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1. Introduction 
 
                                                
In the present work, we investigate the asymptotic behavior of a bathtub-type vortical flow near the axis. 
Special attention is paid to the most interesting case when the intensity of axial vorticity in the flow is 
high. The axisymmetric flow with the strong vorticity was previously investigated by Lundgren [1], who 
assumed that the strong vortex approximation [2] is valid everywhere in the flow. In this case, the 
asymptote near the axis is determined by the velocity profile in the drain, which is not known and had to 
be presumed in [1]. In addition, the solution obtained in [1] can not satisfy the conventional conditions in 
the drain requiring zero value of the radial component of the velocity. Comparisons with the experiments 
[3] and the numerical analysis [4] indicate that the strong vortex approximation is not likely to be valid in 
the immediate vicinity of the drain where the flow has to be rapidly adjusted to the conditions in the 
draining pipe. The present asymptotic analysis focuses on the vorticity evolution in the vicinity of the axis 
without attempting to stretch the strong vortex approximation to the drain. This analysis involves the 
higher order terms and indicates that the stream function of the strong vortex flow behaves as  ~ r4/3z 
near the axis. This asymptote is confirmed by the numerical results obtained for the bathtub flow [4]. As 
in [1], we assume that the Reynolds number is high so that the vortex flow remains inviscid except, may 
be, for thin boundary layers, which are not specifically considered here. The effects of viscosity and of 
the air dip on the strong vortex flow near the axis are standard and the reader can be referred to [1] for 
details.  
 
 
2.Vortical flow: the governing equations 
 
 
Simple observations indicate that the bathtub vortex flow is axisymmetric, laminar and, since the typical 
Reynolds number in the flow is very high, inviscid. The equations controlling axisymmetric unsteady 
flows of inviscid fluid [5] can be written in the following dimensionless form 
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FIG.1  

Schematic of the vortical flow near the axis 
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represent the Rossby number, the Strouhal number and the substantial derivative respectively; capital 
letters denote the normalized values: R = r/r0, Z = z/r0, Vr = vr/v0, Vz = vz/v0,  = /(v0r0

2),  = r0/v0,  
= /0, r = r/0, z = z/0, T = t/t0; the circulation  is introduced as   vr; the choice of the 
cylindrical coordinates r and z is shown in Figure 1; v0, r0, 0 and 0 are the selected constant 
characteristic values of the region under consideration; z0 is the same as r0. The dimensional form of the 
governing equations is not given since one can easily obtain these equations by formally putting St=1 and 
Rs=1. We also note that vorticity evolution equations (4), which are used autonomously in the paper, can 
be obtained from (2). The choice of the characteristic 
time, t0 = 0/(v0r00), needs some remarks. The 
characteristic time is determined from the circulation 
transport equations (2) which can be written in the 
form /t = vrzr - vzrr resulting in the following 
estimation 0/t0 ~ v0r00. Initially, when the bathtub 
flow represents a solid-body rotation, the circulation 
and vorticity are linked by  = zr

2/2 so that 0 and 
0 are dependent. After a very short period of time, 
when the fluid particles from more remote regions 
arrive into the near-axis region the value of  near the 
axis is much larger than its initial value. Hence, 0 
represents an independent parameter and, with 
exception of the very short initial period, the time 
evolution of the flow is slow and the Strouhal 
number is small: St << 1 (although we should 
emphasize that the flow remains unsteady).  
 
 
3. The strong vortex approximation 
 
 
In this section, we investigate the asymptotic behavior of the flow near the axis assuming that the rotation 
in the flow is fast: Rs<<1. The strong vortex expansions  
 
    = 0 + St 1 + St Rs 2 + ...,        Vr = Vr0 + St Vr1 + …,         r = r0 + St r1 + …,  
   Vz = Vz0 + …,             z = z0 + …,            z = z0 + …,             = 0 + … 
 
are formulated here for small values of St and Rs. Substitution of these expansions into system (1)-(4) 
yields 
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The leading order functional representation of  in (6) was originally obtained by Einstein and Li [2]. 
The functions F0 and F1 are, generally, arbitrary functions which are to be determined. The higher order 
equations  
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which specify the values of r1 and Vr1, are used in the present analysis.  
 
