = Ã, B = Dt +D0, τmix ≡
1

〈γ̃〉 θ̂
, γ̃ ≡ η̃ − η̃2.

Where θ̂ is overall intensity of mixing as specified in the Appendix and Ref. [8]. It is easy to see that consistency

of the model and the transport equations is based on the following modelling approximations

〈uy〉 ' −Dt∇〈Z〉 (36)

〈
uy2

〉
' −Dt∇

〈
z2
〉

(37)

D0(∇Y )2 '
〈
z2
〉

τmix
(38)

These approximations are conventional in LES and FDF modelling.

5.2 Mean and variance for model case II

Equations for the moments of Curl’s mixing operator accounting for non-local mixing effects are derived in the

Appendix. With the assumption that mixing volume is spherical such that Iij = δijI then the equations for the

mean and variance take the form

∂ 〈Z〉
∂t

+∇ · (A 〈Z〉)−∇
(

(B +D(1)
m )∇〈Z〉

)
= 〈W 〉 (39)

∂
〈
z2
〉

∂t
+∇·(A

〈
z2
〉
)−∇

(
(B +D(2)

m )∇
〈
z2
〉)

= 2B (∇〈Z〉)2 +2 〈wz〉−2

〈
z2
〉

+G

τmix
+2D(1)

m (∇〈Z〉)2 (40)

where for consistency with the moments of the FDF transport equation the model parameters are given by

A = Ū, B = D0, τmix =
1

〈γ̃〉 θ̂
, γ̃ = η̃ − η̃2, (41)

D(1)
m =

θ̂I 〈η̃〉
2

, D(2)
m =

θ̂I
〈
η̃2
〉

2
, I = r̂2

1, G =
I

2
(∇〈Z〉)2 (42)
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Note that D0 is assumed constant. The derived equations are consistent with scalar transport equations with the

following modelling approximations

〈uy〉F̄ ' −D
(1)
m ∇〈Z〉 (43)

〈
uy2

〉
F̄
' −D(2)

m ∇
〈
z2
〉

(44)

D0(∇Y )2 '
〈
z2
〉

+G

τmix
(45)

It can be seen that, unlike in case I, the transport coefficients for the two moments can be different, although both

coefficients D(1)
m and D(2)

m have the correct magnitude of ∼ r̂2
1/τmix provided that τmix is selected according to (4).

The additional dissipation term G/τmix in the above is related to the fact that variance within the mixing volume

is greater than
〈
z2
〉

due to changes in the scalar mean 〈Z〉 within this volume. Indeed, the dissipation rate is

determined by the difference Z2 − Z1 averaged over the mixing volume

G2 ≡
〈
(Z2 − Z1)2

〉
V

=
〈
z2

1

〉
+
〈
z2

2

〉
V

+
〈
(〈Z2〉 − 〈Z1〉)2

〉
V
≈ 2

(〈
z2
〉

+G
)

(46)

The variance G2 exceeds 2
〈
z2
〉

by 2G inducing additional dissipation within the mixing volume.

The coefficient A is selected in (41) as the filtered velocity Ū. However velocity filtering is not recommended

for highly sparse conditions. Indeed, putting A = Ū would restrict the random stirring of particles by subfilter tur-

bulent fluctuations to the level corresponding to molecular diffusion and the particles would be forced to repeatedly

form the same mixing couples. This would increase stochastic dependencies between particle values. This is not

a problem when many particles are present in the mixing volume and couples are stirred up by random selection

of mixing partners. The particles can, of course, be stirred up by increasing B and intensifying the random walk.

