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A small disturbance in the strong vortex flow
A. Y. Klimenkoa)
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A small disturbance in the axisymmetric, bathtub-like flow with strong vorticity is considered and
the asymptotic representation of the solution is found. It is shown that if the disturbance is smaller
than a certain critical scale, the conventional strong vortex approximation cannot describe the field
generated by the disturbance not only in the vicinity of the disturbance but also at the distances
much larger than the critical scale. ©2001 American Institute of Physics.
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An axisymmetric flow with strong axial vorticity repre
sents a reasonable model for various phenomena of very
ferent scales ranging from the size of a bathtub vortex to
scale of atmospheric cyclones. The strong vortex approxi
tion, which corresponds to small values of the Rossby nu
ber, was originated by Einstein and Li1 and confirmed by the
asymptotic analysis of the Navier–Stokes and Euler eq
tions introduced by Lewellen2 and Lundgren.3 Their major
result is represented by the following leading order equa
for the stream functionc:

c5 f 0~r ,t !1z f1~r ,t !, ~1!

where f 0 and f 1 are functions which are restricted only b
the boundary conditions imposed on the flow, andr andz are
the radial and axial coordinates. In this flow, the radial v
locity v r52r 21]c/]z does not depend onz and the axial
velocity vz5r 21]c/]r depends onz linearly.

The physical mechanism behind the strong vortex
proximation can be easily understood by analyzing evolut
of vorticity. Consideration of an axisymmetric~]/]u50!
bathtub-type flow of inviscid and incompressible fluid is su
ficient for our purposes. Analysis of other aspects of evo
tion of small disturbances in axisymmetric vortical flows c
be found in Refs. 4 and 5. In inviscid fluid, the vorticit
vectorsv evolve in exactly the same way as the correspo
ing material line elements6 and the circulation, defined her
asg[vur satisfies the equation3,6 dg/dt50, whered/dt de-
notes the substantial derivative. Unlike the scalar transp7

the vorticity transport does affect the velocity field.6,8 Let us
assume that, initially, the vorticity vectorv0 and the corre-
sponding material line element~or material vector! AB
shown in Fig. 1~a! are directed alongz axis (v r50). Obvi-
ously, the value ofg must be the same atA andB. After a
short time interval, the position of the same material li
element without significant vorticity is shown byA8B8. The
vorticity componentv r takes a negative value. Sincer (B8)
,r (A8), the rotation atB8 is faster. Ifg has the same sign a
vz @negative in Fig. 1~a!# then the vectorA8B8 has itsu
component directed toward the reader. Hence, the flow g
erates the vorticityvu whose direction is shown in Fig. 1
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This vorticity acts to rotate the vectorA8B8 back to the ver-
tical direction. If gv0 is large, a very small deviation from
the vertical direction, such as shown by the vectorA8B9,
would be sufficient to generate the vorticityvu required to
preserve the initial direction of the vectorAB. In this case,
the vorticity/velocity interactions adjust the flow in a wa
that keeps generation ofvu under control. This adjustment i
not immediate and can be characterized by a certain cha
teristic timet* . If v r;v05const in the region under con
sideration, then this process is also characterized by
length scaled* ;v0t* , which is called here the ‘‘critical
scale.’’ The condition ofv r→0 requires thatv r does not
depend onz as determined by~1!. Note that only the case
gvz.0, which is most typical, is considered here. A neg
tive value of the productgvz would have the opposite, de
stabilizing effect on the flow. A more detailed discussion
the stability of this flow can be found in Refs. 9 and 10.

Considering the mechanism of vorticity evolution di
cussed above, it is quite obvious that approximation~1! is
not valid in the vicinity of a disturbance whose characteris
scale is smaller thand* since the flow does not have enoug
time to adjust itself to changing conditions. The validity
falsity of approximation~1! in the far field of this flow,
which is the focus of the present work, is not so obvious. W
investigate the response of the bathtub-type flow with stro
axial vorticity to an axisymmetric disturbance of sized such
as shown in Fig. 1. The undisturbed flow is either uniform
the characteristic length scale of its nonuniformity is mu
larger thand and d* . The disturbance represents a rin
shaped hump which is placed at the distancer 0 from the axis
as shown in Fig. 1. The disturbance is small and located
from the drain: d!r 0 . The undisturbed velocity, stream
function, vorticity, and circulation in the vicinity of the hum
are given byv r52v0 , vz50, c05v0r 0z, vz5v0 , v r50,
vu50, and g5g0 . The Rossby number is defined as R
5v0 /(v0g0)1/2 and the critical scale is introduced byd*
521/2r 0Rs. As required by the strong vortex approximatio
the Rossby number is presumed to be Rs!1. When dealing
with a real viscous fluid, we assume that its viscosity is s
ficiently small so that the thickness of the viscous bound
layer formed at the bottom of the tank is much smaller th
the scalesd andd* . In this case, the presence of the visco
5 © 2001 American Institute of Physics
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boundary layer would effectively result only in a mino
change of the shape of the hump.

