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ABSTRACT
In gas transport systems of the nanoscale, fluid–surface interactions become the main forces governing the evolution of the flow state. In ideal
nanoscale systems, such as atomically smooth carbon nanotubes, the characteristic lengths reduce to such an extent that the non-equilibrium
entrance region comprises a large proportion of the domain. In this regime, the added effective resistance induced by the non-equilibrium
entrance region becomes large enough that classical effusion models break down. The mechanisms behind the resistance in this regime are still
poorly understood. A stochastic model of interfacial resistance is developed here, which allows for the determination of the effective diffusion
coefficient via a novel finite-difference solution. We use this method to model free-molecular gas flow through long nanotubes, showing that
such non-equilibrium effects may be present in systems of length scales currently within manufacturing capabilities. Finally, this model is
used to discuss gas separation through aligned carbon nanotube arrays, with a focus on the effect of membrane length on the separation of a
H2–CH4 mixture.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0148289

I. INTRODUCTION

As manufacturing technology continues to develop, many engi-
neering fields are beginning to utilize the benefits of constructing
components of nanoscale dimension. Examples of such nanoscale
technology include rapid molecular sieves using nanoporous
media,1,2 drug delivery using extracellular vesicles combined with
engineered nanostructures,3 and in developing hemodialysis appli-
cations.4 In nanofluidic systems, the corresponding fluid dynam-
ics differ significantly from the continuum and slip models often
used in macro- and microscale flows. Here, pronounced regions
of non-continuum and non-equilibrium behavior must be taken
into account.5 In sufficiently well-ordered nanoscale materials, such
as atomically smooth carbon nanotubes (CNTs), the interfacial
resistance due to gas–surface interactions may be far smaller than
expected, with flow enhancement exceeding the Knudsen approx-
imation by 2–3 orders of magnitude.6,7 In finite-length nanoscale
systems of this type, as the system length decreases, entrance region
effects may become dominant,6–8 with simulations showing a several
order of decrease in magnitude of the effective transport coefficients
when compared to infinite-length approximations.9

Over the last 2 decades, thin membranes formed purely of
clustered, aligned CNTs have been constructed, allowing for gas
separation experiments to be conducted. The first study outlin-
ing the synthesis of a multiwalled CNT (MWCNT) membrane was
performed by Hinds et al.10 This study investigated nitrogen trans-
port through the membrane, showing agreement with the Knudsen
model of diffusion. Later, Holt et al.11 constructed CNT arrays with
average pore size on the order of 2 nm with total membrane thick-
ness between 2 and 3 μm. Gas diffusion experiments showed greatly
enhanced gas transport, with flow rates exceeding that of the Knud-
sen model by 2–3 orders of magnitude. Selectivity between gases
was also measured, where it was noted that the flow of hydrocar-
bon gases experienced greater flow enhancement when compared
to simple non-hydrocarbon gases, such as H2, CO, and CO2. This
effect was hypothesized to be caused by preferential gas–wall interac-
tions between hydrocarbons and the carbon atoms in the wall of the
CNT,11,12 although this hypothesis remains unconfirmed. Despite
this promising flow enhancement, there are still few experimen-
tal results measuring transport coefficients across such membranes.
Along with a lack of experimental data, there are few theoretical
explanations of the origin of excess interfacial resistance in
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finite-length ordered nanoscale materials. Currently, there exist
few works that consider density profiles that are not governed by
Knudsen diffusion, with the integral method developed by Claus-
ing,13 along with corresponding approximate solutions provided
by Berman14 being primary classical works on this topic. To the
authors’ knowledge, currently, the only theory directly applicable to
flows in confined nanomaterials is provided in a very recent publica-
tion by Bhatia and Dutta.15 In this work, the finite-length effects are
determined through a kinetic approach, leading to an integral for-
mulation of the dynamics, which agrees well with results determined
via equilibrium molecular dynamics simulations.

Generally, the analysis of these systems is conducted via high-
fidelity simulations including Equilibrium Molecular Dynamics
(EMD),15,16 Direct Simulation Monte Carlo (DSMC),17 and lattice
Boltzmann Methods (LBM).18 Such analyses are highly numerically
expensive for long CNTs and do not directly lead to the fundamen-
tal understanding of the effect of this entrance region. Taking this
as motivation, this work aims to outline a simple and computation-
ally inexpensive model to aid in the understanding of the underlying
mechanics of the involved phenomena. A promising method of the-
oretical analysis that has risen in popularity recently involves the
use of a Fokker–Planck Equation (FPE). This method acts as the
stochastic formulation of Boltzmann’s transport equation, which
is a fundamental governing equation in kinetic theory, often used
in non-continuum analyses.19 The Fokker–Planck model has been
investigated as a representation of ion channel transport, with the
work of Piasecki et al.20 deriving an approximate analytical solu-
tion for transport between two fixed reservoirs with applied current.
Melchionna et al.21 later showed good agreement of this analytic
solution with a lattice Fokker–Planck simulation. This model has
also seen success when applied to collisional flows, with early work
originating with Lebowitz22 and more recently being developed by
Gorji et al.23 and Singh et al.24

Since this equation generally does not admit an analytic solu-
tion,25 we show that, under a suitable scaling, this equation admits a
diffusive asymptote and is amenable to a finite difference solution.
Here, we derive approximations of the effective transport coeffi-
cients, namely, the effective diffusion coefficient and excess interfa-
cial resistance in ordered nanoscale systems. The length dependence
of these coefficients is discussed, with the presence of a friction-
dominated regime noted as an explanation of the increased inter-
facial resistance measured in experiments. Finally, this analysis is
extended to mixtures of non-interacting gases, allowing for the effect
of nanopore length on gas separation to be observed.

