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The modeling of turbulent reactive flows based on multiple
mapping conditioning
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A new modeling approach—multiple mapping conditioning~MMC!—is introduced to treat mixing
and reaction in turbulent flows. The model combines the advantages of the probability density
function and the conditional moment closure methods and is based on a certain generalization of the
mapping closure concept. An equivalent stochastic formulation of the MMC model is given. The
validity of the closuring hypothesis of the model is demonstrated by a comparison with direct
numerical simulation results for the three-stream mixing problem. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1575754#
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I. INTRODUCTION

Turbulent combustion models have been developing
the last 30 years and, at present, they represent pow
tools for analyzing combustion processes in turbul
flows.1–3 Probability density function~PDF! models4,5 pro-
vide the most detailed information about the stochastic ch
acteristics of all species involved in a combustion proce
and this allows for the most accurate evaluation of the re
tion rates. However, for the realistic chemical processes
volving hundreds of species, the complete direct evalua
of the joint PDFs of all reactive species does not seem
sible at present~this would require solving equations in th
composition space whose dimension is expressed by a th
digit number!. The computationally efficient PDF method
are expected to reduce the effective number of dimension
an acceptable two-digit number using certain automatic
duction techniques.6,7

The ideas developed in the present work are based on
presumption that, practically, it is not necessary to allow
species to fluctuate in all possible ways. First, fluctuations
concentrations are restricted by the conservation of elem
and other conservation principles. Second, fast react
force some of the concentrations to be asymptotically cl
to their partial equilibrium states. Third, some of the turb
lent fluctuations do not have a significant effect on comb
tion and can be neglected. We use the word ‘‘major’’ to ch
acterize fluctuations or composition manifolds~i.e., curved
surfaces in the composition space of a dimension sma
than the dimension of the whole space!, which are taken into
account by the model; and the word ‘‘minor’’ characteriz
fluctuations that are neglected or composition manifolds
are not attainable. The same minor/major notations can
used to characterize species: the term ‘‘major species’’
phasizes that fluctuations of this particular set of species
not restricted, while the term ‘‘minor species’’ refers to sp
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cies that are allowed to fluctuate only jointly with the maj
species.~Note that, for a given major manifold, the selectio
of major species is not unique and we do not restrict
consideration to a specific choice of the major species.! Prac-
tically, this means that the concentrations of the minor s
cies are conditioned on the concentrations of the major s
cies. Thus, in the present work, we also have to deal with
models analyzing the evolution of the conditional expec
tions.

The model that deals with the conditional expectatio
of the reactive components is the conditional moment c
sure ~CMC!.8 Although this model can be formulated fo
multiple conditions, the practical realizations of the mod
are mostly limited to the values conditioned on a single va
able ~normally the mixture fraction!. The model provides a
relatively computationally inexpensive alternative to t
evaluation of the joint PDF of all reactive scalars, but it oft
lacks the ability to take into account some of the significa
fluctuations of the reactive species~the fluctuations with re-
spect to the conditional means! in order to determine the
reaction rates accurately. One possible solution is to in
duce a conditional variance equation and determine the r
tion rates with the use of a presumed conditional PDF ba
on the calculated conditional variance.8,9 Another way of im-
proving the accuracy of the conditional models is to take i
account more of the turbulent fluctuations by increasing
number of conditioning variables. This means that instead
using the mixture fraction as the only conditioning variab
we use several conditioning variables~which can be repre-
sented by the concentrations of the major species!. Another
link of equations for conditional expectations and PDF mo
els is discussed in Refs. 10, 11 for velocity-type conditio
ing.

In spite of the relative transparency of these ideas, th
practical implementation is not easy. The difficulties are n
in formulating the conditional equations with multiple co
ditioning variables—these equations are well known.8 ~The
possibility of using the scalar dissipation as an additio
conditioning variable is explored by Chaet al.12! The mix-
ture fraction based CMC needs the specification of the o

ress
-
l:
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variable PDF of the mixture fraction, but the conditional cl
sures with multiple conditions would require th
specification of the multidimensional joint PDF for the maj
species. While the shapes of the mixture fraction PDF
well known and can be presumed, determining the joint P
of the major ~reactive! species needs more extensive PD
modeling.

The present work represents a logical combination of
PDF method, which is used to find the joint PDFs in t
major manifold, and conditional methods, which are used
determine the evolution of the dependent species. This w
goes far beyond mechanistic combining of two differe
methods into one model. It appears that the model sugge
in the present work does not discriminate between the m
and minor species, but treats them in the same way~i.e., the
PDF/CMC interpretations of the model are valid for any re
sonable choice of major and minor species!.

As in any PDF method, the PDF part of the prese
model needs a closure. An additional difficulty is induced
the fact that CMC needs the specification, not only of
PDF of the major species, but also of their conditional dis
pation, which has to be consistent with the joint PDF. T
problem has been solved in the present work by generali
the concept of mapping closure~MC!.13,14 For the statisti-
cally homogeneous case, the major idea in the mapping
sure is to consider the mapping betweenns Gaussian refer-
ence fields and thens species concentration fields. Th
mapping ~which is not unique! is constructed to yield the
known one-point joint PDF of the species. Then, statistics
the species fields~in particular, the conditional dissipation!
are determined from the joint PDF and the mapping. Thu
closure is achieved, which takes the form of an evolut
equation for the mapping. For a single species (ns51), the
mapping closure has been fully explored13–17 and particle
implementations have been developed.14,18,19The application
of the mapping closure for multiple species (ns.1) has also
been considered.14,20,21However, a computationally tractabl
implementation that respects the mapping closure and sc
linearity and independence principles has yet to be de
oped.

In contrast to previous works, we introduce a new v
sion of MC that~a! from its origin is formulated for inhomo-
geneous flows,~b! deals with multidimensional spaces with
out any need of artificial ordering of the variables, and~c!
allows for non-Gaussian distributions for the reference v
able ~although the specific form of the present closure is,
the original MC, implemented with Gaussian reference va
ables!. Considering its link with MC, and the multidimen
sional nature of the model we refer to the new method as
model with multiple mapping conditioning~MMC!. The
MMC model is introduced in Sec. II, where its properties a
analyzed. The MMC model matches well properties of t
bulent mixing such as localness,22,23 boundedness, indepen
dence of scalars24 and Gaussianity of the PDFs in approp
ate limits. Although we refer to MMC as a model, the MM
approach is more akin to a certain framework that can
used to formulate various specific models.

A significant part of the paper~Secs. III and IV! is de-
voted to an equivalent stochastic~i.e., Monte Carlo! formu-
Downloaded 07 Jul 2003 to 130.102.102.41. Redistribution subject to A
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lation and implementation of the MMC model. Although th
dimension of the major composition manifold is smaller th
the total number of species, this dimension is, generally,
expected to be small. For multidimensional spaces, stoc
tic formulations are expected to be more computationa
efficient than deterministic formulations.4 The most difficult
part of the stochastic formulation is, as usual, the evalua
of the mixing step, which requires the calculation of certa
conditional averages. In the present work we suggest
method of diffusing clouds, which has some similarities w
the method of smoothed particle hydrodynamics,25 but the
diffusing clouds are allowed to expand in time. For th
method the numerical diffusion which is associated with
evaluation of the conditional averages matches the inten
of the diffusion required by the MMC model.

Another problem considered in Sec. IV is related to t
formulation of the initial conditions. Assuming that approp
ate initial conditions are specified for all species, the MM
model also has to be provided with an initial mapping of t
concentrations into the reference Gaussian space. For
tiple dimensions this mapping is not unique. Without t
claiming of finding an ultimate solution for this problem, w
suggest a procedure—‘‘mapping by preferential direction
~MPD!—which is based on some additional physical cons
erations and a certain ordering of the variables or their lin
combinations. Although the scalars in MPD are not indep
dent ~as they are in MMC!, we believe that this method
corresponds well to the physics of the problem for a la
class of practical cases.

In the last section, we consider the problem of thre
stream mixing that has been simulated numerically by Jun
and Pope26 ~JP in further references!. This problem should
probably serve as a benchmark problem for all multivaria
joint PDF closures. It is shown that, for the MMC mode
this problem has an analytical solution that is compared w
numerical calculations using the diffusing clouds metho
The analytical MMC results match well the DNS results
JP while the stochastic simulations are in good agreem
with the analytical formulas.

II. DETERMINISTIC FORMULATION OF THE MMC
MODEL

A. Major and minor species

We consider a set ofns chemically active species, with
mass fractionsYI(x,t), (I 51,2,. . . ,ns) that satisfy the
transport equation

]r YI

]t
1“"~vrYI !2“"~D“YI !5rV I , ~1!

wherev5v(x,t) is the fluid velocity,D is the diffusion co-
efficient ~which is assumed to be the same for all species!, r
is the density, andV I is the rate of creation of speciesI due
to chemical reactions. Bothr and V I are assumed to be
known functions of the mass fractions:V I5V I(Y), r
5r(Y). @For simplicity of exposition, we confine attentio
to this set of species, although in practice an energy varia
~e.g., enthalpy! must also be considered. However, since
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1909Phys. Fluids, Vol. 15, No. 7, July 2003 Model for turbulent reactive flows
enthalpy equation has the same form of~1!, it is trivial to
extend the present treatment to the general case.#

A fundamental assumption in the model is that, at (x,t),
the compositionsY(x,t) that occur in different realization
of the flow are restricted to annr-dimensional manifold in
the ns-dimensional composition space (nr,ns). This mani-
fold is denoted byZ(j,x,t), where j5$j1 ,j2 ,...,jnr

% are
reference variables that parametrize the manifold, andZ has
ns components$Z1 ,Z2 ,...,Zns

%. The assumption thatY(x,t)
is restricted to this manifold is then written as

Y~x,t !5Z~j* ,x,t !, ~2!

where j* [$j1* ,j2* ,...,jnr
* % is a random point in the refer

encej space. Note thatZ(j,x,t) is a deterministic function,
and the randomness ofY(x,t) is reflected in the randomnes
of j* .

