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The modeling of turbulent reactive flows based on multiple
mapping conditioning
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A new modeling approach—multiple mapping conditionifyMC)—is introduced to treat mixing

and reaction in turbulent flows. The model combines the advantages of the probability density
function and the conditional moment closure methods and is based on a certain generalization of the
mapping closure concept. An equivalent stochastic formulation of the MMC model is given. The
validity of the closuring hypothesis of the model is demonstrated by a comparison with direct
numerical simulation results for the three-stream mixing problem23®3 American Institute of
Physics. [DOI: 10.1063/1.1575754

I. INTRODUCTION cies that are allowed to fluctuate only jointly with the major
Turbulent combustion models have been developing for%pecie_s(Note t_hat,_for a giV(_an major manifold, the selgction
the last 30 years and, at present, they represent powerfﬁf m%or ?pec;es IS noltf.umr?u.e anfdthwe d(.) not r;g:;ct our
tools for analyzing combustion processes in turbulen{ONs!d€ration to a speciiic choice ot the major speresac-
flows -3 Probability density functiofPDF) modelé* pro- tl_cally, this means that the concentratlc_ms of the minor spe-
vide the most detailed information about the stochastic char='€S 8¢ conditioned on the concentrations of the major spe-

acteristics of all species involved in a combustion processc'es' Thus, in the present work, we aiso have to deal with the

and this allows for the most accurate evaluation of the reacr:.nOdeIS analyzing the evolution of the conditional expecta-

tion rates. However, for the realistic chemical processes int—'or]§|_'h del that deals with th ditional .
volving hundreds of species, the complete direct evaluation e model that deals with the conditional expectations

of the joint PDFs of all reactive species does not seem feaQf the reactive components is the conditional moment clo-

sible at presentthis would require solving equations in the sure (CMC).® Although this model can be formulated for
composition space whose dimension is expressed by a thre@Ultiple conditions, the practical realizations of the model
digit numbey. The computationally efficient PDF methods &'€ mostly limited to _the values .condltloned ona smgle vari-
are expected to reduce the effective number of dimensions @P!€ (normally the mixture fraction The model provides a
an acceptable two-digit number using certain automatic re€latively computationally inexpensive alternative to the
duction technique8’ evaluation of _the joint PDF of all reactive scalars, bqt |t.c.)ften
The ideas developed in the present work are based on tHacks th_e ability to take into account some of the S|_gn|f|cant
presumption that, practically, it is not necessary to allow alifiuctuations of the reactive speciée fluctuations with re-
species to fluctuate in all possible ways. First, fluctuations ofPect to the conditional means order to determine the
concentrations are restricted by the conservation of elemenfgaction rates accurately. One possible solution is to intro-
and other conservation principles. Second, fast reactiondUc€ @ conditional variance equation and determine the reac-
force some of the concentrations to be asymptotically closd0n rates with the use of a presumed conditional PDF based
to their partial equilibrium states. Third, some of the turbu-On the calculated conditional variantt&Another way of im-
lent fluctuations do not have a significant effect on combusProving the accuracy of the conditional models is to take into
tion and can be neglected. We use the word “major” to char-&ccount more of _thg turbulgnt ﬂuctugtlons by increasing the
acterize fluctuations or composition manifoltie., curved —Nnumber of conditioning variables. This means that instead of
surfaces in the composition space of a dimension smallé¢SINg the mixture fra(?t!on. as thelonly cqndmonlng variable,
than the dimension of the whole spaoshich are taken into W€ Use several conditioning variableshich can be repre-
account by the model; and the word “minor” characterizesS€nted by the concentrations of the major spgcisother
fluctuations that are neglected or composition manifolds thaink of equations for conditional expectations and PDF mod-
are not attainable. The same minor/major notations can b§'S iS discussed in Refs. 10, 11 for velocity-type condition-
used to characterize species: the term “major species” em9: _ _ _ _
phasizes that fluctuations of this particular set of species are [N Spite of the relative transparency of these ideas, their

not restricted, while the term “minor species” refers to Spe_practical implementation is not easy. The difficulties are not
in formulating the conditional equations with multiple con-

ditioning variables—these equations are well knéwithe

dAuthor to whom correspondence should be addressed. Permanent addr?féssibility of using the scalar dissipation as an additional
for communications: Department of Mechanical Engineering, The Univer-

. . . . l .
sity of Queensland, Queensland 4072, Australia; electronic maiI:Condmon!ng variable is explored by Ch"ﬂ.a_‘l- 2) The mix-
klimenko@mech.ug.edu.au ture fraction based CMC needs the specification of the one-

1070-6631/2003/15(7)/1907/19/$20.00 1907 © 2003 American Institute of Physics

Downloaded 07 Jul 2003 to 130.102.102.41. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