II. STOCHASTIC COLLISION MODELS
We investigate a quasi-1D transport model as an approxi-

mation of a free-molecular gas flow through a narrow cylindrical
nanopore of length l, connecting two reservoirs as shown in Fig. 1.
We consider the flow fully free-molecular, comprised of a single-
species gas with molar mass m at temperature T. We consider the
wall of the nanopore to be at this same temperature and to act on the
gas molecules with a Maxwell boundary condition.26 This bound-
ary condition models the probability a particle experiences a diffuse
reflection per collision. This fraction is denoted, α, and models the
average momentum loss per collision, as such it is referred to as the
Tangential Momentum Accommodation Coefficient (TMAC). The

1D nanopore is modeled as having an effective diameter of d, which
is introduced into the model through the effective relaxation time
τ. This value represents the average time for a sampled particle to
encounter the first diffuse collision. We consider the distribution to
be in equilibrium within the cross-sectional plane of the pipe and
assume that the number of specular collisions, n, between diffuse
collisions is sampled from a binomial distribution.27 We write the
relaxation time as

τ =
2d
3

2 − α
α

√
2m
πkBT

. (1)

A full derivation of the above is present in the Appendix. This relax-
ation time controls the rate of momentum loss in the system. It is
important now to make a comparison of this value with other works,
as this τ is half the value derived in the work by Bhatia et al.28 The
reason behind this difference is due to the assumption of indepen-
dent flight times from the stochastic framework present in this work
and not that of Bhatia, which is performed via an energy analy-
sis. This difference is seen when comparing the Fokker–Planck and
Bhatnagar–Gross–Krook (BGK) collision operators in Boltzmann’s
equation, where to match viscosity between models it is required
that 2τFP = τBGK .24 We now introduce the distribution function of
the particles as f (û, x̂, t̂) where we denote, in dimensional coordi-
nates, the velocity as û, position as x̂ ∈ [0, l] and time as t̂. With
the given relaxation time, we model the evolution of the flow as an
Ornstein–Uhlenbeck process

dû = −
1
τ

ûdt̂ +

√
2
τ
σdW dx̂ = ûdt̂, (2)

with σ =
√

kbT/m. The stochastic term, W, represents a Wiener
process with zero mean and unity variance; hence, under an ensem-
ble average, this process obeys ⟨W( t̂)⟩ = 0 and ⟨W( t̂)W( t̂ ′)⟩
= δ( t̂ − t̂ ′), where δ is the Dirac delta distribution. Taking the scaled
variables

û = σu x̂ = στx t̂ = τt (3)

allows for the system of Stochastic Differential Equations (SDE) to
be expressed in dimensionless form as

du = −udt +
√

2dW dx = udt. (4)

This process satisfies a Fokker–Planck equation (often referred
to as the Klein–Kramers equation25 or alternatively the
Kramers–Chandrasekhar equation29) of the form

∂ f
∂t
+ u

∂ f
∂x
=
∂u f
∂u
+
∂2 f
∂u2 = CFP( f ), (5)

where the differential operator on the right-hand side of Eq. (5) is
termed the Fokker–Planck operator and will be denoted CFP. This
operator is linear and admits a system of eigenfunctions given by the
Gauss–Hermite functions, defined as

ψn(u) = Hen(u)g(u), (6)

where Hen(u) is the nth Hermite polynomial and g(u) is the stan-
dard Gaussian function with unity variance. We note here that each
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FIG. 1. Quasi-1D representation of the
physical domain.

eigenfunction, ψn, has eigenvalue −n under CFP and the set of ψn
forms a complete basis on the space L2. This Fokker–Planck equa-
tion rarely admits a closed-form solution, although some non-trivial
particular cases have been found.30

A. Diffusion asymptote
Before investigating the complete numerical solution, we wish

to investigate the asymptotic behavior of this equation. The outer
solution of this equation shows diffusive behavior. To show this,
we perform a scaling of T = ε2t and X = εx for some small scale
parameter ε≪ 1, leading to

ε2 ∂ f
∂T
+ εu

∂ f
∂X
= CFP( f ), (7)

where generally this ε will be proportional to τ. In this analysis,
we follow a Chapman–Enskog type procedure,31 where we first
expand the distribution as f = f 0

+ εf 1
+ ⋅ ⋅ ⋅, while enforcing that

all moments of u over f n are all zero for n > 0. The leading order
relations are

0 = CFP( f 0
), (8a)

u
∂ f 0

∂X
= CFP( f 1

), (8b)

∂ f 0

∂T
+ u

∂ f 1

∂X
= CFP( f 2

). (8c)