An important special case to consider is that in wh
there is a set ofnr ‘‘major species’’ such that there is
one-to-one mapping between the manifold and the mass
tions of these major species. We denote byY$ i % the mass
fractions of the major species, and byY$a% the mass fractions
of the remainingns2nr ‘‘minor’’ species. In this case,
knowledge of the major speciesY$ i % determines a unique
point on the manifold, and hence the mass fractionsY$a% of
the minor species. Thus, the minor species are~by assump-
tion! determined by the major species; and so there are
fluctuations in the minor species about their means co
tioned on the major species. These conditional means
denoted by

Qa~Y$ i % ,x,t !5^Ya~x,t !uY$ i %~x,t !5y$ i %&. ~3!

Locally on the manifold~i.e., in the neighborhood of a
general pointjp), it is always possible to find a set ofnr

species such that their mass fractions have a one-to-one
ping with points on the manifold. But, if the manifold ha
folds, a set of ‘‘major’’ species~for which, globally, there is
a one-to-one mapping! may not exist. In the model presente
below, there is no assumption about the existence of m
species, and indeed all species are treated equally. How
some of the properties of the model are deduced, assum
the existence of major species. Furthermore, some conc
are more easily understood, and the model is more obvio
related to CMC, when major species exist—as is assume
this and the next section.

Before proceeding, we clarify the notation used for su
sets of species. Bracketed subscripts are used to specif
span of a vector when clarification of the dimensionality
the vector is needed. For example,YI ~upper case Roman
suffix! is a value indexed by a running indexI , while Y$I %
represents the whole set$Y1 ,Y2 , . . . %, as determined by the
span of the dummy indexI . If the dummy index is not speci
fied, then the vector involves all relevant components:Y
5$Y1 ,Y2 , . . . ,Yns

%. A major species is denoted byYi ~lower
case Roman suffix!, and the complete set ofnr major species
by Y$ i % . Similarly, a minor species is denoted byYa ~lower
case Greek suffix!, and the complete set ofns2nr minor
Downloaded 07 Jul 2003 to 130.102.102.41. Redistribution subject to A
c-

o
i-
re

ap-

or
er,
ng
pts
ly
in

-
the
f

species byY$a%. The sample-space variables are denoted by
for all species; byy$I % for some subset; byy$ i % for major
species; and byy$a% for minor species.

B. The PDF and CMC equations

An accurate evaluation of the reaction rates requires
specification of the one-point joint PDF of the species m
fractionsPY or of the Favre joint PDFP̃Y . The Favre PDF
of all species is denoted byP̃Y(y;x,t); of a subset by
P̃Y(y$I % ;x,t); and of major species byP̃Y(y$ i % ;x,t).

The transport equation for the Favre PDF,P̃Y can be
derived from ~1! by well-established techniques.4,8,27 For
flows with large Reynolds numbers, transport by molecu
diffusion can be neglected and the PDF transport equatio
given by

]^r&P̃Y

]t
1“"~u^r&P̃Y!1

]WI^r&P̃Y

]yI
1

]2NIJ^r&P̃Y

]yI]yJ
50,

~4!

where

NIJ~y$K% ;x,t ![^rx IJuY$K%5y$K%&/rY, x IJ[
D

r
“YI "“YJ ,

u~y$I % ;x,t ![^rvuY$I %5y$I %&/rY ,

WI~y$J% ;x,t ![^rV I uY$J%5y$J%&/rY , ~5!

rY~y$I % ;x,t ![^ruY$I %5y$I %&,

P̃Y~y$I % ;x,t ![PYrY /^r&,

and the indicesI , J, K run over all species or any give
subset of 1,. . . ,ns .

If the set of species considered in the equation is co
plete~i.e., Y$I %5Y5$Y1 ,Y2 , . . . ,Yns

%), then conditional av-
erages of the reaction rates and density are simply given

WI~y;x,t !5V I~y!, rY~y;x,t !5r~y!. ~6!

It should be noted, however, that the joint PDF of the co
plete set of species is most likely singular: the PDF ta
positive values only within a certain attainable manifo
while remaining zero in the rest of the composition spa
Thus, all PDF equations should be conventionally interpre
according their generalized sense.

As is discussed in the preceding subsection, we ass
that the PDFP̃Y(y;x,t) is positive only within a certain ma
jor manifold and can be characterized by a reduced PDF
certain smaller dimension,nr . If a set of major speciesY$ i % ,
which is sufficient to characterize the major~i.e., allowed!
fluctuations, is selected, then the joint PDFP̃Y(y;x,t) can be
effectively replaced by the reduced PDFP̃Y(y$ i % ;x,t) supple-
mented by the conditional expectationsQa5Qa(y$ i % ;x,t)
[^YauY$ i %5y$ i %&. Specifically, we have

P̃Y~y;x,t !5 P̃Y~y$ i % ;x,t !d~Q$a%~y$ i % ;x,t !2y$a%!, ~7!

where, in general, a delta function with a vector argum
denotes the product of the delta functions with the vec
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1910 Phys. Fluids, Vol. 15, No. 7, July 2003 A. Y. Klimenko and S. B. Pope
components as arguments. The delta-function product in~7!
is the PDF of the minor species conditional upon the ma
species.

Whatever the choice of the major species may be,
reduced PDFP̃Y(y$ i % ;x,t) and the conditional expectation
Qa(y$ i % ;x,t) should satisfy the equations4,8,27

]^r&P̃Y

]t
1“"~u^r&P̃Y!1

]Wi^r&P̃Y

]yi
1

]2Ni j ^r&P̃Y

]yi]yj
50,

~8!

and

]Qa

]t
1u"“Qa1Wi

]Qa

]yi
2Ni j

]2Qa

]yi]yj
5Wa , ~9!

wherei , j , andk run over major species;a runs over minor
species; Ni j 5Ni j (y$k% ;x,t), uÄu(y$k% ;x,t), and W
5W(y$k% ;x,t) are the scalar dissipation, velocity, and rea
tion rates defined in~5! and conditioned on the mass fra
tions of the major species. Since the major species are
sumed to set a sufficient number of conditions for taking i
account all major fluctuations so that the fluctuations w
respect to the conditional means can be neglected, we
ventionally put

WI~y$ i % ;x,t ![^V I~Y$ i % ,Y$a%!uY$ i %5y$ i %&

5V I~y$ i % ,Q$a%!,

and

rY~y$ i % ;x,t ![^r~Y$ i % ,Y$a%!uY$ i %5y$ i %&5r~y$ i % ,Q$a%!,

in ~8! and~9!. Neglecting minor fluctuations also allows th
neglect of the termP̃Y

21
“"(^u9(Ya)9uY$ i %5y$ i %&P̃Y) that,

otherwise, should be conventionally present in~9! ~these
fluctuations can be also neglected in some other cas
CMC shear flow equations,28 for example!. The double-
prime superscript denotes the conditional fluctuations,
example, (Ya)9[Ya2Qa .

It is important to observe that in~8! and ~9! the only
‘‘unknowns’’ are the conditional mean velocityu and the
scalar dissipationNi j . Hence, if models are provided fo
these quantities,~8! and ~9! provide a closure for species i
turbulent reactive flows.

In the subsequent analysis, use is made of the conse
tive form of the CMC equation, which is readily obtaine
from ~8! and ~9!:

]^r&P̃YQa

]t
1“"~u^r&P̃YQa!1

]Wi^r&P̃YQa

]yi

1
]

]yi
S Qa

]Ni j ^r&P̃Y

]yj
2Ni j ^r&P̃Y

]Qa

]yj
D 5Wa^r&P̃Y .

~10!

C. The modeling equations

With the assumptions made~primarily the neglect of the
conditional fluctuations of the minor species!, Eqs. ~8! and
~9! describe the evolution of the joint PDF of the maj
species,P̃Y , and the conditional means of the minor spec
Downloaded 07 Jul 2003 to 130.102.102.41. Redistribution subject to A
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Qa . These equations could be solved if models were av
able for the two unknowns—the conditional velocityu and
the conditional dissipationNi j . However, becauseNi j ap-
pears as a negative diffusion coefficient in the PDF equa
~8!, the explicit modeling ofNi j does not lead to a stable
realizable model. Instead, we proceed indirectly~as in the
mapping closure! and use the space of the reference variab
to formulate the modeling equations.

The model which we can call ‘‘the model with multipl
mapping conditioning’’~MMC!, is represented by the fol
lowing equations for thenr-dimensional manifoldZ(j,x,t)
which are to be solved in the space of the reference varia
jk , k51,2,. . . ,nr ,

]ZI

]t
1U"“ZI1Ak

]ZI

]jk
2Bkl

]2ZI

]jk]j l
5V I~Z!, ~11!

whereZI (I 51,2,. . . ,ns) correspond to each of the speci
involved. The values of the coefficientsAk5Ak(j,x,t), Bkl

5Bkl(j,x,t), U5U(j,x,t) are discussed below. The solutio
of this equation,ZI5ZI(j,x,t), is a deterministic function of
its arguments.

In order to model stochastic properties of turbulent co
bustion we introduce stochastic fieldsjk* 5jk* (x,t). The
function Pj5Pj(j;x,t), which represents the one-poin
one-time joint PDF ofj1* , . . . ,jnr

* , is required to satisfy the

equation

]^r&Pj

]t
1“"~U^r&Pj!1

]Ak^r&Pj

]jk
1

]2Bkl^r&Pj

]jk]j l
50.

~12!

This equation is called the reference PDF equation whilePj

is referred to as the reference PDF. Satisfying the refere
PDF equation is a mathematical requirement whose nece
is demonstrated in the following subsection. The valuesj i*
may be generated/modeled in different ways as long as
PDF complies with~12!, although Eq.~12! does not neces
sarily reflect the physical nature of the fluctuations simula
by j i* . Depending on the implementation of the model, d
ferentj i* may simulate fluctuations induced by different fa
tors ~i.e., by fluctuations of the mixture fraction, fluctuation
of velocity, fluctuations of dissipation, etc.!. The conserva-
tive formulation of the MMC model,

]^r&PjZI

]t
1“"~U^r&PjZI !1

]Ak^r&PjZI

]jk
2^r&PjV I

5
]

]jk
S Bkl^r&Pj

]ZI

]j l
2ZI

]Bkl^r&Pj

]j l
D

5
]

]jk
S 2Bkl^r&Pj

]ZI

]j l
2

]Bkl^r&PjZI

]j l
D , ~13!

can be obtained from Eqs.~11! and ~12!. This form appears
to be convenient for numerical implementations.