 
The value of F0 can be found from boundary conditions. Since the line Z = 0 is, as it shown in Figure 1, a 
streamline  = const, we can put F0 = 0 in (6). The shape of F1 near the axis of the flow is not known and 
was presumed by Lundgren [1] who believes that the strong vortex approximation is valid everywhere in 
the flow and F1 determines the axial velocity profile in the drain (which is unknown and has to be 
presumed). This is not likely to be the case in a realistic flow. First, the strong vortex approximation (6) 
can not satisfy the conventional conditions in the drain Vr  = 0. Second, experiments of [3] indicate that 
the flow experiences rapid acceleration near the drain and this does not comply with (6). In the present 
work, our goal is to determine the near-axis asymptote of  by analyzing evolution of vorticity in the 
flow while considering the terms of higher order. We assume that  ~ RZ (that is F1 ~ R) near the axis. 
The value  is not known a priory. The velocity, vorticity and circulation are determined by (6)-(10)  
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where the functions are calculated: Vr0, Vz0 and 0 – from (6); 1 and z0 – from (7); r1 – from (9); 2 
and Vr1 – from (10). The ratio  is also evaluated in (14). As it can be seen from (14), the value of  = 4/3 
corresponds to a special, limiting regime of the strong vortex. Indeed, if  < 4/3 then    as R  0. 
Hence, the leading order structure of the flow, determined by 0 and Vr0 in (6), can not be sustained by 
the flow. Physically, this means that the vorticity, which can be generated by (3), is not sufficient to keep 
 < 4/3. We also note that at  < 2, the flow has a singularity at the axis: Vz0    as R  0. Faster 
downward velocities are, indeed, observed near the axis of the bathtub-type flows but, of course, this 
velocity can not be infinite. Physically, the influence of viscosity or presence of the air dip should be 
taken into account in a very thin zone near the axis. The reader can be referred to [1] where these matters 
are considered. It is possible to demonstrate that the singularity of the inviscid solution disappears under 



influence of viscosity in the viscous core. Thus, any  < 2 can represent the near-axis asymptote only in 
the inertial, inviscid region.  
 
 
4. Disturbing the vortical flow 
 
 
In this section we analyze how the strong vortex flow can react on disturbances arriving from the 
peripheral regions of the flow. Batchelor [5] considered the solid body rotation in a uniform axisymmetric 
inviscid steady pipe flow and demonstrated that, if the Rossby number is smaller than a certain critical 
value, then even small variations of the pipe diameter can cause dramatic changes in the flow (this 
happens when the function specifying the disturbance takes zero values at the flow boundaries and 
becomes an eigenfunction of the problem). Physically, this means that the nature of the flow is altered and 
the flow is likely to loose stability and become turbulent. The results of [5] can be generalized for the 
flow considered here. The specific case of solid-body rotation considered in [5] results in a linear 
equations for the stream function. In a more general case, the flow is controlled by non-linear equations 
which need to be linearized. (Note that unlike the scalar transport, the vorticity transport involves 
nonlinear interactions with the velocity field [5].) We consider a small axial region at certain distance 
from the stagnation point Z << Z0, R << Z0 as shown in Figure 1. In this region, the flow is almost 
uniform and can be approximated  
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The value Z0 is treated here as a constant. Equations (15)-(17) represent exact solution of the system (1)-
(4). We consider small disturbances  
 
   z = z0 +z1+…,        Vz = Vz0 + …,         Vr = Vr1 + …,         = 0 + 1 + … 
   z = z0 + …,           r = r0 + r1 + …,                  = 0 + St 1(R) + ...,  
 
whose order is assumed to be  << 1. No specific assumption is made in this section with respect to the 
Rossby number. After linearizing system (1)-(4) by neglecting the terms of order of 2, St and higher, we 
obtain  
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The value of 1 can be found by substituting Vr1, determined by (18), into (19) and integrating these 
equations over Z while assuming that Vr1 = 0 and 1 = 0 when z1 = 0. The equation for the stream 
function takes the form  
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As in [5], we assume that /Z << /R and obtain equation whose solution can be expressed in terms of 
J – the Bessel function of the first kind: 
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Only the functions that are of smaller order at the limit R   and satisfy 1  0 as R  0 are selected. 
The sign of 0 should be selected to ensure that Real() takes its minimal positive value. (If 0=0, then 
(23) can involve the logarithmic term: 1 ~ R ln(R) whose presence does not affect our analysis.)  
 