This, however, introduces additional diffusion and corresponds to an effective combination of model cases I and

II. Velocity filtering may also represent a problem for MMC mixing as considered in the next section.

Replacing A = Ū by A = U in equations (24), (39) and (40) results in the appearance of subfilter frequencies

induced by u = U − Ū. The influence of these frequencies on the scalar field is small due to the dominating in-

fluence of mixing-induced diffusion over modelled scalar fields at these scales. In the diffusion-dominated inertial

region the spectrum of scalar fluctuations decays rapidly (∼ k−17/3 according to Batchelor et. al.[35], where k

is the wave vector), although not exponentially. These fluctuations, although small and not detectable under truly

sparse conditions (highly sparse simulations reproduce equivalent statistics but not small-scale structures of scalar

fields), affect the value of 〈Z〉 but can not be interpreted as resolved components. The interpretation of these vari-
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ations depends on the definition of the converged model: they represent numerical errors if A = Ū at the limit of

n → ∞. These errors (interpreted as numerical) can be eliminated by progressive filtering of the velocity field as

the number of Pope particles n increases and the constraint related to independence of particles vanishes. Indepen-

dence of particles can be practically ensured by A) having a sufficient random component in particle motions or

by B) having a sufficiently large number of particles in the mixing vicinity[8]. Complying with condition B makes

enforcing condition A unnecessary: under these conditions filtering out high-frequency components of velocity

does not affect independence of particles.

The present analysis of the sparse model results in conclusions that may seem paradoxical: mixing-induced

diffusion previously considered as a numerical error is treated as a modelling quantity while fully resolved high-

frequency oscillations of velocity are used for numerical purposes (of stirring particles without generating addi-

tional diffusion) and induce numerical errors. It is possible, of course, to filter equation (24) and assume that

F̄ ' P̄ [14] but this is not the interpretation considered in the present work.

6 Remarks on MMC in sparse-Lagrangian simulations

In general, sparse-Lagrangian simulations may work with different mixing models but so far only MMC-Curl has

been demonstrated to work under sparse conditions[10, 11]. Multiple Mapping Conditioning or MMC [20] is one

of the tools that can ensure a high quality of simulations while using only relatively few Pope particles. Although

MMC may involve many reference (i.e. conditioning) variables, here we consider only a single MMC reference

variable — the DNS-evaluated (Eulerian) mixture fraction f ≡ Yf . Note that the simulations involve another

mixture fraction Zf — a Lagrangian quantity assigned to Pope particles.

In the original MMC [20], the reference variables were represented by continuous Markov processes, while

in generalised MMC [32], only some of the reference variables represented by a Markov family are used for

localisation (conditioning) of the mixing operation. Once we accept generalised MMC, we can use any stochastic

process to simulate reference variables as any (generally non-Markovian) process can be approximated well by a

Markov family of a much larger dimension. For example, it is arguable point that Lagrangian particle trajectories

in a turbulent flow are not Markovian, while tracing these particles with the use of LES or DNS is a Markov family

of a very large dimension, which is determined by the total number of parameters at every grid point and at every
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particle location. Thus, it is legitimate to consider evaluation of the mixture fraction and velocities by LES or

DNS supplemented by a particle tracing algorithm as means of creating reference stochastic process for proper

localisation of mixing. The goal of these simulations is to obtain a reference mixture fraction which is as close

to real mixture fraction as possible. This interpretation corresponds to interpreting generalised MMC as a PDF

method with LES/DNS used simply for producing good reference variables, which are used to improve simulation

of mixing. In this case, the values carried by Pope particles are expected to match the joint PDFs of reacting scalars

but are not required to reproduce filtered fields. The present work gives an alternative interpretation for MMC-

LES/DNS as an FDF method with a Lagrangian filtering scale determined under sparse conditions by distance

between particles, presuming that this filter may be quite coarse compared to the Eulerian LES filter but still has a

reasonable resolution (i.e. the Lagrangian filtering scale belongs to the inertial interval of turbulence).