Since CFP has a unique eigenfunction ψ0(u) corresponding to
the eigenvalue 0, we see f 0

(u, X, T) = g(u)ρ(X, T), with ρ repre-
senting the molar density. Inserting this expression into Eq. (8b),
we find

CFP( f 1
) = ψ1(u)

∂ρ
∂X

. (9)

Thus, f 1 is defined over only the first spectral term, ψ1, as ψ0 must
be neglected due to its non-zero first moment. This term may be
written as

f 1
(u, X, T) = −ψ1(u)

∂ρ
∂X

. (10)

Introducing the forms of f 0 and f 1 into Eq. (8c) leads to

g(u)[
∂ρ
∂T
− u2 ∂

2ρ
∂X2 ] = CFP( f 2

). (11)

Integrating this equation over u ∈ R gives

∂ρ
∂T
−

∂2ρ
∂X2 = 0, (12)

where we note that the integral of CFP( f ) over u ∈ R will be zero for
any exponentially decaying function f . We see that this expression
is exactly the diffusion equation in 1D, with the dimensionless dif-
fusion coefficient of D∞ = 1. Returning to dimensional coordinates,
we find the diffusivity as

D̂∞ = σ2τD∞ =
2d
3

2 − α
α

√
2kBT
πm

, (13)

which is the expected Smoluchowski diffusion coefficient that would
be found in an infinite length nanopore when neglecting any
entrance effects. In turn, this coefficient is the limiting case for this
analysis as the system length is increased. The prior scaling is often
referred to as the “inverse friction expansion,”25 with the above being
a known result in the statistical mechanics community and is seen in
standard texts.19,25 In 3D, including a potential function, Φ(x), the
Klein–Kramers equation reads

∂ f
∂t
+ u ⋅ ∇x f = ∇u ⋅ ((u −∇xΦ) f ) +∇2

u f . (14)

Consider the appropriate scaling and again expand in terms of some
small ε to find f 0

(u, x, t) = ρ(x, t)g(u) and the relation

u ⋅ ∇x f 0
= ∇u ⋅ (u f 1

) +∇
2
u f 1
−∇u ⋅ ( f 0

∇xΦ), (15)

which again leads to the expression f 1
(u, x, t) = −ug(u) ⋅ (∇xρ

− ρ∇xΦ). Finally, integrating the 2nd order expression over u ∈ R3

leads to

∂ρ
∂t
−∇

2
xρ = ∇x ⋅ (ρ∇xΦ), (16)

which leads to the standard 3D diffusion equation in the absence of a
potential function. To further complicate this system, it is noted that
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if the normal velocity controlling the mean collision time is a ran-
dom variable, due to Levy flights, the diffusion equation derived may
be fractional in time.32 The problem of this fractional sub-diffusion
will not be investigated here. Neglecting these effects, it is noted29

that an equivalent formulation of the density transport equation may
be derived from comparing the zeroth and first-order moment equa-
tions of the Klein–Kramers equation. In 1D in the absence of any
potential, we may find

∂2ρ
∂2t
+
∂ρ
∂t
=
∂2ρ⟨u2

⟩

∂2x
, (17)

where here the angled brackets are to be understood to represent the
moment over velocity space. This equation considers no parameter
straining, but the stress term, ⟨u2

⟩, cannot be explicitly determined
without an appropriate asymptotic scaling. In the diffusive limit, this
stress is constant, and neglecting the higher-order wave behavior, we
recover the diffusion equation. We note now that the effective diffu-
sivity arises naturally via the stress tensor present in this equation, as
such, in the entrance and exit regions of the flow, we might expect
Knudsen-layer behavior to arise as is seen in similar boundary layer
analyses.19

III. NUMERICAL RESULTS AND DISCUSSION
In this section, we consider the numerical analysis of the 1D

free-molecular flow through an idealized carbon nanotube, which
connects two reservoirs as seen in Fig. 1. In the chosen dimension-
less form, the solution is controlled only by the boundary conditions.
For a system defined along the physical coordinates x̂ ∈ [0, l], the
dimensionless system is defined on x ∈ [0, L] where L represents
the effective scale length, given by L = l(στ)−1. This L is the ratio
between the “diffusive scale length” στ and the physical scale length
l. This expression may also be expressed as a scaled aspect ratio of
the nanotube, as

L =
3
2

α
2 − α

√π
2

l
d

. (18)

For the physical case corresponding to the flow through a nanopore
connecting two reservoirs held at constant densities ρ0 and ρL,
respectively, we consider the elliptic problem with the two half-
boundary conditions of the form

f (u > 0, 0, t) = ρ0g(u) f (u < 0, L, t) = ρLg(u). (19)

For the initial investigation, we choose the most fundamental
boundary conditions corresponding to this chosen class, with ρ0 = 1
and ρL = 0, where it is clear that the corresponding solutions for any
given reservoir densities may be recovered via an appropriate scal-
ing. Although we will utilize a numerical model which determines
the solution for the entire distribution, the main results that are to
be analyzed are the dimensionless molar density and molar flux,
which are given by the zeroth and first moments of the distribution,
respectively, as