Here, we also consider the stochastic fieldsZI*
5ZI@j* (x,t),x,t#, which are represented by determinist
functions of stochastic arguments. The joint PDF of the v
uesZ$I %* is denoted byPZ5PZ(z$I % ;x,t), wherez$I % represent
the sample space variables forZ$I %* . The span indexI may
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1911Phys. Fluids, Vol. 15, No. 7, July 2003 Model for turbulent reactive flows
vary in the definition ofPZ so that the definition correspond
to the PDFs of different levels. The asterisk superscrip
used to indicate the stochastic nature of the variables
fields.

The one-point joint PDF of thens fields Z* is denoted
by PZ(z;x,t) and, through the relation Z*
5Z@j* (x,t),x,t#, it can be obtained fromPj by

PZ~z;x,t !5E Pj~j;x,t !d@Z~j,x,t !2z#dj,

where integration is over the entire reference space. T
PDF is the model for the Favre PDF of the spec
P̃Y(y;x,t). In the following sections the connection betwe
PZ and P̃Y is established by showing that under certain co
ditions specified below, the MMC model gives solutions
Eqs.~8! and ~9!.

This interpretation, of course, assumes a certain link
tween the coefficients of Eqs.~8! and ~9! and ~12! and ~11!
~i.e., MMC has also to be a model for the unknown coe
cientsNIJ andu!. In the following section, it is shown that
generally, the relationships between the coefficients are

WI~z$J% ;x,t !5^V I* uZ$J%* 5z$J%&,

u~z$I % ;x,t !5^U* uZ$I %* 5z$I %&, ~14!

NIJ~z$K% ;x,t !5^NIJ* uZ$K%* 5z$K%&,

where

V I* [V I~Z* !,

U* [U@j* ~x,t !,x,t#, NIJ* [NIJ
+ @j* ~x,t !,x,t#, ~15!

NIJ
+ ~j,x,t ![Bkl

]ZI

]jk

]ZJ

]j l
.

The reaction source terms are also included to empha
thatWI is considered to be a model forWI in ~4!. If the set of
ZI5ZI(j,x,t) uniquely determines the values ofjk

5jk(Z$I % ,x,t) that correspond toZ$I % , then Eqs.~14! can be
simplified. Indeed, in this case the conditionZ$I %* 5z$I %
uniquely determines the values ofj* and the values aver
aged in~14! cannot fluctuate around their conditional mea
so that we can write

u@Z$I %~j,x,t !;x,t#5U~j,x,t !,
~16!

NIJ@Z$K%~j,x,t !;x,t#5NIJ
+ ~j,x,t !.

It should be noted that, unlessZ$I % and j have the same
dimension while the functionsZI5ZI(j,x,t) provide one-to-
one mappings ofj into Z$I % , not all combinations ofZ$I %* are
realizable~i.e., having a positive probability!.

D. Compliance with the PDF equation

Although Eqs.~11! for ZI are deterministic, the value
ZI* 5ZI(j* ,x,t) are stochastic due to the randomness ofj* .
Stochastic valuesZI* can be characterized by a PD
PZ(z$I % ;x,t), which, as it is shown below, is a model fo
P̃Y(y$I % ;x,t). In this section the values indexed byI , J, K
represent any selected subset of the species or a comple
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of all species while the small indicesi , j , k run over all
reference variables. Although, in this section, we do n
make any explicit assumptions about the dimensions
volved, it should be noted that, if the dimension ofZ$I %* ex-
ceeds the dimension ofj* , the PDFPZ(z$I % ;x,t) must be
singular due to a deterministic functional dependence
tween some of the valuesZ$I %* . Conventional generalized
interpretation is assigned to all equations dealing with sin
lar PDFs. We demonstrate now thatPZ satisfies Eq.~4! gov-
erning P̃Y , provided the reference PDFPj satisfies Eq.~12!
and the coefficientsNIJ and u are modeled by~16!. The
proof is based on Bayes theorem in the form

PZ~z$I % ;x,t !5E PZuj~z$I %uj;x,t !Pj~j;x,t !dj, ~17!

wherePZuj is the PDF ofZ$I %* conditioned onj* 5j. Since
the functionsZI(j;x,t) are deterministic, this PDF is give
by

PZuj~z$I %uj;x,t !5d~Z$I %~j;x,t !2z$I %!, ~18!

where the Dirac delta function applied to vector argume
denotes the product of delta functions applied to the vec
components.

The PDF transport equation forPZuj obtained from Eq.
~11! is given by

]PZuj

]t
1U"“PZuj1Ak

]PZuj

]jk
1

]2NIJ
+ PZuj

]zI]zJ
1

]V I PZuj

]zI

5Bkl

]2PZuj

]jk]j l
, ~19!

whereNIJ
° is defined in~15!. This equation can be derive

using the following identities and the standard PDF te
niques:

]PZuj

]t
52

]

]zI
S PZuj

]ZI

]t D ,
]PZuj

]jk
52

]

]zI
S PZuj

]ZI

]jk
D ,

“PZuj52
]PZuj“ZI

]zI
,

]2PZuj

]jk]j l
5

]2

]zI]zJ
S PZuj

]ZI

]jk

]ZJ

]j l
D2

]

]zI
S PZuj

]2ZI

]jk]j l
D .

The last identity is used in the derivation after being mu
plied by Bkl(j;x,t) and interpreted in accordance with th
definition of NIJ

+ in ~15!.
The evolution equation forPZ(z$I % ;x,t) is obtained from

Eq. ~17! by multiplying Eq. ~19! by ^r&Pj(j;x,t) and inte-
grating over allj. The terms involving]/]jk are integrated
by parts. During this integration we also take into accou
that

PZuj~z$I %uj;x,t !Pj~j;x,t !5PjuZ~juz$I % ;x,t !PZ~z$I % ;x,t !,
~20!

and replacePZujPj by PZPjuZ in the following integrals:

E NIJ
+ ~j;x,t !PZujPjdj5^NIJ* uZ$K%* 5z$K%&PZ

5NIJ~z$K% ;x,t !PZ , ~21!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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E U~j$k% ;x,t !PZujPjdj5^U* uZ$I %* 5z$I %&PZ

5u~z$I % ;x,t !PZ , ~22!

E VJ@Z~j,x,t !#PZujPjdj5^VJ* uZ$I %* 5z$I %&PZ

5WJ~z$I % ;x,t !PZ . ~23!

Here, in these integrals, we use the equations and definit
specified in~14!. The result is given by

]^r&PZ

]t
1“"~u^r&PZ!1

]WI^r&PZ

]zI
1

]2NIJ^r&PZ

]zI]zJ

5E S ]^r&Pj

]t
1“"~U^r&Pj!1

]Ak^r&Pj

]jk

1
]2Bkl^r&Pj

]jk]j l
D PZujdj. ~24!

It is easy to see now that Eq.~12! nullifies the right-hand side
of Eq. ~24! and results in Eq.~4!. That is the joint PDF
modeled by MMC satisfies the PDF transport equation p
vided the reference PDFPj complies with the reference PD
equation given by~12!.

Another question that may be of interest to the reade
whether the compliance ofPj with the reference PDF equa
tion is a necessarily condition for the MMC model to be
agreement with the PDF transport equation. In general,
possible to find an example when the expression in
brackets on the right-hand side of~24! is nonzero but the
integral in ~24! remains zero. However, ifZ$I %5Z$I %(j,x,t)
uniquely determines a single pointj in the reference space
then Eq.~12! must be satisfied in order to ensure the co
pliance ofPZ with the PDF transport equation. Indeed,PZuj
defined in~18! represents a delta function, so that for a giv
point in Z space there is only one point in thej space that
contributes to the integral in~24!. Hence, practically, it
would be very difficult to suggest a reasonable mapp
model with the reference fieldsj* whose joint PDF does no
comply with Eq.~12!.

E. Compliance with the CMC equation

The dimension of the reference spacenr is, generally,
expected to be smaller than the total number of speciesns .
Thus, the fluctuations ofZ* lie within a manifold of dimen-
sion nr that can be specified bynr major variablesZ$ i %* . If
the major variables are selected, then the rest of the v
ables,Z$a%* , cannot fluctuate independently and can be fu
characterized by their conditional expectationsQa

5Qa(z$ i % ;x,t)[^Za* uZ$ i %* 5z$ i %&. As is discussed above
Qa(y$ i % ;x,t) is expected to satisfy the CMC equation~9! for
any choice of the major variables that can fully specify t
allowed fluctuations. This property of the MMC model
demonstrated below. The conditional transformations con
ered in this section are not much different from those used
the standard CMC techniques,8 although they are applied t
the ‘‘surrogate’’ modeling variablesZ* instead of the physi-
cal mass fractionsY.
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First, we consider a joint PDFPZ(z$I % ;x,t) for the set of
nr11 variablesz$I %5$z$ i % ,za%. As it is shown in the previ-
ous section, the MMC PDFPZ satisfies Eq.~4!. After mul-
tiplying this equation byza and integrating over allza , we
obtain

]Qa^r&PZ

]t
1“"~^U* Za* uz$ i %&^r&PZ!1

]^V i* Za* uz$ i %&^r&PZ

]zi

1
]

]zi
S ]^Ni j* Za* uz$ i %&^r&PZ

]zj
22^Nia* uz$ i %&^r&PZD

5^Va* Za* uz$ i %&^r&PZ . ~25!

In this section, we use the abbreviation^•uz$ i %& to denote the
conditional expectation̂•uZ$ i %* 5z$ i %&. SinceZ$ i % forms a set
of major species and the conditionZ$ i %* 5z$ i % is sufficient to
specify all fluctuations present in the model, all correlatio
in ~25! can be decoupled. For example, we can wr
^Ni j* Za* uz$ i %&5Ni j Qa , and, with the use of Eqs.~15! and
~16!, ^Niauz$ i %&5Ni j ]Qa /]zj , whereNi j 5Ni j (z$ i % ;x,t) and
Qa5Qa(z$ i % ;x,t). After decoupling, Eq.~25! can be easily
transformed into the CMC equation given by~9!. Thus, the
MMC model is compliant with the CMC equations for an
proper choice of the conditioning majorZ$ i %* and conditioned
minor Z$a%* species.