Application of MMC principles becomes more transparent under conditions of convergence to the model. Since

the mixing volume Vp of a particle p contains many particles under these conditions, a mixing partner for particle

p can be selected among these particles indiscriminately or, if MMC ideas are employed, with preference given to

particles that have the same (or close) value of f as the particle p. The scale of the mixing volume rm determines

the filtering scale but, in accordance with MMC principles[11, 20, 36], the mixing time τmix is now selected as

τmix = cτm (47)

and with c < 1 is smaller than that specified by equation (4). Indeed, in MMC we distinguish minor and major

variations of Zf in the mixing volume GV = Gmj + Gmn [20, 36] where GV =
〈
(Zf − 〈Zf 〉V )2

〉
V

is the

overall variation of Zf within the mixing volume, and Gmj =
〈
(Z̄f − 〈Zf 〉V )2

〉
V
, Z̄f = 〈Zf |f〉V and Gmn =〈

(Zf − Z̄f )2
〉
V

are the major and minor variations, respectively. In major variations, Zf fluctuates jointly with f

while minor variations of Zf are independent of f . The MMC mixing dissipates directly only minor variations and

N̄f = Gmn/τmix while, if MMC is not used, the dissipation is determined by overall variations N̄f = GV /τmix.

Since Gmn < GV and the dissipation rate is a macro-parameter and should be model-invariant, the value of τmix

must be smaller under MMC conditions and c < 1. The condition of having minor dissipation time τmix being

essentially smaller than the overall characteristic dissipation time τm is common for MMC models [36].

The MMC constraint on mixing can be expressed by defining the effective distance dpq between particles p
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and q

d2
pq =

∑
i=1,2,3

(
x

(q)
i − x

(p)
i

)2

r2
i

+

(
f (q) − f (p)

)2
f2
m

(48)

that depends on the selection of characteristic scales r1, r2, r3 and fm. This means that instead of selecting particles

with a given value of f in a spherical mixing volume, one can define a stretched mixing volume such that all

particles within this volume have close values of f . Mixing between particles p and q is allowed (i.e. θpq > 0)

if d2
pq ≤ d2

0 where d0 ∼ 1. Although selecting different physical scales in different directions can be beneficial

for MMC mixing, we select here r1 = r2 = r3 = rm. The MMC mixing has another scale rf = (ε̄/N̄3
f )1/2f3

m

associated with the process and the parameters rm and fm are selected so that rf is noticeably smaller than rm

enforcing close proximity of mixing couples in the mixture fraction space. The volume of mixing vicinity can be

estimated by Vm = r2
m(rm/rf )2/3rf ∼ r

8/3
m r

1/3
f ∼ (ε̄/N̄3

f )1/6r
8/3
m fm assuming that the surfaces of f = const

are fractals having the dimension of 8/3 [17, 37].

The MMC mixing volume has two characteristic scales rm and rf and, consequently, two characteristic coef-

ficients for mixing-induced diffusion Dm ∼ r2
m/τmix and Df ∼ r2

f/τmix are associated with these scales. Here,

we denote Dm as an estimation of D(1)
m , D

(2)
m and other mixing-related diffusion coefficients. We note that if

τmix < τm then r2
f can not be larger than r2

f ∼ ε̄τ3
mix (that is f2

m can not be larger than f2
m ∼ N̄fτmix), other-

wise the diffusion Df would be disproportionally large and generate excessive diffusion in f -space (according to

CMC [19], the correct value of the diffusion coefficient in f -space is N̄f ). At the same time, selecting f2
m much

smaller than N̄fτmix does not improve localisation in the composition space due to presence of minor fluctuations

Gmn ≈ N̄fτmix but, as for any other grid refinement, it does requires additional computational resources. Hence,

the optimal choice of fm should be in line with the following estimation f2
m ∼ N̄fτmix . There is, however, a

side-effect of reducing τmix from τm to cτm and that is the corresponding increase in the diffusion coefficient Dm

from ∼ r2
m/τm to ∼ c−1r2

m/τm. The main spatial effect of the mixing operation on the model is determined by

the mixing-induced diffusion coefficients and we may wish to keep these coefficients the same as τmix decreases.

This requires using a new scale r′m = c1/2rm as the scale defining the mixing vicinity; the filtering scale though

remains rm. Note that this reduction is not possible under the original sparse conditions when the mixing volume

on average contains only a single particle. Improvement in the resolution in f -space results in an increase in rm

and a decreased resolution in other (less important) directions.