ρ(x) = ∫
∞

−∞

f (u, x)du j = ∫
∞

−∞

u f (u, x)du, (20)

where the dimensional form of the molar flux is recovered sim-
ply as ĵ = σ j. For comparison between individual test cases, we will
consider the following scaling:

ρs(xs) =
ρ(Lxs) − ρ(0)
ρ(L) − ρ(0)

xs =
x
L

. (21)

From these functions, we may determine an effective diffusion
coefficient Deff by creating a parallel to Fick’s law. In the selected
coordinates, this is defined

Deff (xs) = − j(
∂ρs

∂xs
)

−1
. (22)

Taking the mean of these profiles across their domains leads to the
average effective diffusion coefficient only as a function of L, where

Deff (L) =
1
L∫

L

0
Deff (x)dx. (23)

To characterize the membrane flow resistance, we introduce the
interfacial resistance as the reciprocal of the diffusivity

R =
L

Deff
. (24)

For the relative interfacial resistance under this scaling, recalling that
under these coordinate transforms D∞ = 1, we simply write

ξ =
R − R∞

R∞
=

1
Deff

1, (25)

where R∞ = L is the resistance corresponding to the diffusive
asymptotic value of D∞ = 1.

A. Finite difference solution
Being an elliptic problem with ill-posed boundary conditions,

purely analytical methods likely will not admit a closed-form solu-
tion.25 The Klein–Kramers equation has been solved numerically
numerous ways, with common methods using spectral analysis
either in terms of the Gauss–Hermite functions25 or through an
alternative basis first derived by Pagani.33,34 These methods, to
the best of the authors’ knowledge, have not yet been applied to
elliptic boundary problems over finite domains, although the exis-
tence and completeness of solutions in the semi-infinite domain
has been shown.35 To solve the system, here a finite difference
method is followed. Consider the grid spacing to be generated
from the steps of Δt,Δx, and Δu such that we can write the distri-
bution as f (iΔt, jΔx, kΔu) = f i

j,k, where i ∈ [0, nt], j ∈ [0, nx], and
k ∈ [−nu, nu], where we have set maximum bounds on u as −nuΔu
≤ uk ≤ nuΔu. The simplest method is an explicit method, first order
in time and space and second order in velocity. This equation
belongs to the class of convection–diffusion equations, as such, we
must ensure the scheme is upwind for all uk. To do this, we use a
position-dependent finite difference stencil of the form

f i+1
j,k = f i

j,k − C0uk((1 − sgn (uk)) f i
j+1,k + sgn (uk) f i

j,k

− (1 − sgn (−uk)) f i
j−1,k) + C1(uk+1 f i

j,k+1

− uk−1 f i
j,k−1) + C2( f i

j,k+1 − 2 f i
j,k + f i

j,k−1), (26)
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TABLE I. Effective diffusion value, Deff , for different grid refinement in system with L = 1.

Δx Δu = 0.4 Δu = 0.2 Δu = 0.1 Δu = 0.05

1.000 × 10−2 0.587 686 26 0.573 509 24 0.570 982 05 0.570 119 34
5.000 × 10−3 0.591 777 89 0.579 095 47 0.577 302 10 0.577 252 08
2.500 × 10−3 0.594 238 38 0.583 089 93 0.581 906 48 0.581 156 89
1.250 × 10−3 0.597 067 51 0.586 430 35 0.584 574 35 0.584 593 45
6.250 × 10−4 0.599 542 62 0.589 135 99 0.588 081 29 0.587 947 05
3.125 × 10−4 0.589 806 81 0.591 920 68 0.590 778 93 0.590 542 31

where sgn is the sign function and the following parameters have
been introduced:

C0 =
Δt
Δx

C1 =
Δt

2Δu
C2 =

Δt
Δu2 . (27)

To ensure the stability of this scheme, the time step must obey the
following Courant–Friedrichs–Lewy (CFL) condition:

Δt < [
umax

Δx
+

2
Δu2 +

1
2
]
−1

. (28)

To determine the steady-state behavior of this system, a transient
simulation is run until convergence is observed. For these simu-
lations, the initial condition used is f (u, x, 0) = (1 − x/L)g(u). To
ensure consistency between runs, a grid refinement study was per-
formed. Since each test case considers a different domain size,
governed by L, a characteristic length of L = 1 was selected as the
sample case for the convergence study. This length was selected as
preliminary simulations indicated that the non-ideal effects were
most prominent around this length. The steady state of the system
was determined once the absolute error between flux measurements,
j, at 1000 timesteps apart reduced to less than 1 × 10−3. The con-
vergence of the generated numerical results was measured through
the change of Deff for varying grid spacing Δx and Δu. This diffu-
sion term was selected as it is a primary result of this analysis. The
dependence of Deff on the grid spacing is shown in Table I. This
output can be seen to be only weakly dependent on the velocity dis-
cretization for Δu ≤ 0.1, showing a change of less than 0.2% in the
Deff value due to refinement from Δu = 0.1 to Δu = 0.05 for all Δx
values considered. Hence, Δu = 0.1 was deemed to be sufficient for
this study. The range of allowable velocities was set as u ∈ [−10, 10]
for each case, as this truncation could lead to, at most, errors in the
order of the machine precision, due to the exponential nature of the
distribution.