F. The Gaussian shape of the reference PDF

The MMC equations presented above do not repres
yet a complete model. Indeed, the coefficientsAk , Bkl , and
U have to be specified consistently with the PDFPj . Al-
though other assumptions stipulating the shape of the re
ence PDFPj are possible, in the present work, we follow th
ideas of mapping closure13,14 and require that the valuesjk*
are stochastically independent while having Gaussian di
butions with zero mean and unit dispersion for anyx and t:

Pj~j!5G~j1!G~j2!¯G~jnr
!,

~26!

G~jk![
1

A2p
expS 2

jk
2

2 D .

This PDF satisfies Eq.~12! provided that

U~j$k% ;x,t !5U(0)~x,t !1Uk
(1)~x,t !jk ,

~27!

Ak52
]Bkl

]j l
1Bklj l1ak , ak~x,t ![

1

^r&
“"~^r&Uk

(1)!.

That is,U depends linearly onjk . ~The linear dependence o
conditional velocity on conditioning scalars is repeated
used in publications.8,29! This point can be easily proved b
substituting the values ofU, Bkl , Ak , andPj into Eq. ~12!
and noting the following relations:

Pjj l1
]Pj

]j l
50, U(0)5 ṽ,

]Pj

]t
50, “Pj50,

and

]^r&
]t

1“"~^r&U!5jk“"~^r&Uk
(1)!.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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The last relation takes into account the mean continu
equation. Note thatU(0)Ä^U&5 ṽ since^jk* &50. In MC, it is
conventional to assume thatBkl is independent ofj:

Bkl5Bkl~x,t !. ~28!

The values of the coefficientsU(0), Uk
(1) , and Bkl are

linked to the well-explored properties of turbule
transport—the Favre mean velocityṽ, the Favre turbulent

fluxesv9Yi9̃ and the Favre-averaged dissipation tensorx̃ i j of
the major species—by the following equations:

U(0)5 ṽ, Uk
(1)^jk* Zi* &5v9Yi9̃ , BklK ]Zi

]jk

]Zj

]j l
L 5x̃ i j .

~29!

The Favre averages~whose example is given byx̃ i j

5^x i j r&/^r&) are the averages evaluated with the use of
Favre PDFP̃Y . The PDFsPZ and Pj are the conventiona
PDFs of the stochastic variablesZ$ i %* and j* , and the aver-
ages using these PDFs are shown as conventional. How
one should remember that the conventional PDFPZ repre-
sents a model for the Favre PDFP̃Y @i.e., P̃Y(z$ i % ;x,t)
5PZ(z$ i % ;x,t)]. If the dissipation properties of all scalars a
similar ~i.e., the same dissipation scale is assumed for
scalars and the differential diffusion effects are neglect!
then the approximation,

Bkl5B~x,t !dkl , ~30!

should be appropriate.

G. Initial conditions

In this section, we consider how the initial mapping
the major species into the reference space can be set in
to comply with a given PDF specified byP̃Y(y$ i %)
5 P̃Y(y$ i % ,x,t0). The argumentst andx are, generally, omit-
ted in this section since all considerations are applied to
initial moment t5t0 and a certain pointx in the physical
space or its vicinity that is sufficiently small to be treated
spatially homogeneous. The PDFs of minor species are
stricted by Eq.~7! and are not considered here.

One of the methods, which allows algorithmically fo
the setting of the initial conditionsYi5Zi(j* ), correspond-
ing to the given initial joint PDF, is to follow Pope14 and use
the ordering procedure. The major presumption of this p
cedure is thatY$nr %

represents an ordered set of the scal

$Y1 ,Y2 , . . . ,Ynr
% and P̃Y(y$nr %

) is its joint PDF.~Although
some procedures that may serve as a certain justificatio
the ordering are presented later in the present work when
discrete version of MMC is introduced, ordering of variabl
in not consistent with the independence principle.14! The sto-
chastic reference variables are represented by the ordere
j$nr %
* 5$j1* ,j2* , . . . ,jnr

* % and their PDF usually assume

Gaussian. The joint PDF determines the series of redu
PDFsP̃Y(y1), P̃Y(y1 ,y2), . . . , P̃Y(y$nr %

) that can be equiva
lently represented by the series of the conditional PDFs,
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P̃Y~y1!,

P̃Y~y2uy1!5 P̃Y~y1 ,y2!/ P̃Y~y1!,

¯ ,

P̃Y~ynr
uy$nr21%!5 P̃Y~y$nr %

!/ P̃Y~y$nr21%!.

At each ofnr steps of the mapping procedure, the mapping
sought to comply with the corresponding reduced PDF. S
cifically, at any stepI , the mappingYI5ZI(j I* ,j$I 21%* ) is
determined as the monotonic function ofj I* , which matches
the conditional PDFP̃Y(yI uy$I 21%). The valuesj$I 21%* are
treated as parameters of the mapping andy$I 21%
5Z$I 21%(j$I 21%* ) are determined by previousI 21 steps. At
the first step, the mappingY15Z1(j1* ) is identical to the
one-variable mapping problem while for the other steps m
ping is different from one-variable mapping only by the pre
ence of additional parameters. The overall mapping ofY$nr %

into j$nr %
* is given by

Y15Z1~j1* !,

Y25Z2~j1* ,j2* !,. . . , Ynr
5Znr

~j1* , . . . ,jnr
* !.

Although this mapping represents a solution of the init
conditions problem, there are still several questions to
answered. If the variablesj1 , . . . ,jnr

are assumed to be sto
chastically identical, their ordering does not impose any lim
tations. The physical scalarsY1 , . . . ,Ynr

are not identical
and their ordering can be performed innr ! different ways.14

This shows that, generally, the initial mapping is n
uniquely determined by the initial joint PDF. The monoton
character of the mapping functions is another restricti
which is, generally, not required by MMC. Without this re
striction even one-variable mapping is not unique. We c
note that for such complicated phenomenon as turbulence
physical evolution of the PDFs is likely to be determined n
only by the initial conditions imposed on the PDFs but a
by other parameters of turbulence.27 The influence of the
other parameters is neglected by the models that pres
that the initial value of the PDF uniquely determines its ev
lution. Potentially, the additional freedom in initial mappin
can be used to match the effect of the other parameter
evolution of the PDF.

H. Qualitative properties

In the end of this section, we note some quite obvio
features of the MMC model, which make its use very attra
tive. Note that these properties are related to general MM
while setting the initial conditions by ordering the scalars
not complying with some of the properties. The diffusio
convection part of the MMC model@i.e., we formally put
V I50 in ~11!# has the following properties that match we
the properties of turbulent transport in a realistic flow.

~i! The description of the turbulent diffusion and conve
tion by the MMC model is local.

~ii ! The MMC model predictions for scalars and their li
ear combinations~which satisfy the modeling trans
port equations! remain bounded.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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~iii ! All scalars are treated by the MMC model in the sam
way without any discrimination.

~iv! The MMC prediction for the turbulent transport o
one scalar is not affected by the other scalars.

~v! In homogeneous turbulence, the PDFs approxima
by the MMC model evolve toward Gaussian PDFs

Although the localness of the MMC model is related
the localness of the differential operators used in MMC
more physical consideration of this property is offered in
following sections, where a discrete numerical version of
MMC model is analyzed. The boundedness is a comm
property of parabolic equations~1! of not exceeding the up
per and lower limits specified by the initial maximal an
minimal values ofYI . This property is preserved by Eq
~11!, specifying the MMC model. The relaxation to a Gaus
ian shape is an obvious common property of MCs us
Gaussian reference fields. Although the PDFs of scalar
turbulent flows may be quite different from Gaussian, t
PDFs, generally, tend to evolve toward the Gaussian sh
unless they are disturbed by boundary conditions or o
factors.

III. STOCHASTIC REPRESENTATION OF THE MMC
MODEL

The modeling equations specified by~11! can be solved
deterministically by a finite difference numerical metho
However, obtaining deterministic solution seems problem
for the multidimensional spaces of reference variablesnr

@1. In this case, using stochastic differential equations
lizing nr independent Wiener processesw*
5$w1* , . . . ,wnr

* % can be more economical for numerical ca

culations. The stochastic model is represented by the foll
ing system of stochastic Ito equations:

dx* p5U~j* p,x* p,t !dt, ~31!

djk*
p5Ak

+ ~j* p,x* p,t !dt1bkl~j* p,x* p,t !dwl* , ~32!

dZI*
p5~W̄I*

p1SI*
p!dt, ~33!

W̄I*
p[V I~ Z̄* p!, ^SI*

puj* p5j,x* p5x&50, ~34!

Z̄I*
p[Z̄I~j* p,x* p,t !,

~35!
Z̄I~j,x,t ![^ZI*

puj* p5j,x* p5x&,

Ak
+ [Ak1

2

Pj

]BklPj

]j l
, 2Bkl5bkibli . ~36!

We use the superscript ‘‘*p’’ to distinguish the values linked
to stochastic trajectories, which are also called ‘‘stocha
particles.’’ Unless the contrary is specified, the capital s
script indicesI ,J, and K run over all species 1,2,. . . ,ns ,
while the small indices run over the dimensions of the ref
ence space. The vectors without indices correspond to
vectors of maximal possible dimension for the quant
specified by the vector. The PDFPj of the reference fields is
assumed to be known and the valuesjk*

p are used to simulate
the diffusion in the reference space~rather than to determine
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Pj). The goal of the model is to findZ̄I(j,x,t), which, as it
is shown below, satisfies the MMC equations~11!.

The valueSI*
p is any arbitrary operator that does n

alter the conditional expectations, as specified by the sec
equation in~34!. This operator is related to the numeric
realization of the model and is discussed later~its purpose is,
generally, to keepZI*

p close toZ̄I*
p). At this moment, we

only note that the following simple examples ofSI*
p—~1!

SI*
p50, and~2! SI*

p5(Z̄I*
p2ZI*

p)/tS ~wheretS is a certain
relaxation time!—satisfy the required condition in~34!.

The system specified by~31!–~36! is equivalent to the
following direct Kolmogorov~Fokker–Planck! equation:

]PFP

]t
1“"~UPFP!1

]Ak
+ PFP

]jk
2

]2BklPFP

]jk]j l
1

]~W̄I1SI !PFP

]zI

50, ~37!

for the joint PDF,

PFP5PFP~z,j,x;t !