Under truly sparse conditions, there is only one partner particle within the mixing volume surrounding a
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given particle; Vm ∼ 1/n. We also note the mixing volume estimate Vm ∼ r
8/3
m fm, which was derived pre-

viously in this section. If the number of particles changes from n1 to n2, we may wish, or if n2 < n1 be

forced, to keep simulations sparse but preserve the original simulating conditions as much as it is possible. Since

these conditions are highly dependent on the treatment of the mixture fraction, we assume fm2 = fm1. Hence

(rm2/rm1)8/3 = Vm2/Vm1 = n1/n2 or for the parameter rm/fm, which determines the strength of mixture-

fraction conditioning in MMC simulations, we obtain rm/fm ∼ n−3/8. This equation represents an estimate for

the expected optimal dependence of the MMC conditioning parameter on the number of particles used in sparse

simulations. This estimate is obtained under specific assumptions given above and needs further investigation but

the trend of increasing rm/fm with decrease in n should be noted.

In many practical cases the relatively higher value of diffusion along the surfaces of f = const would not have

a significant impact on the quality of the simulations as long as the simulations are well-resolved in f -space. In

principle, there could be cases when diffusionDm is excessive and its effect is detrimental: for example high levels

of extinction may need a stricter control over diffusional exchanges between burning and extinct areas (although

we have not observed these difficulties in simulations of the flames D and E that we performed so far [10, 11, 41]).

Possible solutions may involve an increase in the number of Pope particles and/or the introduction of double-

conditioning[38], which requires a second reference variable in order to minimise minor fluctuations. This second

reference variable must be indicative of the locations of extinction zones and their transport by turbulence, while

also possessing a significant degree of independence from particle scalar values.

It is noted that using filtered velocity may present a problem for MMC-LES simulations. Indeed, the scales

∼ rf of velocity components across iso-scalar surfaces need to be resolved in order to accurately represent the

process of diffusion in f -space while a rougher resolution of ∼ rm can be sufficient for other directions. In

principle, it is possible to tackle this problem by introducing highly non-isotropic, flow-dependent filtering; Ψr(x)

in (12) could be stretched along the surfaces of f = const. But filtering velocity field in this way is complicated. It

seems that leaving velocity without Lagrangian-scale filtering is a more practical solution, which is used in actual

sparse MMC-LES simulations [11] where the Eulerian filter scale is much smaller than the Lagrangian filter scale.

As previously noted, our analysis assumes that DNS-generated velocity fields are available to avoid the confusion

of having two filtering scales (Lagrangian and Eulerian). Our analysis remains similar for LES but velocity U

must replaced by ŪE and molecular diffusivity D0 must be replaced by turbulent diffusivity D0 +DEt where the
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subscript ”E” is used to emphasise that this filtering and this turbulent diffusivity are associated with the Eulerian

filtering scale. The scalar transport equation (8) is now replaced by

∂Ȳ
(α)
E

∂t
+
∂Ȳ

(α)
E Ū i

∂xi
− ∂

∂xi

(
(D0 +DEt)

∂Ȳ
(α)
E

∂xi

)
= W̄

(α)
E (49)

If LES are used in simulations, ŪE is a always a filtered velocity but, under highly sparse conditions, we do not

recommend an additional Lagrangian-scale filtering of the particle velocities.