For a system with L = 1, a grid spacing of Δx = 3.125 × 10−4

leads only to a change in the Deff value of below 0.5% in com-
parison with a test run with Δx = 6.25 × 10−3. Hence, to achieve
a balance between accuracy and solution time, a spatial step of
Δx = 6.25 × 10−3 was selected. Hence, for every L value, the test was
run with nx = 1600 grid points in x. To analyze the effect of the
effective length parameter on the transport coefficients, the finite dif-
ference system is solved for a range of L values. The scaled Δx values
used in each run are listed in Table II along with the number of steps
for convergence, nt .

TABLE II. Parameters for solutions generated by finite difference code at each order
of magnitude.

L Δx Max nt L Δx Max nt

1 × 10−4 6.25 × 10−8 37 × 103 1 × 101 6.25 × 10−3 31 × 103

1 × 10−3 6.25 × 10−7 36 × 103 1 × 102 6.25 × 10−2 14 × 103

1 × 10−2 6.25 × 10−6 35 × 103 1 × 103 6.25 × 10−1 3 × 103

1 × 10−1 6.25 × 10−5 28 × 103 1 × 104 6.25 × 100 3 × 103

1 × 100 6.25 × 10−4 34 × 103

Figure 2 shows the density difference across the reservoir for
various values of L. We see that for either very large or small L
that the density profiles approach linear trends, this shows the two
asymptotic profiles of convective and diffusive dominated behavior,
respectively. In the diffusion dominated regime, the linear solution
corresponds to the case of Smoluchowski diffusion between two
reservoirs, indicating that boundary effects have become negligible
on the scale length of the system. The data show the greatest diver-
gence from linear behavior occurs in a transition region of L ∼ 1.
This regime change is observed in the mass flux since the flux is
position independent and may be expressed as a function of the
dimensionless length. Figure 3 shows that in the convective regime
j → 1/

√
2π and in the diffusive regime j→ 1/L. Figure 4 shows the

effect of the dimensionless length on the position-dependent dif-
fusion profile, with systems with L ∼ 1 showing highly non-linear
profiles due to excess interfacial resistance. The trend for the mean
effective diffusion coefficient is shown in Fig. 5. As with the molar
flux, two distinct regimes are shown, with the diffusive asymptote
of Deff = 1 as expected from the prior section, along with a convec-
tive asymptote for small L of the form Deff = 2L. Along with this, the
equivalent resistance ξ as a function of L is shown in Fig. 6.

These simulations have shown the presence of two asymptotic
profiles, with the regime being determined by only the parameter L.
For L≪ 1, the rate of momentum decorrelation is of lower order
than the mean particle velocity, and as such, the initial momen-
tum of the particles dominates the solution. In this regime, the
solution is given by a linear convective profile and the diffusion
profile can be seen to asymptote as Deff ∼ L as shown in Fig. 5.
The other asymptote is that of large L, representing the diffusion
dominated regime. Due to the overwhelming effect of diffusion, the
boundary effects caused by the elliptic boundary conditions cannot
propagate a large proportion into the flow, as such the profile is dif-
fusion dominated and for a 1D domain a linear profile is observed.
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FIG. 2. Scaled density profiles.

FIG. 3. Dimensionless molar flux with asymptotes.

This regime asymptotes to the classical Knudsen approximation
with Deff → 1.

These calculated trends agree with the recent solutions by Bha-
tia and Dutta,15 which include similar derived profiles derived via a
separate analytical method, which are validated against EMD sim-
ulations. To compare these results to existing literature, we may
compare the flux values with the results of the model first derived
by Clausing.13 This model derives an integral expression for the par-
ticle flux through small tubes. A comparison with the flux values
presented in this work is shown in Fig. 7. As seen in the inset of
Fig. 7, there is some error between the two models, of a maximum
order of 7% located in the intermediate regime around L = 1. A com-
parison of a specific density profile can be made against a work by
Helmer.36 In this work, Clausing’s integral equation is solved and
compared to approximate solutions derived by Berman.14 Helmer’s
computational results find a 0.1% difference when compared to

FIG. 4. Scaled diffusion coefficient profiles.

FIG. 5. Average scaled diffusion coefficient.

Berman’s solution. In Helmer’s work, the calculated density pro-
file for a system with L = 10 is provided. A comparison between the
finite difference solution introduced here and the tabulated data by
Helmer is presented in Fig. 8. The inset of Fig. 8 shows that the error
between the two methods is significant in the boundary regions, with
errors exceeding 20%. This potentially shows that Clausing’s integral
method underestimates the boundary effects that may be present in
systems with L close to unity.

These results raise a concern with the use of some previous
classical diffusion models, suggesting that with increasing character-
istic lengths, boundary effects may be more significant than expected
and the effect of excess interfacial resistance must be taken into
account for accurate modeling. Section III B outlines the char-
acteristic lengths in real CNTs and applies this methodology to
experimental results obtained for gas flows through aligned CNT
membranes.
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FIG. 6. Scaled interfacial resistance profile. Shifted value of ξ + 1 shown to allow
for visualization of the diffusive asymptote.