5^d@z2Z* p~ t !#d@j2j* p~ t !#d@x2x* p~ t !#&,

whereW̄I[V I(Z̄).
The valueZ̄I defined in~35! can be equivalently repre

sented by

Z̄I~j,x,t !5
FI~j,x,t !

F0~j,x,t !
,

where the following integrals:

F0~j,x,t !5E PFPdz, FI~j,x,t !5E PFPzIdz, ~38!

are introduced. The condition in~34! leads to the following
constraint:

E PFPSIdz50, ~39!

for the operatorSI . In addition to these integrals, we als
introduce the quantitym representing the integral of^r& over
the whole physical domain under consideration,

m5E ^r&dx. ~40!

The stochastic model introduced in this section represen
stochastic version of the MMC model~although this does no
mean, of course, that the model is intended to simulate
stochastic properties of turbulent diffusion!. Indeed, assum-
ing that the distribution of the MMC particles@i.e., stochastic
trajectories whose evolution is specified by the equati
~31!–~38!# is set initially and on boundaries inx space such
that F05^r&Pj /m and FI5^r&ZI Pj /m, the further evolu-
tion of the functionsF0(j,x,t), F1(j,x,t) and Z̄I(j,x,t),
which are interpreted as

F05
^r&Pj

m
, FI5

ZI^r&Pj

m
, Z̄I[

FI

F0
5ZI , ~41!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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satisfy Eqs.~12!, ~13!, and~11! correspondingly. In order to
prove this statement we, first, note that the functionsF0 and
Pj have a consistent normalization,

mE F0~j,x,t !djdx5m5E ^r&Pj~j;x,t !djdx.

The integrals whose limits are not specified explicitly ind
cate integrating over all meaningful values of the cor
sponding variables. The integration of Eq.~37! over all val-
uesz results in disappearing of the last term on the left-ha
side of ~37!. It is easy to see that, since the coefficientsAk

+ ,
Bkl , andU do not depend onz, the resultant equation,

]F0

]t
1“"~UF0!1

]Ak
+ F0

]jk
2

]2BklF0

]jk]j l
50, ~42!

can be converted into~12! by substitutingF05^r&Pj /m and
the definition ofAk

+ in ~36! into Eq. ~42!. Thus, if initially
F05^r&Pj /m, this link betweenF0 and Pj is preserved
during the evolution of the stochastic model.

The integration of~37! over all valuesz can also be
performed after multiplying~37! by zI . In this case, the las
term on the left-hand side of Eq.~37! does not disappear an
it has to be integrated by parts to yield

]FI

]t
1“"~UFI !1

]Ak
+ FI

]jk
2

]2BklFI

]jk]j l
5W̄IF0 . ~43!

The term involvingSI disappears due to the constraint spe
fied by Eq. ~39!. With the use ofAk

+ defined by~36! this
equation can be transformed into

]FI

]t
1“"~UFI !1

]AkFI

]jk

1
]

]jk
S Z̄I

]BklF0

]j l
2BklF0

]Z̄I

]j l
D 5W̄IF0 , ~44!

providedF05^r&Pj /m. Equation~44! is equivalent to~13!

sinceW̄I5V I(Z̄). Equations~44! and ~42! determine that

]Z̄I

]t
1U"“Z̄I1Ak

]Z̄I

]jk
2Bkl

]2Z̄I

]jk]j l
5W̄I . ~45!

Equation~45! coincides with Eq.~11!.
The stochastic version of the MMC model allows for

different interpretation. Let us introduce a conditional pro
ability PZuj(z,j,x,t) so that PFP5PZujF0 . Equations~36!,
~37!, and~42! determine thatPZuj satisfies the equation

]PZuj

]t
1U"“PZuj1Ak

]PZuj

]jk
1

]~WI1SI !PZuj

]zI

5Bkl

]2PZuj

]jk]j l
, ~46!

which appears to be consistent with~19!, provided

SI PZuj5
]NIJ

+ PZuj

]zJ
. ~47!

Here and in~36! we replaceW̄I by WI5V I(Z). This equa-
tion provides a new definition ofNIJ

+ 5NIJ
+ (z,j,x,t) that de-
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pends onz and complies with restriction~39!. Since PZuj
satisfies~19! and F05^r&Pj /m satisfies~12!, then as it is
shown in Sec. II D, the PDFPZ , defined by

PZ~z$I % ;x,t !5
m

^r& E PFPdj5
m

^r& E PZujF0dj ~48!

—the equivalent of Eq.~17!—satisfies Eq.~4!. Thus, the
distribution of the stochastic particles in theZ-x space rep-
resents a consistent model for the joint scalar PDFP̃Y . Ac-
cording to this interpretation of the MMC model, the min
fluctuations are not neglected, although their modeling is
as detailed as modeling of major fluctuations. The dissipa
of minor fluctuations is specified by operatorSI . The char-
acteristic dissipation timetS @that is used in a simple relax
ation modelSI5(Z̄I2ZI)/tS] should be selected to matc
the physical dissipation properties if the minor fluctuatio
are not neglected. The dissipationNIJ that represents the
average ofNIJ

+ over j as specified in~21! is a model for the
scalar dissipation tensor. It should be noted that this va
may fluctuate aroundNIJ introduced on the basis of Eqs.~15!
and ~21!.

IV. NUMERICAL IMPLEMENTATION

The MMC model can be implemented by solving
finite-difference representation of the deterministic equati
given by ~11! and, for low dimensionsnr;1, this would be
an efficient and simple method. The situation is changed
multidimensional problemsnr@1. Indeed, the evaluation o
diffusion terms on a regular grid requires consideration o
least three node points in each direction totaling to 3nr points
in the finite-difference neighborhood of each node. Su
evaluations are computationally problematic. For multi
mensional spaces, an efficient numerical implementation
quires using the Monte-Carlo~stochastic particles! methods.4

In these methods, the PDFs are represented bynp discrete
particles. With the use of the delta functions we can repl
PFP by

PFP* ~Z,j,x;t !5
1

np
(
p51

np

d@Z2Z* p~ t !#d@j2j* p~ t !#d@x

2x* p~ t !#, ~49!

where the evolution ofZ* p(t), j* p(t), andx* p(t) is gov-
erned by~31!–~36!. Hence, the functionF0 and FI are re-
placed by

F0* ~j,x;t !5
1

np
(
p51

np

d@j2j* p~ t !#d@x2x* p~ t !#, ~50!

FI* ~j,x;t !5
1

np
(
p51

np

Z̄I*
p~ t !d@j2j* p~ t !#d@x2x* p~ t !#.

~51!

One should be able to evaluate the conditional expe
tions Z̄I*

p while using the discrete representations ofPFP,

Z̄I*
p~ t !5

(q51
np gpqZI*

q~ t !

(q51
np gpq . ~52!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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The non-negative weightsgpq specify the contribution of
particleq to the conditional average evaluated at the locat
of particlep in thex-j space. The shape of this function is
be determined later. At the moment, we only note thatgpq

should rapidly tend to zero as the distance between the
ticles in thex-j space increases. Effectively, this means t
the sums are to be evaluated, not over allnp particles, but
only overnp8 particles (np8,np), located in the vicinity of the
particlep. Equation~52! can be rewritten as

Z̄I*
p~ t !5 (

q51

np

ĝpqZI*
q~ t !, ĝpq5

gpq

( r 51
np gpr . ~53!

The interaction matrixĝpq defined in~53! satisfies the nor-
malization condition

(
q51

np

ĝpq51. ~54!

We assume that the coefficients of the model are sp
fied as in~27! and the initial distribution of the particles i
x-j space is set according toF05^r&Pj /m with Gaussian
Pj given by ~26!. ~Note that this distribution is preserve
during integration.! For each time stepDt, the increments of
the particles’ properties are decomposed into three subs
transport~drift!, mixing ~diffusion!, and reaction. This sub
division is neither unique nor compulsory for the method
the purpose of the subdivision is, mainly, to simplify th
presentation and analysis by focusing on certain features
time. Unless the contrary is specified, the substeps are
plied consecutively: the initial conditions for the followin
substep are set by the final conditions for the previous s
step. The procedure of numerical integration is now analy
for each of these substeps.

A. The transport „drift … substep

For this substep we evaluate only the drift-type ter
~with the exception of the reaction terms that are evalua
separately!. The equations for this step can be formally o
tained by puttingBkl50, bkl50, SI50, andWI

+50:

dx* p5Udt, djk*
p5Ak

+ dt, dZI*
p50. ~55!

These equations are integrated by a finite-difference me
between t1 and t25t11Dt. Note that, for this substep
dZ̄I*

p50 since Eqs.~42! and ~43! take the form

]FI °

]t
1“"~UFI °!1

]Ak
+ FI °

]jk
50, I °50,1,. . . ,ns . ~56!

This equation determines that, for the transport substep,

]Z̄I

]t
1U"“Z̄I1Ak

+
]Z̄I

]jk
50, ~57!

and Z̄I is preserved along the characteristics of Eq.~57!
specified by~55!.

B. The mixing „diffusion … substep

For this substep we putAk
+ 50, U50, and WI50 to

evaluate the evolution due to diffusion inj space by
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dx* p50, djk*
p5bkldwl , dZI*

p5SI*
pdt. ~58!

The operatorSI*
p is related to the mixing substep since i

purpose is to keepZI*
p close toZ̄I*

p . The finite difference
representation of this equation that is to be integrated
tweent1 and t25t11Dt, is given by

Djk*
p5bklw̄l* ADt, ~59!

wherebkl is assumed to be constant during this time step
w̄l* represents independent Gaussian stochastic values
zero mean and unit variance. In the rest of this section
assume thatSI*

p50 anddZI*
p50. Note that, for this substep

Z̄I is not preserved~even if SI*
p50) and has to be reevalu

ated, as specified by Eq.~52!. Indeed, Eqs.~42! and~43! now
take the form

]FI °

]t
5

]2BklFI °

]jk]j l
, I °50,1,. . . ,ns , ~60!

which, generally, does not allow for]Z̄I /]t50 ~where Z̄I

5FI /F0). Let us assume thatZI*
p5Z̄I*

p before the time
step. After the diffusion substepZI*

p remains unchanged~as-
suming SI*

p50) but Z̄I*
p changes so that the valuesZI*

p

would have a growing dispersion around their condition
means specified byZ̄I*

p .