The general equations determining evolution of vortic
in an axisymmetric inviscid flow are given by6

dvz

dt
5vz

]vz

]z
1v r

]vz

]r
, ~2!

dv r

dt
5vz

]v r

]z
1v r

]v r

]r
, ~3!

dvu /r

dt
5vz

]vu /r

]z
1v r

]vu /r

]r
5gv•¹r 22522

gv r

r 3 ,

~4!

]2c

]z2 1r
]

]r S 1

r

]c

]r D52rvu . ~5!

We also note that the following equations:v r

52r 21]g/]z, vz5r 21]g/]r , and vu5]v r /]z2]vz /]r
are used in~4! and ~5!.

The case of a subcritical disturbanced!d* shown in
Fig. 1 is most interesting. The flow is divided into tw
asymptotic regions:~I! the inner~buffer! zoner 2r 0;z;d
and ~II ! the outer~wave! zone r 2r 0;z;d* . The charac-
teristic variables of the inner zone are introduced asX5(r
2r 0)/d, Y5z/d, C5c/(v0r 0d), Vu5vu(r 0Rs)2/(v0d).
The characteristic variableVu is chosen to ensure that th
main terms in~4! are of the same order. The treatment of t
inner zone is quite simple. We retain only the leading term

FIG. 1. Schematic of the axisymmeric vortical flow over the hump:~a! the
flow image on ther –z plane;~b! view from the top.
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the expansionC5C01... so that Eq.~5! takes the form
¹2C050, where¹2 denotes the Laplace operator]2/]X2

1]2/]Y2. Indeed, after neglecting the termr 21]c/]r whose
relative contribution is small (;d/r 0), Eq.~5! takes the form
¹2C522Vu(d/d* )2. The vorticity generation term ap
pears to be small (;d2/d

*
2 ) so that the stream function in th

inner zone is, to the leading order, potential (¹2C050).
While the exact value ofC0 depends on the shape of th

hump, its far asymptote~of the inner zone! is given byC0

5Y2a0Y/(X21Y2) where the constanta0;1 is determined
by the hump geometry. AsX,Y→`, the disturbance of the
uniform flow becomes small and

c→c01ec1 , c05v0r 0d* y,
~6!

c152v0r 0d* a0

y

x21y2 ,

where the outer zone variables are introduced asx5(r
2r 0)/d* , y5z/d* , ande[(d/d* )2 is a small parameter.

The outer zone needs a more detailed consideration
for this zone, we seek the solution in the form of the expa
sions:

c5c01ec11..., v r5v01ev r11...,

vz5ev r11...,

vz5v01..., v r5ev r11..., vu5evu11...,

g5g01... .

The leading order approximations of~3!, ~4! and~5! take the
form

v0

]v r1

]x
5v0

]v r1

]y
52

v0

r 0d*

]2c1

]y2 , ~7!

v0

]vu1

]x
52

2d* g0

r 0
2 v r1 , ~8!

]2c1

]y2 1
]2c1

]x2 52r 0d
*
2 vu1 . ~9!

By differentiating~9! twice with respect tox and using~7!
and ~8!, we convert this system into a single equation

]4c1

]x2]y2 1
]4c1

]x4 52
]2c1

]y2 . ~10!

This equation differs from the Rayleigh beam equation o
by the sign of the first term. The substitution of the expone
tial solution exp(ikxx1ikyy) into ~10! yields the dispersion
relation for steady wavesky

25kx
2/(12kx

2). The exponential
solution takes the formFk(y,kx)exp(ikxx), where

Fk~y,kx![H exp~2y fk~kx!!, kx
2.1

cos~y fk~kx!!, kx
2,1

and

f k~kx![
kx

2

ukx
221u1/2. ~11!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1817Phys. Fluids, Vol. 13, No. 6, June 2001 Small disturbance in the strong vortex flow
If kx
2,1, Eq. ~10! allows for an arbitrary combination o

steady free waves sin(kyy)exp(ikxx) which satisfy the undis-
turbed boundary conditionc150 at y50. Here, we are in-
terested in the waves generated by the disturbance and
free waves are excluded from consideration. The respons
Eq. ~10! to the disturbance can be represented as

c152E
2`

1`

a1Fk~y,kx!exp~ ikxx!dkx . ~12!