FIG. 7. Calculated flux compared to the results in Clausing.13 Inset shows the error
between methods.

B. Comparison with the gas flow through CNTs
Some data for CNTs of finite length are available from numer-

ical works,7,9,37 allowing for the comparison of the transport coef-
ficients calculated here with those generated via higher fidelity
simulations. It is important to note that very little experimental data
for the TMAC in ordered nanoscale systems have been published,
with the only suitable data found for comparison with this work
being that of Holt et al.11 There are also very few published theories
that can predict this value in such materials.38 In this analysis, the
required information defining the CNT required is the aspect ratio
of the system and the TMAC of the gas–surface combination. From
the previously mentioned simulation studies, the TMAC has been
noted to be very small in atomically smooth CNTs when compared
to most other materials, with predictions of the order α = 0.001.7
Here, we consider the flow of both H2 and CH4 at 300 K through

FIG. 8. Density profile for a system with L = 10 compared with the numerical
solution provided by Helmer.36 Inset figure shows the error between methods.

a (10,10) armchair CNT of length 1 μm to align with both the lim-
iting case of the simulations performed by Dutta and Bhatia6 and
the system studied in Holt et al.11 We stress again that there is lit-
tle available data for TMAC values in nanoscale systems, so we use
the numerical value for CH4 of αCH4 = 0.001 as determined by Dutta
and Bhatia.6 For H2, we investigate TMAC values within the range
3αCH4 ≤ αH2 ≤ 6αCH4 as determined by Bhatia et al.39 via EMD sim-
ulation. This gives a considered range for this work of 0.003 ≤ αH2
≤ 0.006.

To model the (10,10) armchair CNT, we use geometric para-
meters of d = 1.35 nm and l = 1000 nm. We note, for such a system
with set α and diameter d, the prior analysis may be studied in terms
of only physical length l in place of the dimensionless length L used
prior. For nanoscale domains, we can consider the “effective” dia-
meter of the CNT, which may be approximated by the difference
between the physical diameter of the CNT and the Lennard-Jones
(LJ) diameter for the gas interacting with carbon atoms, which we
denote σLJ . This is a simplifying approximation and acts as one of
the simplest methods to include the effect of interatomic potential
forces present within the CNT-gas system. This allows for the direct
derivation of the relaxation time as shown in the Appendix, which
relies on a hard-sphere approximation, leading to a simple expres-
sion without the requirement of accounting for the full detail of
the inter-atomic potential. Using this approximation, we write the
altered expression for effective length as

Leff =
3
2

α
2 − α

√π
2

l
d − σLJ

. (29)

For the flow of CH4 through this CNT we use σLJ,CH4 = 0.373 nm
to find an effective length parameter of Leff = 0.963, which is within
the transition regime of Leff ∼ 1, implying the presence of sizable
excess interfacial resistance. Using the finite difference solution, we
find the dimensionless transport coefficients corresponding to this
L value as Deff = 0.580 and ξ = 0.724. In physical coordinates, the
actual diffusion becomes scaled by the infinite-length value, leading
as D̂eff = D∞Deff = 13.39 nm2

/ s.
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For the flow of H2, we set σLJ,H2 = 0.296 nm and find the
appropriate range of Leff values for 0.003 ≤ αH2 ≤ 0.006. This leads,
for flow through the same CNT as before, to an effective length
parameter range of 2.680 ≤ Leff ≤ 5.367, which is larger than the
calculated value for methane, due to the increased α values. This
increased value of α when compared to CH4 has competing expla-
nations, either being due to the preferential adsorption charac-
teristics between the carbon atoms of the CNT and hydrocarbon
molecules11,12 or due to the increased relative roughness which
the smaller H2 molecule experiences against a CNT wall of equal
roughness.38,40 At these scale lengths, the dimensionless transport
coefficients are 0.795 ≤ Deff ≤ 0.891 and 0.122 ≤ ξ ≤ 0.258 showing
near-diffusive behavior.

These results suggest that non-Knudsen effects must be
accounted for when analyzing systems with length of the microscale
due to excess interfacial resistance. Since this scale length is now
within the limits of fabrication technology, future systems utiliz-
ing CNT membranes should be aware of these effects. Along with
this, it can be seen that the amount of excess interfacial resistance
present in a system is affected by species-dependent gas–surface
interactions, which are characterized by the TMAC value. Due to
this, systems utilizing ordered nanoscale materials for the purpose
of gas separation require accurate TMAC values for reliable design.
To this end, this paper concludes with a section dedicated to the
analysis of a model CNT membrane for the separation of the binary
gas mixture.