C. The reaction substep

For this substep we putSI50, Bkl50, bkl50, Ak
+ 50,

andU50 so that

dx* p50, djk*
p50, dZI*

p5WI~ Z̄* p!dt. ~61!

As it is determined by Eqs.~50!, ~51!, and ~52!, the condi-
tional expectations satisfy the following equation:

]Z̄I

]t
5WI~ Z̄!⇒dZ̄I*

p5WI~ Z̄* p!dt. ~62!

Hence,dZ̄I*
p5dZI*

p . Since, for this substep, the particles d
not move inj-x space, the partial time derivatives are n
different from an ordinary time derivative. Equation~62! is
to be integrated betweent1 and t25t11Dt, and this deter-
mines the increments of bothdZ̄I*

p anddZI*
p . Considering

that the reaction rates usually represent a system of stiff
ferential equations, Eq.~62! is more preferable than~61!.
Because of the stiffness, the reaction substep is alw
placed last, and the most prudent way of evaluating the
action substep is to solve the reaction equations in conju
tion with mixing,

dZ̄I*
p

dt
5WI~ Z̄* p!1S dZ̄I*

p

dt
D

mix

, ~63!

where the last term represents the rate of change due to
mixing process, which is obtained from the mixing subst
Equation ~63! is to be integrated betweent1 and t25t1

1Dt from initial conditions set before the mixing substep
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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D. The mixing substep using diffusing clouds

The major features of the transport, mixing, and react
substeps are discussed in the previous sections. An ev
tion of the transport substep is not difficult and can
achieved by standard techniques. Although an evaluatio
the reaction substep is not easy due to stiffness of the ch
cal kinetics, these problems are well investigated and
specifically discussed in the present work. Our focus in t
section is on the implementation of the mixing substep t
can be done in different ways corresponding to different v
ues of the exchange matrixĝpq.

WhenYI is modeled byZ̄I* , the analysis of the previou
section indicates that the valuesZI*

p are needed only to
evaluate the conditional expectationsZ̄I*

p . If the values
Z̄I*

p , which represent conditional expectations ofZI*
p as-

signed to the particles, can be evaluated directly during
diffusion substep thenZI*

p are not needed. Avoiding usin
ZI*

p promises some other benefits. If the calculations
based onZI*

p , then their dispersion aroundZ̄I*
p will grow

with time. This would make the accurate evaluation ofZ̄I*
p

by ~52! more difficult and would require a larger number
particles for averaging. In the present section we demons
that the direct evaluation ofZ̄I*

p from the transport equation
during the diffusion substep effectively determines the b
value forgpq. The influence of mixing can be assessed in
semistochastic manner: each discrete particle is replaced
diffusing cloud that expands with time. At the end of ea
mixing substep, the particle positions are to be regenerate
accordance with density of superimposed clouds.

The coefficientBkl , as it is defined in~28!, does not
depend onj ~otherwise, we can assume thatBkl remains
constant in a vicinity of a certain point of thej space!. As-
suming thatBkl remains constant during the time stepDt and
that the flow is homogeneous in physical space~or can be
treated as such for a selected cell in physical space!, let us
determine the evolution ofF$I +%5$F0 ,F$I %% during the diffu-
sion substep from the initial conditions specified att5t1 .
The substep is controlled by Eq.~60!. This evolution is rep-
resented by the integral

FI °~j,t2!5E FI °~j°,t1!gf~j2j °,Dt !dj°, ~64!

where t25t11Dt, and the functiongf5gf(Dj,Dt) repre-
sents the fundamental solution of~60!, which is defined by
the initial condition

gf~Dj,0!5d~Dj!,

and specified by

gf~Dj,Dt !5
1

~B4pDt !nr /2
expS Bkl

21DjkDj l

4Dt D ,

~65!
B5det~Bi j !

1/nr.

Note the replacement ofj by j8 so thatjk5bil j l8 converts
Bkl in Eq. ~60! into a unit matrix.

Considering the discrete representation ofFI ° in ~50!
and~51! for t5t1 , we should replace the integral in~64! by
the Monte Carlo sum
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FI °~j,t2!5
1

np
(
p51

np

Z̄I °*
p~ t1!gf~j2j* p~ t1!,Dt !, ~66!

wherenp represents the number of particles in the selec
physical cell and we formally putZ̄0[1. Equations~66! de-
termine that

Z̄I °~j,t2!5
FI

F0
5

(p51
np Z̄I*

p~ t1!gf@j2j* p~ t1!,Dt#

(p51
np gf@j2j* p~ t1!,Dt#

. ~67!

After the time step, the distribution of the particles inj space
is no longer represented by Eq.~50!, so that we have to
redistribute the particles according to the continuousF0

specified by~66!. Of course, we cannot increase the numb
of particles to reflect thatF0(t2) is smooth and the number o
particles is to be kept the same for all time steps. The m
simple way of redistributing particles is to alter the positi
of each particle inj space byDjk*

p5bklw̄l* ADt as it is
specified in~59! with the sameDt as in Eq.~66!. One can
see that the PDF of the Gaussian incrementsDjk*

p coincides
with gf specified by ~65!. The new values ofZ̄I*

q(t2)
5Z̄I@j* q(t2),t2# are given by the equation

Z̄I*
q~ t2!5

(p51
np Z̄I*

p~ t1!gf@j* q~ t2!2j* p~ t1!,Dt#

(p51
np gf@j* q~ t2!2j* p~ t1!,Dt#

, ~68!

obtained from~67!. Equations~66! and ~68! correspond to
Eq. ~53!,

Z̄I*
p~ t2!5 (

q51

np

ĝpqZ̄I*
q~ t1!, ~69!

with the following interaction matrixĝqp:

ĝpq5
gpq

gp , gp5(
r 51

np

gpr,

~70!
gpq5gf@j* p~ t2!2j* q~ t1!,Dt#.

Note that the averaging effect is achieved here by advan
the distributions in time fromt1 to t25t11Dt. The rate of
mixing that corresponds to~70! is determined by the finite
difference representation,

S dZ̄I*
p

dt
D

mix

5
Z̄I@j* p~ t2!,t2#2Z̄I*

p~ t1!

Dt

5
(q51

np ĝpqZ̄I*
q~ t1!2Z̄I*

p~ t1!

Dt
. ~71!

Practically the sums are evaluated only overnp8,np par-
ticles that make a significant contribution to~68!. The vol-
ume in j space, wheregf is essentially positive can be as
sessed asVj5(B4pDt)nr /2. ~Considering that the integral o
the fundamental solution remains unity, we use the invers
the maximal value of the functiongf as the volume estima
tion.! Here, we use the isotropic valueB for estimations. The
number of particles used for averaging is then assesse
np8;Vj /d1

nr, whered1 is the average distance between p

ticles in j space whiled1
nr represents an estimation of th
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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j-space volume per particle. The relative stochastic erro
the evaluation of the convolution integral is estimated
Ef s;(np8)

21/2. Hence, the number of particlesnp8 should be
sufficiently large to keep the stochastic error small, and
requirement constrains the minimum time stepDt. ~The
minimum time gets smaller when larger ensembles of p
ticles are used in calculations.! At the same time, very large
values ofDt @although giving precise values ofFI °*

p(t2) at
t25t11Dt] would not be accurate in the evaluation of th
time derivative by@FI °*

p(t2)2FI °*
p(t1)#/Dt. The relative er-

ror in the representation ofFI °*
p(t2) by the first-order scheme

can be estimatedEf t;(Dt/Dt f)
2, whereDt f;df

2/B is the
time scale of the problem anddf is the characteristicj scale
of the problem. Hence, Ef s;@d1

2/(BDt)#nr /4

;(d1 /df)
nr /2(Dt f /Dt)nr /4. By equating the order of the er

rors Ef t;Ef s , we obtainEf t;(d1 /df)
nr /2Ef t

2nr /8 . The rela-
tive error in representation of the time derivative is given
Edt;(Dt/Dt f);Ef t

1/2. These considerations result in

Edt;S d1

df
D 2/~8/nr11!

.

For very large dimensionsnr@1, the relative error in the
representation of the time derivative is proportional
(d1 /df)

2, where df /d1 represents the spatial resolutio
Hence, the considered scheme is, asymptotically atnr→`,
second-order accurate in space.

Sincenp8;Ef s
22;Edt

24 andd1;np
21/nr , we can writenp8

;(df /d1)8/(8/nr11);(np /nf)
8/(nr18), wherenf[df

2nr is the
number of particles that corresponds to the scaledf . Thus,
the rate of increase ofnp8 is much slower than that ofnp

whennr is large:

np8;np
8/~nr18! .

The mixing time stepDt can be estimated fromnp8
;(BDt/d1

2)nr /2 so that

Dt;
1

B S np8

np
D 2/nr

;
d1

2

B S df

d1
D 16/~81nr !

.

Note thatDt→0 asd1→0 for anynr>1.
The number of operations required for the evaluation

the mixing substep can be assessed asnrnpnp8 . In order to
achieve good performance, the exponent in the fundame
solutiongf( ¯) should be replaced by a similar but comp
tationally faster function. As expected, the diffusing clou
method becomes more numerically efficient and accurate
large dimensionsnr . Evaluation of averages according
Eq. ~52! unavoidably involves a numerical diffusion inj
space since it has to be conducted over a certain volum
the diffusing clouds method this numerical diffusion coi
cides with the rate of diffusion inj space required by the
MMC model. Compared to this method, any overaverag
would result in excessive numerical diffusion while any u
deraveraging would cause an excessive stochastic error i
evaluation ofZ̄I*

p .
The diffusing clouds method~or other similar methods!

allows for a different interpretation of its equations. A
though, in this section, we attempted to evaluateZ̄I*

p directly
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without usingZI*
p , the values we found still involve a sto

chastic error. These values fluctuating around conditional
eragesZ̄I*

p can be also interpreted asZI*
p with ZI*

p→Z̄I*
p as

np→`. The operatorS, which is used in~58! and corre-
sponds to the diffusing clouds method with a mixing ra
specified by~71!, is given by

SI*
p5

1

Dt S (
q51

np

ĝpqZI*
q2ZI*

pD . ~72!