We now give an illustration for the effect of the numerical or mixing-induced diffusion, observed in sparse-

Lagrangian simulations under practical grid resolutions. We consider only one scalar — the mixture fraction

represented by f̄E = ȲE and Zf with W = 0. Since the same diffusion coefficient D0 + DEt is used in both

Eulerian and Lagrangian simulations (that is bij = δij(2D0 + 2DEt)1/2 in (1)), both Eulerian mixture fraction f̄E

and the particle average mixture fraction 〈Zf 〉 satisfy the same equation (49) [8]. In other words, without numerical

diffusion induced by finite-difference nature of the Eulerian numerical scheme and mixing-induced diffusion of

the Lagrangian scheme, profiles of f̄E and 〈Zf 〉 must coincide. The same statement obviously applies to the mean

profiles
〈
f̄E
〉
m

and 〈Zf 〉m which are fully averaged over the ensemble of turbulent fluctuations. Assuming that

the averages are evaluated accurately, any observed differences between profiles of
〈
f̄E
〉
m

and 〈Zf 〉m can be

attributed only to the numerical diffusion of the Eulerian scheme or mixing-induced diffusion of the Lagrangian

scheme.

The simulation results shown here are for Sandia Flame E [39, 40] for which detailed experimental data are

available. The details of modelling methodology, results of the simulations and overall performance of the model

are discussed in other publications [10, 11, 41]. For these simulations the cylindrical computational domain, which

extends 70 jet diameters in the axial direction, contains 1024 × 55 × 32 cells and the smallest finite volume cells

at the axis are 0.5mm × 0.5mm × π/32 radians. This grid resolution is in line with reasonable resolutions used

in practical LES. The maximum ratio of subgrid to total variance in the shear layer close to the nozzle is about

30%. The sparse-Lagrangian FDF calculations with MMC conditioning shown below use nominally only one Pope

particle per 32 LES cells.

Figure 1 demonstrates mean profiles of Eulerian and Lagrangian mixture fractions close to the nozzle. As

expected both profiles are consistent with each other and have a reasonable match with the experimental data.

However, the same profiles, shown for another location further downstream (Figure 2), indicate that the Eulerian

mixture fraction appears to be more diffusive than the Lagrangian mixture fraction. As previously discussed, this
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can be attributed only to the numerical diffusion of the Eulerian scheme. The numerical diffusion effects tend

to be accumulated at downstream locations. This accumulation is less pronounced for the scalar variance, which

is also shown in both figures, due to the balance of production and dissipation of the variance in the jet. Figure

3 demonstrates the same effect for axial values of the mixture fraction. The Lagrangian curve is given without

smoothing to show the effect of stochastic scattering associated with averaging over the particle values.

It should be remembered that Lagrangian simulations presented here are coupled with the Eulerian LES and, of

course, do not represent an autonomous method. Lagrangian simulations, however, can effectively utilise realistic

topological properties of the noticeably diffusive Eulerian mixture fraction and make evaluation of the mixture

fraction by Pope particles less diffusive even if these particles are used at a much lower resolution than the Eulerian

grid. This example illustrates effectiveness of Pope particles (in general and with MMC conditioning in particular)

for controlling numerical diffusion in low-resolution Lagrangian simulations.

7 Conclusions

The case of “convergence to a model” for sparse-Lagrangian FDF model is considered. The number of Pope

particles (i.e. stochastic particles used in the simulations) is deemed to approach the limit of infinity in a way

that maximally preserves the properties of the original sparse model. This is a conceptual consideration only as

an expensive model utilising many particles but behaving like a computationally efficient sparse model can never

be practical. Diffusion generated by mixing between Pope particles with non-zero spacing, which was previously

seen as a source of numerical error, is now treated as a modelling tool in order to examine convergence of a particle

PDF to the FDF.

The main difference between the effectively sparse conceptual model (i.e. a model populated by a large number

of particles but preserving the features of the sparse model) and the truly sparse simulations is the possibility of

simulating more detailed structures of the scalar fields in the former while the latter can only model equivalent

statistics at the smallest scales. The main effect of introducing a large number of particles in the effectively sparse

model is the disappearance of stochastic dependencies between particles. Although the analysis of the model is

simpler when velocity is filtered at the Lagrangian filter scale, we show that such Lagrangian-scale velocity filtering

may have a number of detrimental effects that can bring unnecessary complications into the simulations.
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9 Appendix: diffusive effects in Curl’s mixing