C. Notes on multiple species flows: Application
to hydrogen separation

Now we consider the effects discussed above on gas mixtures
by extending this model to a binary mixture of gases traveling
through the same CNT. We note that, in the approximation of free-
molecular flow, there are no interactions between particles; hence,
each species in a mixture will evolve independently. As such, the
model reduces to comparing the flow of two different gases pass-
ing through equivalent pipes of length, l, and diameter, d. Thus, it
is clear that the diffusive scale length of each species is unaffected
by the presence of other species. The ratio of these lengths may be
expressed as

L2

L1
=

2 − α2

α2

α1

2 − α1

d − σLJ,2

d − σLJ,1
= L2∣1, (30)

where αi and mi are the TMAC and molecular mass of particles
of species i. Notably, for similarly sized particles, this expression
is only weakly dependent on channel thickness d and the pri-
mary scaling factor is the ratio of TMAC values. As such, the ratio
L2∣1 is dependent primarily on the surface–gas properties and is
independent of the physical system length. Similarly, the ratio of
diffusion coefficients for two species at thermal equilibrium may be
expressed

D1

D2
=

2 − α1

α1

α2

2 − α2

√
m2

m1
. (31)

This expression contains only the parameters m and α, where
for TMAC values of order unity, the standard Knudsen diffusion
expressions arise. The interest here exists in systems with scale

length ratios differing from 1. We define the selectivity of the gases
by the respective mass flux ratio

S1,2(L1, L2) =
j(L1)

j(L2)
. (32)

From Eq. (30), it can be seen that the dimensional length ratio is
independent of system length, as such for a fixed L2∣1, the selectivity
can be expressed a single-variable function dependent on only one
of the dimensionless lengths,

S1,2(L1) =
j(L1)

j(L1L2∣1)
. (33)

The behavior of this dimensionless function is shown in Fig. 9. The
dimensional selectivity defining the quality of gas separation is a
simple scaling of the above formula

Ŝ1,2 =
σ1 j1

σ2 j2
=

√
m2

m1
S1,2. (34)

Two asymptotic regions may be seen in this system. For a very short
CNT, it is clear that the flux difference is simply given by the rate of
effusion, such that the selectivity asymptotes toward Ŝ1,2 =

√
m2/m1

as predicted by Graham’s law. For systems of large scale length, the
diffusive asymptote approaches a scaled version of the Knudsen case,
reading

lim
L1→∞

Ŝ1,2 =
2 − α2

α2

α1

2 − α1

d − σLJ,2

d − σLJ,1

√
m2

m1
. (35)

From this analysis, we see a potential application to separation in
CH4–H2 mixtures. Due to the dissimilarity of αH2 and αCH4, this
scale length ratio becomes large, with H2 experiencing far greater
relative friction than CH4 during travel through an equivalent CNT.
We can calculate the range of dimensionless length ratios between
CH4 and H2 as 0.179 ≤ LH2∣CH4 ≤ 0.359. Since this ratio is much
less than 1, selectivity rates are expected to be highly length depen-
dent. A comparison of the flux is shown in Fig. 10 for the flow of
H2 and CH4 through a (10,10) CNT. As system length increases,
the volume flux of both species decreases as expected, due to the
increased total system friction. In this model, due to the difference
in the α values between the two gases in this system, H2 expe-
riences a greater rate of flux decrease than CH4 for increasing l.
This difference in α leads to a reversal in the flux ratio of the two
gases, and hence, a reduction in molar selectivity. For flow through
a (10,10) CNT of length l > 2585 nm, it is seen that a TMAC ratio of
αH2/αCH4 = 6 would cause a reversal of gas selectivity. An approx-
imate trend can be determined by taking the asymptotic form of
the selectivity, as in Eq. (35), which shows the selectivity reverses as
l →∞ when the Ŝ1,2 < 1 is satisfied. Hence, for α→ 0, the selectivity
reverses when

α2

α1
<

d − σLJ,2

d − σLJ,1

√
m2

m1
. (36)

Thus, assuming αCH4 and αH2 are very small, a reversal is seen for
αCH4/αH2 > 3.048; hence, the membrane will become selective for
methane over hydrogen in sufficiently long systems.
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FIG. 9. Effect of varying L2∣1 on the molar selectivity of gas 1 in a mixture with
gas 2.

FIG. 10. Scaled molar flux of CH4 against varying physical system length in a
(10,10) CNT compared to H2 with TMAC values within the range 0.003 ≤ αH2
≤ 0.006.

As stated in the Introduction, very little experimental data for
the selectivity ratio through smooth CNT membranes are currently
available for comparison. Holt et al.11 measure the molar flux ratio of
both H2 and CH4 relative to He. From this published data, a hydro-
gen selectivity of ∼2.67 is found in an H2–CH4 mixture, which is
notably less than the Knudsen diffusion result of 2.828, which may
imply the presence of increased interfacial resistance. The experi-
ments were conducted with CNTs with d ∼ 2 nm and l ∼ 2–3 μm,
which leads in our formulation to dimensionless lengths in the range
10.73 < LH2 < 16.10 and 1.93 < LCH4 < 2.89. As shown in Fig. 11, we
can fit the results of this analysis to the experimental results with the
ratio within the range 1.2 ≤ αH2/αCH4 ≤ 1.3, which corresponds to
a significantly altered ratio to the 3–6, which was calculated by the
works of Bhatia and co-workers.7,37,39 Clearly, with only a single data
point corresponding to the experiment, these results are not reliable
and more data would be required to reach valid conclusions. Along

FIG. 11. Selectivity of H2 in a mixture with CH4 for a TMAC ratio αH2/αCH4 ∈ [3, 6]
as in the simulation works of Bhatia et al.39 with an approximate fit envelope with
αH2/αCH4 ∈ [1.2, 1.3] around the data from Holt et al.11

with the issues of data reliability, it must be noted that the outlined
model is idealized and cannot model the impacts of pore block-
ages, non-circular pores or excess tortuosity that may be present
in manufactured aligned CNT arrays. Even with these outlined
issues of reliability, this analysis shows a need for further experi-
mental results for the prediction of the TMAC value in nanoscale
materials.