This equation can be interpreted as

SI*
p5

Z̄I*
p2ZI*

p

Dt
, Z̄I*

p5 (
q51

np

ĝpqZI*
q , ~73!

with Dt representing the relaxation time.

E. Localness of MMC models

The diffusing clouds method is not the only method th
can be used for an evaluation of the mixing substep. A
form of the operatorSI that preserves the conditional expe
tations and reduces fluctuations around the conditio
means may potentially be suitable. New versions of the
fusing clouds method can be obtained by using differ
specifications ofĝpq that are used in~69! or in ~72!, depend-
ing on an interpretation of the model. The major requi
ments for the interaction matrixĝpq are the following:~1!
localness:ĝpq→0 when particlesp and q are away from
each other;~2! preserving well-mixed conditions(qĝpq51
@as specified by~54!#; and ~3! conservativeness of th
scheme(pĝpq51. Requirements~1! and~2! are satisfied by
diffusing clouds exactly while requirement~3! is satisfied by
a presented version of the diffusing clouds only appro
mately.

Another relatively simple possibility is given by th
MMC version of the Curl’s30 model: each pair of particlesp
and q that are closest to each other inj space have their
values of Z* p and Z* q reset to their average (Z* p

1Z* q)/2. The particles continue their random motion inj
space and, after a certain period of time, form new pa
Whenever two particles get close to each other inj space and
a new pair is formed, the averaging process is repea
Curl’s model corresponds to the interaction matrix withĝpq

5ĝpp5ĝqp5ĝqq51/2 for interacting particles andĝpq50
for noninteracting couples. In spite of its simplicity, th
MMC-Curl model satisfies all three requirements forĝpq.

Although Curl’s model is simpler compared to the d
fusing clouds method, the diffusing clouds model has
advantage of combining averaging with the effect of diff
sion in the reference space, while averaging is effectiv
achieved by using the fundamental solution~65! of the dif-
fusion equation. The fundamental solution advances the
tributions in time, and new values ofZ̄I* are calculated from
old values, as specified by Eq.~68!. In the case of other
methods of evaluating the mixing substep, the diffusion
simulated by random particle motions inj space and further
averaging, which, generally, must be localized inj space. In
fact, due to the discrete numerical representation of the
tributions, averaging can only be performed over a certaj
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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vicinity of each particle. The characteristic size of this vici
ity is determined by the average distance between partic
Thus, unless the number of particles is infinite, averag
over a finite vicinity would create an additional numeric
diffusion in j space.

MMC, in its generalized interpretation, is not restrict
to a particular mixing scheme. The major difference betwe
the MMC model and conventional mixing models is relat
to the following features of MMC:~1! particle positions in
the referencej space are traced; and~2! only the particles
that are close to each other inj space~and in the physicalx
space! are allowed to be mixed. The second condition p
vides the localness of the MMC mixing operators. Some
the reference variables can be used to simulate diffusio
the fluid particles in the velocity phase space~note thatU is
a linear function ofj and j conditioning effectively repre-
sents velocity conditioning! but the meaning of referenc
variables in mapping closures should not be reduced to si
lating only velocity-type conditioning. The reference va
ables represent a sampling scalar behavior in a turbulent
that can be used to simulate the scalar PDFs. The events
are physically close to each other should have the value
the reference variables that are also close to each other.
condition ensures the localness of the MMC model, which
further refined with an increasing number of the referen
variables.

The EMST mixing model23 performs mixing locally in
the species space~z space!. But by using distances measure
in z space, the EMST mixing model violates the linearity a
independence principles of scalar mixing.24 In contrast,
MMC performs mixing locally inj space, and thereby satis
fies these linearity and independence principles.

F. Setting the initial conditions

In this section we use some ideas of Sec. II G and c
sider how the initial conditions can be set for the particl
We assume that the initial conditions for all species are r
resented by the distribution ofnp particles,

ZI*
p~ t0!5ZI

op , I 51, . . . ,ns , p51, . . . ,np .

Here, as in the previous considerations, we either consid
homogeneous case or apply our consideration to a phy
cell, which is sufficiently small so that spatial variation
within the cell can be neglected. If the initial distribution
Z-space is specified by the PDF, the particles should firs
distributed in accordance with this PDF. The MMC mod
requires the specification, not only ofZI

op , but also that of
the reference variables valuesjk*

p(t0)5jk
op (k51, . . . ,nr)

so that the distribution of the particles in the referen
nr-dimensional space is Gaussian. In the case of multidim
sional spaces, this procedure of mapping the valuesZI

op into
the Gaussian reference space is not unique. The choice
particular mapping should be based on physical consi
ations. In the rest of this section we suggest an algorith
mapping procedure, which, in our opinion, corresponds
the physical nature of the problem.

It is assumed here that the scaling of the valuesZI cor-
responds to the actual physical significance of each vari
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~otherwiseZI can always be rescaled!. First, we form the
following correlation matrix:

KIJ8 5
1

np
(
p51

np

ZI8
pZJ8

p , ZI8
p5ZI

op2
1

np
(
p51

np

ZI
op .

This matrix is, obviously, symmetricKIJ8 5KJI8 and positive
semidefinite. Hence, with the use of the singular value
composition~svd!, we can achieve that

KIJ9 5K (I )d IJ5
1

np
(
p51

np

ZI9
pZJ9

p5MIKKKLMJL ,

ZI9
p5MIKZK8

p ,

where no sum is taken over the bracketed indexI in the
second term of the first equation, the matrixMIJ is unitary
and KI are the singular values. The mapping is to be p
formed usingZi9

p ~i.e., the firstnr values ofZI9
p that corre-

spond to thenr largest singular valuesKi). The valuesZi9
p

represent a good choice for the major subspace.
The particles are then sorted according to the valuesZ19

p

so that, for new indicesq5q(p), we haveZ19
1< ¯<Z19

q

< ¯<Z19
np. Fork51, the valuesjk

oq are assigned accordin
to the equation

jk
oq5F21S q21/2

np
D , ~74!

whereF21 represents the inverse of the standardized Ga
ian cumulative distribution function,

F~j8!5E
2`

j8
G~j!dj.

The particles are sorted into several groups with close va
of j1

oq ~each group represents particles that are effectiv
conditioned on a given value ofj1

oq). This algorithm ensures
that the particle distribution in the space of the variablej1

oq is
Gaussian with zero mean and unit dispersion.

The procedure, which is specified in the previous pa
graph, is then repeated separately for the particles of e
group: the particles are sorted within each group accordin
their valuesZ29

p and the new indicesq are calculated. The
valuesjk

oq are calculated according to~74! for k52, new
values ofq andnp specifying the number of particles in eac
of the groups. Thus, the distribution of particles in thej2

oq

space conditioned on a given value ofj1
oq is also Gaussian

with zero mean and unit dispersion. Each of the groups
then split into subgroups with close values ofj2

oq . The pro-
cedure is then repeated for the rest of the variab
j3

oq, . . . ,jnr

oq . At each levelk of the procedure, the particle

are conditioned on the values ofj1
oq, . . . ,jk21

oq and their con-
ditional distribution in the space ofjk

oq is set to be Gaussian
with zero mean and unit dispersion~i.e., it is independent of
the conditioning variables!. At each level, each group of par
ticles is redistributed into subgroups unless the numbe
particles in the groups is too small. In this case the numbe
particles is not sufficient to evaluate distributions with mu
tiple conditioning and reduction of the dimension of the re
erence space tok may be reasonable. Alternatively~if the
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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dimension of the reference space is not to be reduced!, the
group subdivision process has to be terminated, although
sorting and assigning process continues.

It is easy to see that the joint distribution of particles
the space ofj1

oq, . . . ,jnr

oq is Gaussian, as it is required in th

present formulation of the MMC model. Indeed, the PD
Pj(j1 ;t0) is Gaussian, and all of the conditional PDF
Pj(jk , . . . ,jnr

uj1 , . . . ,jk21 ;t0)5G(jk) . . . G(jnr
) are

Gaussian for any 1,k,nr . Hence, the joint PDFPj(j) is
Gaussian. We note that this procedure is based on the
sumption that the various directions inY space are no
equivalent~which is true for many practical cases!. Effec-
tively, the method ranks species or directions according
their level of fluctuations. This makes the initial conditio
for some species dependent on initial conditions for ot
species. We will call this method as ‘‘mapping by prefere
tial directions.’’

V. THE THREE-STREAM MIXING PROBLEM IN
HOMOGENEOUS TURBULENCE

The multidimensional mapping closure used in t
MMC method allows for the evaluation of multidimension
PDFs for two and more independent mixture fractions wi
out any need of ordering or preferential treatment of the v
ables. The case, which is considered in this section, co
sponds to mixing of three regions in homogeneo
turbulence. This problem requires two independent mixt
fractionsY1 andY2 . The initial conditions are set att50 in
accordance with JP26 so that the regions have the same pro
ability and the following:

Region 1: Y150, Y251,

Region 2: Y152
)

2
, Y252

1

2
, ~75!

Region 3: Y15
)

2
, Y252

1

2
.

Although the method of mapping by preferential directio
can be used to set the initial conditions for the three-stre
mixing problem, the best choice seems to utilize directly
symmetrical nature of the problem. The conditions are se
the three symmetrically equivalent regions:

Region 1: 0,w,
2

3
p,

Region 2:
2

3
p,w,

4

3
p, ~76!

Region 3:
4

3
p,w,2p,

where we introduce the polar coordinatesr j and w in the
space of the reference variables,

j15r j sin~w!, j25r j cos~w!.

One can see that the sectors assigned to each of the re
are equivalent for the purposes of the MMC model.
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A. Comparison of the analytical solution and DNS

The MMC formulation of the three-stream proble
given above has an analytical solution that is compared
this section with the DNS of JP. The major steps of t
analytical solution are outlined below. The MMC equation

]Zi

]t
1B~ t !S jk

]Zi

]jk
2

]2Zi

]jk]jk
D50, ~77!

where i ,k51,2, and we have taken into account that t
scalars are conserved (Wi50). This can be rewritten in the
form

]Zi

]T
1r j

]Zi

]r j
2

1

r j

]

]r j
S r j

]Zi

]r j
D2

1

r j
2

]2Zi

]w2 50,

where

T5E
0

t

Bdt.

