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A small disturbance in the strong vortex flow
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A small disturbance in the axisymmetric, bathtub-like flow with strong vorticity is considered and
the asymptotic representation of the solution is found. It is shown that if the disturbance is smaller
than a certain critical scale, the conventional strong vortex approximation cannot describe the field
generated by the disturbance not only in the vicinity of the disturbance but also at the distances
much larger than the critical scale. @001 American Institute of Physics.
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An axisymmetric flow with strong axial vorticity repre- This vorticity acts to rotate the vectér’'B’ back to the ver-
sents a reasonable model for various phenomena of very difical direction. If ywg is large, a very small deviation from
ferent scales ranging from the size of a bathtub vortex to théhe vertical direction, such as shown by the veddB”,
scale of atmospheric cyclones. The strong vortex approximawould be sufficient to generate the vorticidy, required to
tion, which corresponds to small values of the Rossby numpreserve the initial direction of the vect&B. In this case,
ber, was originated by Einstein and'land confirmed by the the vorticity/velocity interactions adjust the flow in a way
asymptotic analysis of the Navier—Stokes and Euler equahat keeps generation af, under control. This adjustment is
tions introduced by Lewellénand Lundgrert. Their major  not immediate and can be characterized by a certain charac-
result is represented by the following leading order equationeristic time 7, . If v,~vo=const in the region under con-
for the stream functiony: sideration, then this process is also characterized by the

length scaled, ~vq7, , which is called here the “critical
y=Tor.O+20(r.0), @ scaglle.” The c*ondi?io,ﬁ ofw,—0 requires that, does not
wherefy and f, are functions which are restricted only by depend orz as determined byl). Note that only the case
the boundary conditions imposed on the flow, amthdzare  yw,>0, which is most typical, is considered here. A nega-
the radial and axial coordinates. In this flow, the radial ve-tive value of the productw, would have the opposite, de-
locity v, = —r~tdyl/3z does not depend omand the axial stabilizing effect on the flow. A more detailed discussion of
velocity v,=r " 19yldr depends oz linearly. the stability of this flow can be found in Refs. 9 and 10.

The physical mechanism behind the strong vortex ap-  Considering the mechanism of vorticity evolution dis-
proximation can be easily understood by analyzing evolutiortussed above, it is quite obvious that approximafibnis
of vorticity. Consideration of an axisymmetri¢/d6=0)  not valid in the vicinity of a disturbance whose characteristic
bathtub-type flow of inviscid and incompressible fluid is suf- scale is smaller thad, since the flow does not have enough
ficient for our purposes. Analysis of other aspects of evolutime to adjust itself to changing conditions. The validity or
tion of small disturbances in axisymmetric vortical flows canfalsity of approximation(1) in the far field of this flow,
be found in Refs. 4 and 5. In inviscid fluid, the vorticity which is the focus of the present work, is not so obvious. We
vectorsw evolve in exactly the same way as the correspondinyestigate the response of the bathtub-type flow with strong
ing material line elementsand the circulation, defined here axial vorticity to an axisymmetric disturbance of sidsuch
asy=uvr satisfies the equatidfidy/dt=0, whered/dt de-  as shown in Fig. 1. The undisturbed flow is either uniform or
notes the substantial derivative. Unlike the scalar trangport,the characteristic length scale of its nonuniformity is much
the vorticity transport does affect the velocity fiéléiLet us  |arger thans and &, . The disturbance represents a ring-
assume that, initially, the vorticity vectas, and the corre-  shaped hump which is placed at the distang&om the axis
sponding material line elemerfor material vector AB 35 shown in Fig. 1. The disturbance is small and located far
shown in Fig. 1) are directed along axis (w;=0). Obvi-  from the drain: <r,. The undisturbed velocity, stream
ously, the value ofy must be the same # andB. After a  fynction, vorticity, and circulation in the vicinity of the hump
short time interval, the position of the same material lineye given byy, =
element without significant vorticity is shown By B’. The w,=0, and y=y,. The Rossby number is defined as Rs
vorticity componentw, takes a negative value. SincéB’) =0o/(wgye)*2 and the critical scale is introduced by
<r(A’), the rotation aB' is faster. Ify has the same sign as — 12 Rs As required by the strong vortex approximation,
w, [negative in Fig. (2)] then the vectorA’B’ has its6  he Rossby number is presumed to be@sWhen dealing
component directed toward the reader. Hence, the flow geRgjth 4 real viscous fluid, we assume that its viscosity is suf-
erates the vorticityw, whose direction is shown in Fig. 1. ficiently small so that the thickness of the viscous boundary
layer formed at the bottom of the tank is much smaller than
dElectronic mail: klimenko@mech.ug.edu.au the scalessand é,, . In this case, the presence of the viscous