In a prior work by the authors,38 an expression for predicting
the TMAC in nanoscale systems was developed, which only takes the
corresponding LJ parameters as inputs. The expression reads

α(s) = 1 − (1 − s2
)

3
2 , (37)

where the roughness parameter is defined as σLJ,w/(σLJ,g + σLJ,w)

for LJ diameters of the wall and gas atoms corresponding to the
subscripts w and g, respectively. Taking the LJ diameter of a car-
bon atom at the wall of the CNT to be σLJ,C = 0.34, we find
sH2 = 0.5346 and sCH4 = 0.4769, leading to the estimated ratio of
αH2/αCH4 = 1.231, which is a suitable value for the estimated range
of 1.2–1.3. This agreement highlights the benefits of the construc-
tion of analytical models of nanoscale gas–surface interactions, as
well as the current requirement for further experimental and numer-
ical results for TMAC values applicable for use in ordered nanoscale
systems.

IV. CONCLUSIONS
This work has investigated the development of a simple math-

ematical model to investigate the interfacial resistance in nanoscale
free-molecular flows. This model can predict the presence of excess
interfacial resistance, which is often neglected in fundamental analy-
ses. A finite difference method has been utilized to solve this govern-
ing equation and determine results for CNT interfacial resistance,
which were compared to values determined through experiment and
EMD simulations. The over-prediction of transport coefficients in
finite length nanoscale systems was attributed to the increased effect
of entrance regions. The effect of this interfacial resistance on the
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mass flux leads to changes in the selectivity of gases in mixtures,
highlighting the potential value of highly ordered CNT arrays for
use in gas separation. Some recommendations on the use of ordered
CNT array membranes for gas separation have been made, with a
note that the lack of reliable TMAC data derived from experiments
is a current restriction in the analysis of such systems.
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APPENDIX: DERIVATION OF RELAXATION TIME

The system of SDEs outlined in Eq. (2) requires a mean relax-
ation time as an input parameter. This work will use the traditional
approach from kinetic theory, by finding the time taken for the
average particle to encounter some momentum loss. Here, the coor-
dinate space is considered in cylindrical coordinates, with the time
between wall collisions controlled only by the cross-sectional veloc-
ities. If the cross-sectional distribution is considered to be at equi-
librium, then independence between the cross-sectional and axial
distributions may be assumed. The cross-sectional distribution is
written in polar coordinates as

f (V ,ω, r, θ) =
2
π2

r
R2

V
σ2 exp [−

V2

2σ2 ] (A1)

for r ∈ [0, R = d/2], θ ∈ (ω,ω − π), V ∈ (0,∞), and ω ∈ [0,π].
Figure 12 illustrates this coordinate system. It can be seen from

geometric arguments that the time taken for a particle to travel from
(r, θ) to the boundary obeys

Δt(V ,ω, r, θ) = r cos (θ − ω) +

√

R2
− r2 sin2

(θ − ω)
V

. (A2)

This leads to the mean first collision time as

⟨Δt0⟩ = ∫

∞

0
∫

π/2

−π/2
∫

ω

ω−π
∫

R

0
Δt fdrdθdωdV

=
4
3

√
2
π

R
σ

. (A3)

After first reaching a wall, the particle then will travel between wall
collisions for the remainder of its trajectory. The distribution at
the wall boundary is given as fwall = V sin(ω) f , as such, the time
between collisions at the walls is given as

⟨Δt⟩ = ∫
∞

0
∫

π/2

−π/2
∫

ω

ω−π
∫

R

0
Δt fwalldrdθdωdV

=
8
3

√
2
π

R
σ
= 2⟨Δt0.⟩ (A4)

The total time for a randomly selected particle to encounter the wall
is simply

tn = Δt0 +
n−1

∑
i=1

Δti. (A5)

Assuming the collision times to be independent, this leads to the
simple average time of

⟨tn⟩ = (n −
1
2
) ⟨Δt⟩. (A6)

The probability that a particle experiences its first diffuse collision at
the nth collision is taken to be a geometric distribution of the form

FIG. 12. Illustration of chosen particle coordinate system within a CNT cross
section.
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P(n) = α(1 − α)n−1. The average time for the first diffuse collision to
occur is then given by the appropriate averages of Eq. (A5),

τ =
∞

∑
n=1

P(n)⟨tn⟩

=
∞

∑
n=1

α(1 − α)n−1
(n −

1
2
)

=
2 − α

2α
8
3

√
2
π

R
σ
=

2d
3

2 − α
α

√
2m
πkBT

. (A7)

This value of τ leads to equivalent diffusion rates at the corrected
Knudsen result determined by Smoluchowski by determining free-
molecular diffusion rates.41–43
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