In general,a15a1(kx) is not constant and should be dete
mined by matching with~6!. For this case, however, th
matching conditions are satisfied by constanta1

5a0v0r 0d* /2. Indeed, the near field of the outer expans
x,y→0 corresponds to high-frequency asymptoteFk

→exp(2yukxu) as kx→6` whose substitution into~12!
yields after evaluation of the Fourier integralc1→
22a1y/(y21x2). In addition, sinceFk(0,kx)→1 as y→0
andxÞ0, the stream functionc1 determined by~12! satisfies
the boundary conditionc1→0 at y→0 and fixedxÞ0 ~ac-
tually, for this limit, c1→22pa1dD(x), wheredD denotes
Dirac’s delta function!.

Here, we are concerned with the propagation of the fl
disturbances into the main stream. For the far asymp
(x,y→`) of the outer solution, the parts of the integral~12!
over the intervalukxu.1, whereFk exponentially tends to
zero asy→`, can be neglected. Taking into account thatf k

is an even function, we obtain

c1→2a1E
21

1

cosS yS f k~kx!2
x

y
kxD Ddkx . ~13!

Finally, this integral is calculated for large values ofy by the
standard asymptotic method which requires evaluation of
integral only in the vicinity of the stationary phase poin
kx5 f j(j), wheref k8(kx)5j andj[x/y. The solution is rep-
resented by the wave

c1→2
1

2
v0r 0d* a0S p

y D 1/2

A~x/y!cosS yF~x/y!1
p

4 D .

~14!

The amplitude functionA(j), the phase functionF~j!, and
their asymptotes are shown in Fig. 2 and determined b
cumbersome but fully algorithmic set of equations

A~j!5S 2

f k9~ f j~j!! D
1/2

; F~j!5 f k~ f j~j!!2j f j~j!,

f k~kx!5
kx

2

~12kx
2!1/2; f k8~kx!5

kx~22kx
2!

~12kx
2!3/2;

f k9~kx!5
~21kx

2!

~12kx
2!5/2,

~15!

f j~j![sign~j!S f j
s~j!1

j214/3

j211

1
j214/3

3~j412j211!

1

f j
s~j! D

1/2

,
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s~j![2S j415j2/3116/27

2~j613j413j211!
2

j~j2132/27!1/2

2~j211!2 D 1/3

.

Obviously,c1 generated in the far field by a subcritic
disturbance does not comply with the strong vortex appro
mation represented by~1!. However, if the disturbance is
supercriticald@d* the stream function is, as it can be e
pected, consistent with~1!. Indeed, in this case, there is on
one zone which is determined by the characteristic variab
X5(d* /d)x andY5(d* /d)y. The substitution ofX andY
into ~10! yields

S d*
d D 2S ]4c1

]X2]Y2 1
]4c1

]X4 D52
]2c1

]Y2 . ~16!

The terms on the left-hand side of~16! are, obviously, of
smaller order and should be neglected while the resul
equation]2c1 /]Y250 is perfectly consistent with~1!.

The main results are now summarized. The critical sc
d* ;r 0Rs, which becomes smaller for faster rotation spe
and smaller Rossby numbers, is introduced. The strong
tex approximation, which is generally valid for small valu
of the Rossby number, correctly describes the behavio
the flow generated by the disturbance whose character
scale is larger thand* . However, a more sudden change
the flow induced by the disturbance, whose characteri
scale is smaller thand* , is not governed by the strong vor
tex approximation. At a distance much longer thand* , this
small disturbance generate a standing wave, which pro
gates upstream and downstream and does not comply
the strong vortex approximation. The wave is gradually
tenuated at larger distances from the disturbance but the
tenuation rate is slower than that of a similar disturbance
potential flow. It was found in Refs. 8, 9, and 10 that t
strong vortex approximation may be invalid near the drain
a bathtub-type flow~while the asymptoteDc;r 4/3Dz is
valid near the axis!. This is consistent with the present anal
sis which indicates that a sudden disturbance can make
strong vortex approximation inapplicable.

FIG. 2. The amplitude functionA(j) and the phase functionF~j! of the
wave generated by a subcritical disturbance.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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