— Vo, UZ:O, l//O:UOroz, w;= We, wr=0,
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the expansiom=%¥,+... so that Eq.(5) takes the form
V2W¥,=0, whereV? denotes the Laplace operatof/9X?
+8%/9Y?. Indeed, after neglecting the temn®ay/ or whose
relative contribution is small+ &/t ), Eq.(5) takes the form
V20 =—-20,(68/5,)% The vorticity generation term ap-
pears to be small 6%/ 55) so that the stream function in the
inner zone is, to the leading order, potenti®P®,=0).

While the exact value o¥ , depends on the shape of the
hump, its far asymptotéof the inner zongis given by,
=Y—a,Y/(X?+Y?) where the constart,~ 1 is determined
by the hump geometry. AX,Y—, the disturbance of the
uniform flow becomes small and

b— ot ePy,  Po=volgosy,

Sy

(6)

y
1= _Uoro5*aoxTy2a
where the outer zone variables are introducedxag(r
—ro)lé, ,y=265,, ande=(6/6,)? is a small parameter.
The outer zone needs a more detailed consideration and,
for this zone, we seek the solution in the form of the expan-

sions:
l/lzl,//o'f'fl/ll'f'..., Ur=U0+EUr1+...,
UV,=€Up1+...,
w,=wgt..., W=€wt..., wWyp=ewyt...,
FIG. 1. Schematic of the axisymmeric vortical flow over the hufapthe
flow image on the —z plane;(b) view from the top. Y=%Yot....

The leading order approximations (&), (4) and(5) take the
boundary layer would effectively result only in a minor form

change of the shape of the hump. 2
: - . - dwyq vy wg 7Y
The general equations determining evolution of vorticity v = wq =- -, 7
in an axisymmetric inviscid flow are given by X % Fods 0y
do, v, v, Jw g 26, 7o
e —t . — v =- W1, 8
dt Wz 9z (s ar (2 0 x rOZ ri (8
dow, v, dv, Py Py
at Y7z e @ ayr " oxZ BARTLE ©)
dwylr v glr v glr _2 YW, By differentiating (9) twice with respect tox and using(7)
=w o) =yw-Vr c=-2-—75-, i ; ; ;
dt L Toor r and(8), we convert this system into a single equation
4)
( Iy I PP
Py 91y PV IV (10
—— || =—rw,. (5)
Jz ar\r or

_ _ This equation differs from the Rayleigh beam equation only
We %'SO note thalt the following equationsw, by the sign of the first term. The substitution of the exponen-
=—r1"9yldz, w,=r "dylor, and ws=dv,/9z—dv,/dr  tial solution expik,x+ikyy) into (10) yields the dispersion

are used in4) and(5). relation for steady wavek;=kZ/(1—kZ). The exponential

The case of a subcritical disturbanée<d, shown in  solution takes the fornf,(y,k,)exp(k.), where
Fig. 1 is most interesting. The flow is divided into two
asymptotic regions(l) the inner(buffen zoner —r,~z~§8 exp( —yfi(ky)), Ki>1
and (Il) the outer(wave) zoner —ro~z~ &, . The charac- Fily ko) = codyfi(ky)), Kki<1
teristic variables of the inner zone are introducedXas(r *
—1)/8, Y=2I8, W=ul(vorgd), Qp=wy(roRsP/(vyd). and
The characteristic variabl® , is chosen to ensure that the K2
main terms in(4) are of the same order. The treatment of the (k)= 2—)(1/2 (11)
inner zone is quite simple. We retain only the leading term in |k —1]
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If k)2(< 1, Eq. (10) allows for an arbitrary combination of
steady free waves sikfy)exp(k.x) which satisfy the undis-
turbed boundary conditiog; =0 aty=0. Here, we are in-

terested in the waves generated by the disturbance and th< °°

free waves are excluded from consideration. The response
Eg. (10) to the disturbance can be represented as