9.1 Analysis of the mixing term in the PDF equation

We now consider expansion of the PDF into the Taylor series

PZ(Z◦2|x2) = PZ(Z◦2|x1) +
(
∂PZ(Z◦2|x)

∂xi

)
1

∆xi +
1
2

(
∂2PZ(Z◦2|x)
∂xi∂xj

)
1

∆xi∆xj + ... (50)

where ∆xi = xi2 − xi1 is introduced. This expansion corresponds to the following representations of the mixing

operator [
dPZ
dt

]
mix

=
[
dPZ
dt

]
mix0

+
[
dPZ
dt

]
mix1

+
[
dPZ
dt

]
mix2

+ ... (51)[
dPZ(Z|x)

dt

]
mix0

= θ̂ [PZ (Z◦|x) ∗ PZ(Z◦|x)]mix (52)[
dPZ
dt

]
mix1

= 0 (53)

[
dPZ(Z◦|x)

dt

]
mix2

=
θ̂Iij

2

[
PZ(Z◦|x) ∗ ∂

2PZ(Z◦|x)
∂xi∂xj

]
mix

(54)

where

Iij =
〈
∆xi∆xj

〉
V
≡ 1
θV

∫
θ12∆xi∆xjdV, θV =

∫
θ12dx2 (55a)

θ̂ ≡ θV (n− 1)Px ≈ θV ρn (56)

since n− 1 ≈ n for large n. The first order term in the expansion vanishes as the mixing volume is selected so that

x1 is located at its mass centre. Using the following identity

PZ
∂2PZ
∂xi∂xj

=
∂

∂xi

(
PZ

∂PZ
∂xj

)
− ∂PZ

∂xi
∂PZ
∂xj

(57)

The second term in the expansion becomes

[
dPZ
dt

]
mix2

=
∂

∂xi

(
θ̂Iij

2

[
PZ ∗

∂PZ
∂xj

]
mix

)
︸ ︷︷ ︸

mix2D

− θ̂Iij

2

[
∂PZ
∂xi

∗ ∂PZ
∂xj

]
mix︸ ︷︷ ︸

mix2N

(58)
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Here, we place θ̂Iij under differentiation sign since the divergent form of the term ”mix2D” is consistent with the

conservation property ∫ [
d
〈
Z(α)

〉
dt

]
mix

dx = 0 (59)

of Curl’s mixing. Note that the term ”mix0” in (52) and, as shown below, the term ”mix2N” in (58) satisfy

constraint (17) and, consequently, the condition specified by (59). Since Curl’s mixing is compliant with (59), so

must be the term ”mix2D” but in its originally derived form (with θ̂Iij placed outside the differentiation sign),

this term is not consistent with (59). The explanation for this lays in the fact that we consider only a truncated

representation of Curl’s mixing in (51) and this non-compliance factor is hidden in the higher order terms. These

terms were neglected in our analysis. The physical reason for this is that the parameters of Curl’s mixing are the

same for any mixing couple and, thus, have limited variations within the mixing volume while there are no similar

restrictions imposed on values Z1 and Z2. Essentially, we neglect gradients of θ̂Iij in comparison with gradients

of Z. Hence, it is reasonable for us to reinstate the conservation property (59) by making a higher order adjustment

to the equation and moving θ̂Iij under the differentiation sign in the term ”mix2D”.

Evaluation of the first moment of the term ”mix2N” yields[
d
〈
Z(α)

〉
dt

]
mix2N

=
θ̂Iij

2
〈η̃〉
∫ (

Z
(α)
2 − Z(α)

1

) ∂PZ(Z1|x)
∂xi

∂PZ(Z2|x)
∂xj

dZ1dZ2 =

=
θ̂Iij

2
〈η̃〉

(
∂
〈
Z(α)

〉
∂xi

−
∂
〈
Z(α)

〉
∂xj

)
= 0 (60)

due to symmetry of the tensor Iij . Assuming that the mixing volume is spherical and that density variations within

this volume are not significant, we obtain Iij = δijI where I = r̂2
1 is determined by the radius of the mixing

volume.