With the use of new variables,

t5
12exp~22T!

2
, r 5r j exp~2T!,

we obtain

]Zi

]t
5

1

r

]

]r S r
]Zi

]r D1
1

r 2

]2Zi

]w2 . ~78!

The solution of this equation is given by

Z152)FrS r

At
,w D 2

)

2
FrS r

At
,w1

2p

3 D ,

~79!

Z25
3

2
FrS r

At
,w1

2p

3 D ,

where

Fr~R,w!5 (
n51

`

Fn~R!Fn~w!, R[
r

At
,

Fn~R!5
n

2n11

GS n

2D
G~n11!

Rn
1F1S n

2
,n11,2

R2

4 D ,

Fn~w!52
~21!n

pn
sinS pn

3 D cos~nw!,

G(¯) is the gamma function, and1F1(¯) is the confluent
hypergeometric function. The details of this solution a
given in the Appendix.

The analytical results obtained in this section and sho
to provide a good match to the simulated joint PDF of JP26

The values5s(t) denotes the variance of the scalarss2

5^(Z1* )2&5^(Z2* )2& ~note that̂ Z1* &5^Z2* &50). The initial
conditions specified by~75! correspond tos0

251/2 ands0

'0.707, wheres05s(0). In the DNS of JP, theinitial value
wass08'0.627. In Fig. 1, we follow JP and plot the conto
plots for the joint PDF for the same values ofs/s08(50.8,
0.7, 0.6, 0.5, 0.4, and 0.2! that correspond tos/s0 of 0.71,
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 1. The consecutive contour plots of the joint PDF for the three-stream mixing problem predicted by the MMC model.
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0.62, 0.53, 0.44, 0.35, and 0.18. Figure 2 shows sev
three-dimensional surface plots fors/s0850.55, 0.5, 0.4, and
0.2 that correspond tos/s0'0.49, 0.44, 0.35, and 0.18
~The three-dimensional PDF plots for larger values ofs/s0

are difficult to visualize.! For s/s0'0.46, the PDF goes
through rapid transformations and becomes almost flat. T
corresponds well to the effects observed by JP. Another
ture, which can be observed in JP and the present calc
tions, is that the mixing process is initially more intensi
along the sides of the triangle. As is expected, in the fi
stages of the evolution the PDF is close to Gaussian in b
JP and the present calculations. We also note that due to
analytical form of the solution, the three peaks are shar
than in the DNS of JP.

B. Comparison of numerical evaluation and the
analytical solution

The problem specified by initial conditions~75! and~76!
has also been solved numerically, using the discrete stoc
tic representation of MMC. The mixing step was evalua
by the diffusing clouds method. The numerical soluti
should simulate not only the shape of the PDF but also
dissipation rate. Thus, for the result of this section,
specify the timeT, which coincides with the physical timet
when B51. The stochastic valuesj1* and j2* have normal
distributions with unit dispersions and are not shown her

The values ofZ1* and Z2* are shown in Fig. 3 by 900
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scatter points for the time momentsT5$0.1,0.5,1%. Each
point represents a ‘‘stochastic particle’’ with 1/900 of th
total probability and the density of the points is proportion
to the values of joint PDF. The left column of Fig
3@~a!,~c!,~e!# represents results (ZI* )N obtained by diffusing
clouds. The right column of Fig. 3@~b!, ~d!, ~f!# represents the
values (ZI* )A5ZI@(j* (T),T#, analytically evaluated at the
stochastic locationsj* (T) using Eqs.~79!. The correlation
coefficient defined byCZ[^(ZI* )A(ZI* )N&/(sAsN) exceeds
0.99 for all plots in Fig. 3.@Note that̂ ZI* &50 is used in the
definition of CZ ; sA and sN represent the standard devi
tions of (ZI* )A and (ZI* )N so thatCZ51 corresponds to the
case of perfect agreement (ZI* )A5(ZI* )N).] We should also
emphasize the stochastic nature of the presented results
distribution of points exhibits certain fluctuations of densi
These fluctuations remain small if a large number of partic
is used in the calculations but a larger-than-average fluc
tion is always possible. For example, a ‘‘bold spot’’ that c
be noticed near the top corner of the triangle in Figs. 3~c! and
3~d! represents a relatively large fluctuation. It is interesti
that the spot is well replicated in both Figs. 3~c! and 3~d!.

The relative dispersion of the scalarss/s0 is plotted
versus time in Fig. 4. The solid line corresponds to the a
lytical solution, the dashed line shows the expected de
rate for largeT, while the symbols correspond to calcul
tions with 900, 90, and 9 particles. Distances between s
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 2. The consecutive three-dimensional surface plots of the joint PDF for the three-stream mixing problem predicted by the MMC mode

FIG. 3. The scatter plots of the value
Z1* andZ2* calculated numerically us-
ing diffusing clouds with 900 particles
~left column! and obtained analytically
~right column!. The results are shown
for T50.1 ~a!, ~b!; T50.5 ~c!, ~d!; and
T51 ~e!, ~f!.
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FIG. 4. The relative dispersions/s0 versus timeT: analytical evaluation~—!, numericalnp5900 (̄ ), numericalnp590 (111), numericalnp

59 (sss), and numericalnp59 (hhh).
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bols correspond to the selected time steps. Two cases
shown fornp59 to demonstrate stochastic variations of t
solution. As can be expected, the precision of the numer
scheme improves with increasing the number of particlesnp .

VI. CONCLUSIONS

In this work we have introduced a new approach to t
bulent reactive flows based on multiple mapping conditio
ing ~MMC!. In essence, this formulation brings together t
CMC and PDF approaches. From the CMC perspective,
present approach represents a generalization to conditio
on nr variables, with a consistent determination of the jo
PDF and conditional dissipation of these variables. From
PDF perspective, the approach embodies the idea tha
compositions are confined to annr-dimensional manifold in
composition space, and it then provides~implicitly ! a mixing
model, which is the extension of the mapping closure
multiple scalars and inhomogeneous flows. In contras
previously proposed mixing models,23,30–34 the present
model reflects the physics of mixing in all of the followin
respects: the mixing is local in composition space;22,23 the
boundedness of scalars4 is preserved; the model satisfies t
linearity and independence principles;24 and, in appropriate
limits, the resulting joint PDF tends to a joint normal dist
bution. The closure used in the model is validated by a co
Downloaded 07 Jul 2003 to 130.102.102.41. Redistribution subject to A
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parison with the two-variable joint PDF obtained in DNS b
Juneja and Pope26 for the three-stream mixing problem. Th
agreement with DNS results is good.

We also give a stochastic equivalent formulation of t
MMC model that is expected to be more computationa
efficient for multidimensional spaces. The resulting meth
is similar to a particle implementation of PDF methods, b
with the particles having additional properties, namely ref
ence variablesjk*

p . The treatment of the mixing process
based on the method of diffusing clouds~introduced in the
paper! that forces the numerical diffusion to match the d
fusion rate required by the model. For the test problem
three-stream mixing, the numerical method of diffusi
clouds preforms well compared to the analytical solution
the same problem.

Future directions in the development within the MM
framework include~a! accounting for the intermittency o
scalar dissipation,~b! coupling the method with the PDF o
velocity for inhomogeneous flows, and~c! application to a
variety of turbulent reactive flows.
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APPENDIX: ANALYTICAL SOLUTION FOR THE
THREE-STREAM MIXING PROBLEM

We consider the equation

] f r

]t
5

1

r

]

]r S r
] f r

]r D1
1

r 2

]2f r

]w2 , ~A1!

for the reference functionf r5 f r(r ,t,w), and demonstrate
that the series

f r~r ,t,w!5 (
n51

`

f n~r ,t!Fn~w!, ~A2!

where

Fn~w!52
~21!n

pn
sinS pn

3 D cos~nw!, ~A3!

f n~r ,t!5nE
0

`

exp~2tl2!Jn~rl!
dl

l
, ~A4!

andJn is the Bessel function, represents the solution of
~A1! with the following initial conditions:

f r~r ,0,w!5H 21/3, 0,w,2p/3

2/3, 2p/3,w,4p/3

21/3, 2p/3,w,2p
J . ~A5!

Indeed, the substitution of~A2! into ~A1! results in

] f n

]t
5

1

r

]

]r S r
] f n

]r D2
n2

r 2 f n , ~A6!

while substituting~A4! in ~A6!, yields the identity

]2Jn

]r 2 1
1

r

]Jn

]r
1S l22

n2

r 2 D Jn50,

which defines the Bessel function. Compliance with init
conditions~A5! becomes obvious if we note that35

f n~r ,0!5nE
0

`

Jn~rl!
dl

l
51,

for any r .0 and n51,2,3,. . . .

The problem considered here allows for a self-simi
formulation. With f r(r ,t,w)5Fr(R,w), where R5r /t1/2,
Eq. ~A1! takes the form

1

2
R

]Fr

]R
5

1

R

]

]R S R
]Fr

]R D1
1

R2

]2Fr

]w2 , ~A7!

while its solution with the boundary conditions

Fr~R,w!→H 21/3, 0,w,2p/3

2/3, 2p/3,w,4p/3

21/3, 4p/3,w,2p
J , as R→`,

which correspond to the initial conditions~A5! is given by
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Fr~R,w!5 (
n51

`

Fn~R!Fn~w!, ~A8!

Fn~R!5nE
0

`

exp~2l2!Jn~Rl!
dl

l
5 f n~RAt,t!. ~A9!

An evaluation of the integral in~A9! @or that in ~A4!# indi-
cates that35

Fn~R!5
n

2n11

GS n

2D
G~n11!

Rn
1F1S n

2
,n11,2

R2

4 D

5
n

2n11

GS n

2D
G~n11!

Rn
1F1S n

2
11,n11,

R2

4 DexpS 2
R2

4 D ,

whereG( ¯) is the gamma function,1F1( ¯) is the conflu-
ent hypergeometric function. The last form of the integra
somewhat larger but it is preferable for numerical evaluat
of the expression.

The last step in obtaining the analytical solution is
express the values ofZ1 and Z2 in terms of the function
Fr(R,w). It is easy to see thatZ1 and Z2 defined by~79!
satisfy the initial conditions set in~75!. @Note that the func-
tion Fr with a constant phase shift still satisfies Eq.~A7!.#
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