 
 

FIG. 2  
Numerical analysis: streamlines in the vicinity of the axis in the bathtub flow plotted using  

a) normal and b) logarithmic coordinates. The Rossby number calculated using the characteristic radial 
velocity is:    Rs2=0.1;         Rs2=500;       -  - Rs2=.  

The lines    o----o  Z~R2    and    +----+  Z~R4/3 are shown.  
 
 
As in the previous section, the value of  = 4/3, which corresponds to m = 0, represents a special, limiting 
regime for equation (21). Indeed, if  < 4/3 and m > 0, then the far (R  ) asymptote of (22) is given by 
1 ~ R1-m/2cos(b1R

m+b2) where b1 and b2 are constants. If  > 4/3 and m < 0, then 1 ~ 1/Rb as R   
where b = (1+)1/2-1 (the oscillations occur only at smaller radii). If  = 4/3 and m = 0, the exact 
expression for the disturbance depends on the value of B but the amplitude of the disturbance does not 
tend to zero as R  . Suitability of different values of  is now analyzed. The range  > 2 is not 
realistic since Vz  0 as R  0 not consistent with the fast downward velocities observed near the axis of 
the flow. The range 4/3 <  < 2 corresponds to 1  0 as R  . In this case, a small disturbance at a 



large distance from the axis can excite much larger changes in the flow near the axis. Following [5], we 
conclude that this flow is likely to loose stability. Hence, the range 4/3 <  < 2 must also be discarded. 
Finally, we note that the range  < 4/3 is not realistic as it is shown in the previous section. Thus, only 
two values of the exponent,  = 2 and  = 4/3, appear to be acceptable. (Note that 1const as R for 
=2 and 1 does not tend to zero as R for =4/3.) The value  = 2 corresponds to  = 0 and can be 
expected in the flows with weak vorticity and Rs >> 1. (Of course,  must be 2 in a potential flow when 
Rs=.) However, for the bathtub-type flows with stronger vorticity are likely to have a significant value 
of  and this corresponds to  = 4/3. The system of equations (1)-(4) has been analyzed numerically 
[4,6] for the bathtub flow. The enlarged near-axis region is shown in Figure 2. The value  = 2 is 
observed when the vorticity level is either zero or very small. If vorticity is more significant, the region of 
 = 4/3 appears near the axis. As vorticity level increases further, the region of  = 4/3 expands in radial 
direction and becomes clearly distinguishable.  
 
 
5. Conclusions 
 
 
The near-axis asymptotic behavior of a vortical, laminar, bathtub-type flow is analyzed for large values of 
the Reynolds number. It is shown that only two exponents  = 2 (the same as for the Burgers-Rott vortex) 
and  = 4/3 can be expected for the near-axis inviscid asymptote of the stream function  ~ RZ since: 

 < 4/3, as it demonstrated in Section 3, can not be sustained by the flow;  
 4/3 <  < 2, as it is shown in Section 4, is likely to cause amplification of the disturbances near 

the axis and loss of stability; 
  > 2 is not consistent with the observed non-zero downward velocities near the axis.  

The value  = 2 corresponds to weak vorticity and the value  = 4/3 corresponds to strong vorticity in the 
flow. The presented analysis is supported by the numerical calculations performed for a bathtub vortical 
flow with different levels of vorticity as shown in Figure 2. When vorticity is strong and  = 4/3, the local 
Rossby number RsR, introduced in (20), does not depend on R and preserves its order (it appears that 
RsR~1 while global Rs changes several orders of magnitude [4,6]). Although we note the existence of a 
certain similarity between the bathtub vortex flow and phenomena of much larger scales – tornadoes and 
cyclones –, the degree of universality of the strong vorticity laws (RsR~1,  = 4/3)  is yet to be examined. 
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