9.2 Evaluation of the first and second moments

The moments of Curl’s mixing are evaluated according to equations[
∂ 〈Z1〉
∂t

]
mix

= θ̂ 〈η̃〉 〈Z2 − Z1〉 (61)[
∂
〈
Z2

1

〉
∂t

]
mix

= 2θ̂ 〈γ̃〉
〈
Z1Z2 − Z2

1

〉
+ θ̂

〈
η̃2
〉 〈
Z2

2 − Z2
1

〉
(62)

so that the effect of mixing on variance takes the form[
∂
〈
z2

1

〉
∂t

]
mix

= θ̂
(
−2 〈γ̃〉

〈
z2

1

〉
+
〈
η̃2
〉 〈
z2

2 − z2
1

〉
+
〈
η̃2
〉

(〈Z2〉 − 〈Z1〉)2
)

(63)
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where γ̃ ≡ η̃ − η̃2. The superscript ”(α)” is omitted here and further in the subsection. With the use of Taylor

series expansions

〈Z2〉 = 〈Z1〉+
(
∂ 〈Z〉
∂xi

)
1

∆xi +
1
2

(
∂2 〈Z〉
∂xi∂xj

)
1

∆xi∆xj + ... (64)

〈
z2

2

〉
=
〈
z2

1

〉
+

(
∂
〈
z2
〉

∂xi

)
1

∆xi +
1
2

(
∂2
〈
z2
〉

∂xi∂xj

)
1

∆xi∆xj + ... (65)

we obtain [
∂ 〈Z1〉
∂t

]
mix

=
θ̂ 〈η̃〉 Iij

2

(
∂2 〈Z〉
∂xi∂xj

)
1

+ ... (66)[
∂
〈
z2

1

〉
∂t

]
mix

= −2 〈γ̃〉 θ̂
〈
z2

1

〉
+
θ̂
〈
η̃2
〉
Iij

2

(
∂2
〈
z2
〉

∂xi∂xj
+ 2

∂ 〈Z〉
∂xi

∂ 〈Z〉
∂xj

)
1

(67)

The first order terms disappear since as we assume that particle ”1” is located in the centre of the mixing volume.

Finally, we invoke the same arguments as we did for the term ”mix2D” in (58) and place the term θ̂Iij under the

differentiation sign of the diffusion-type terms. The last equations can now be rewritten as

[
∂ 〈Z1〉
∂t

]
mix

=
∂

∂xi

(
θ̂ 〈η̃〉 Iij

2
∂ 〈Z〉
∂xj

)
+ ... (68)

[
∂
〈
z2
〉

∂t

]
mix

= −θ̂ 〈γ̃〉
(

2
〈
z2
〉

+ Iij
∂ 〈Z〉
∂xi

∂ 〈Z〉
∂xj

)
+

∂

∂xi

(
θ̂
〈
η̃2
〉
Iij

2
∂
〈
z2
〉

∂xj

)
+ θ̂ 〈η̃〉 Iij ∂ 〈Z〉

∂xi
∂ 〈Z〉
∂xj

. (69)

If the mixing volume possesses spherical symmetry then Iij = δijI . Assuming that θ12 is given by θ12 = θ0 for

r2 ≡ ∆xi∆xi ≤ r2
m and θ12 = 0 for r > rm, we obtain I = r̂2

1 where r̂2
1 = r2

m/5 in a three-dimensional space

[8].
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FIGURE CAPTIONS

Figure 1: Radial profiles of average and rms mixture fraction in Sandia Flame E at the axial distance of one

nozzle diameter. Lines adorned with closed symbols are for Eulerian LES while unadorned lines are for the sparse-

Lagrangian FDF. Open triangular symbols represent experimental data [39, 40].

Figure 2: Radial profiles at 30 nozzle diameters. The simulation case and notations are the same as in Figure

1.

Figure 3: Axial profiles versus normalised distance from the nozzle. The simulation case and notations are the

same as in Figure 1.
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