+ 0

- | aFuykoentikpdk,

In general,a;=a;(k,) is not constant and should be deter-
mined by matching with(6). For this case, however, the
matching conditions are satisfied by constamt;

12

=aguofgd, /2. Indeed, the near field of the outer expansion

x,y—0 corresponds to high-frequency asymptokg

—exp(-ylkJ) as k,— o whose substitution into(12)

yields after evaluation of the Fourier integral;—

—2ayy/(y?+x?). In addition, sinceF,(0k,)—1 asy—0

andx# 0, the stream functiog, determined by(12) satisfies
the boundary conditiony; —0 aty—0 and fixedx# 0 (ac-
tually, for this limit, ¢, — —2ma; 5p(x), wheredp denotes
Dirac’s delta function

Here, we are concerned with the propagation of the flow
disturbances into the main stream. For the far asymptote

(x,y—) of the outer solution, the parts of the integtaR)
over the intervallk,|>1, whereF, exponentially tends to
zero asy—, can be neglected. Taking into account that
is an even function, we obtain

cos{ y
1

Finally, this integral is calculated for large valuesydfy the

1

Y —ay f F(ky) — §k) (13

dk, .

standard asymptotic method which requires evaluation of the
integral only in the vicinity of the stationary phase points

ke= (&), wherefy(k,) =& andé=x/y. The solution is rep-
resented by the wave

1/2 ar
A(x/y)cos( yo(xly)+ Z) .
(14

1

2

ar
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The amplitude functiorA(¢), the phase functiod(¢), and

1817

Small disturbance in the strong vortex flow

1

0

&

FIG. 2. The amplitude functiod(¢) and the phase functiod(é) of the
wave generated by a subcritical disturbance.
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Obviously, ¢, generated in the far field by a subcritical
disturbance does not comply with the strong vortex approxi-
mation represented bgl). However, if the disturbance is
supercritical 5> 8, the stream function is, as it can be ex-
pected, consistent witfl). Indeed, in this case, there is only
one zone which is determined by the characteristic variables
X=(6,16)x andY= (4, /6)y. The substitution oK andY
into (10) yields

5* 2 (941101
( 5) (axzaYZ )
The terms on the left-hand side ¢I6) are, obviously, of
smaller order and should be neglected while the resulting
equationd?y, /9Y?=0 is perfectly consistent witht).

The main results are now summarized. The critical scale
6, ~ToRs, which becomes smaller for faster rotation speeds
and smaller Rossby numbers, is introduced. The strong vor-
tex approximation, which is generally valid for small values

f7(&)=

My
x4

PP
aY?

(16)

their asympiotes are shown in Fig. 2 and determined by 3f the Rossby number, correctly describes the behavior of

cumbersome but fully algorithmic set of equations

A(§)= Q&) =F(fe(£)— &£,

2 1/2
(fﬁ(fg(@)) ’

3 , Ke(2—KZ)
fk(kx):uTk?()TJ fk(kx)zuTk)zJTm?
, (2+K2)
fk(kx):(l_—kXZ)SIZ'
- 5 &2+ 4/3 (19
f(§)=sign(§) f§(§)+m
£2+4/3 1\

EE GRS

the flow generated by the disturbance whose characteristic
scale is larger tha@, . However, a more sudden change in
the flow induced by the disturbance, whose characteristic
scale is smaller tha#d, , is not governed by the strong vor-
tex approximation. At a distance much longer thgn, this
small disturbance generate a standing wave, which propa-
gates upstream and downstream and does not comply with
the strong vortex approximation. The wave is gradually at-
tenuated at larger distances from the disturbance but the at-
tenuation rate is slower than that of a similar disturbance in a
potential flow. It was found in Refs. 8, 9, and 10 that the
strong vortex approximation may be invalid near the drain of
a bathtub-type flow(while the asymptoteA ¢y~r*3Az is
valid near the axis This is consistent with the present analy-
sis which indicates that a sudden disturbance can make the
strong vortex approximation inapplicable.
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