1908 Phys. Fluids, Vol. 15, No. 7, July 2003 A. Y. Klimenko and S. B. Pope

variable PDF of the mixture fraction, but the conditional clo- lation and implementation of the MMC model. Although the
sures with multiple conditions would require the dimension of the major composition manifold is smaller than
specification of the multidimensional joint PDF for the major the total number of species, this dimension is, generally, not
species. While the shapes of the mixture fraction PDF arexpected to be small. For multidimensional spaces, stochas-
well known and can be presumed, determining the joint PDRic formulations are expected to be more computationally
of the major (reactive species needs more extensive PDFefficient than deterministic formulatiofsThe most difficult
modeling. part of the stochastic formulation is, as usual, the evaluation
The present work represents a logical combination of thef the mixing step, which requires the calculation of certain
PDF method, which is used to find the joint PDFs in theconditional averages. In the present work we suggest the
major manifold, and conditional methods, which are used tanethod of diffusing clouds, which has some similarities with
determine the evolution of the dependent species. This worthe method of smoothed particle hydrodynanfiteut the
goes far beyond mechanistic combining of two differentdiffusing clouds are allowed to expand in time. For this
methods into one model. It appears that the model suggest@aethod the numerical diffusion which is associated with the
in the present work does not discriminate between the majogvaluation of the conditional averages matches the intensity
and minor species, but treats them in the same (ivay, the  of the diffusion required by the MMC model.
PDF/CMC interpretations of the model are valid for any rea-  Another problem considered in Sec. IV is related to the
sonable choice of major and minor spegies formulation of the initial conditions. Assuming that appropri-
As in any PDF method, the PDF part of the presentate initial conditions are specified for all species, the MMC
model needs a closure. An additional difficulty is induced bymodel also has to be provided with an initial mapping of the
the fact that CMC needs the specification, not only of theconcentrations into the reference Gaussian space. For mul-
PDF of the major species, but also of their conditional dissidiple dimensions this mapping is not unique. Without the
pation, which has to be consistent with the joint PDF. Thisclaiming of finding an ultimate solution for this problem, we
problem has been solved in the present work by generalizinguggest a procedure—‘mapping by preferential directions”
the concept of mapping closuf®C).> For the statisti- (MPD)—which is based on some additional physical consid-
cally homogeneous case, the major idea in the mapping cleerations and a certain ordering of the variables or their linear
sure is to consider the mapping betwaenGaussian refer- combinations. Although the scalars in MPD are not indepen-
ence fields and theng species concentration fields. This dent (as they are in MMG we believe that this method
mapping (which is not uniqug is constructed to yield the corresponds well to the physics of the problem for a large
known one-point joint PDF of the species. Then, statistics oflass of practical cases.
the species fieldsin particular, the conditional dissipatipn In the last section, we consider the problem of three-
are determined from the joint PDF and the mapping. Thus, &tream mixing that has been simulated numerically by Juneja
closure is achieved, which takes the form of an evolutionrand Pop# (JP in further referencesThis problem should
equation for the mapping. For a single species=<(1), the  probably serve as a benchmark problem for all multivariable
mapping closure has been fully explotéd’ and particle joint PDF closures. It is shown that, for the MMC model,
implementations have been developé&d*°The application  this problem has an analytical solution that is compared with
of the mapping closure for multiple specias, 1) has also numerical calculations using the diffusing clouds method.
been consideredf:2%2'However, a computationally tractable The analytical MMC results match well the DNS results of
implementation that respects the mapping closure and scaldP while the stochastic simulations are in good agreement
linearity and independence principles has yet to be devewith the analytical formulas.
oped.
In contrast to previous works, we introduce a new ver-
sion of MC that(a) from its origin is formulated for inhomo- |I. DETERMINISTIC FORMULATION OF THE MMC
geneous flowsib) deals with multidimensional spaces with- MODEL
out any need of artifipial o_rdgring of the variables, doy _A. Major and minor species
allows for non-Gaussian distributions for the reference vari-
able (although the specific form of the present closure is, as We consider a set afs chemically active species, with
the original MC, implemented with Gaussian reference varimass fractionsY,(x,t), (I=1.2,...,n5) that satisfy the
ables. Considering its link with MC, and the multidimen- transport equation
sional nature of the model we refer to the new method as the oY,
model with multiple mapping conditioningMMC). The ——+V-(vpY,)—V+«(DVY))=pQ,, 1)
MMC model is introduced in Sec. Il, where its properties are o
analyzed. The MMC model matches well properties of tur-wherev=v(x,t) is the fluid velocity,D is the diffusion co-
bulent mixing such as localne$s?® boundedness, indepen- efficient (which is assumed to be the same for all spacies
dence of scalafé and Gaussianity of the PDFs in appropri- is the density, and), is the rate of creation of speciésiue
ate limits. Although we refer to MMC as a model, the MMC to chemical reactions. Botp and (), are assumed to be
approach is more akin to a certain framework that can bé&nown functions of the mass fraction€2,=Q,(Y), p
used to formulate various specific models. =p(Y). [For simplicity of exposition, we confine attention
A significant part of the papeiSecs. Il and 1V is de-  to this set of species, although in practice an energy variable
voted to an equivalent stochastice., Monte Carlp formu-  (e.g., enthalpymust also be considered. However, since the
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enthalpy equation has the same form(f, it is trivial to  species by ,. The sample-space variables are denotey by
extend the present treatment to the general tase. for all species; byyy, for some subset; by, for major

A fundamental assumption in the model is that,»at), species; and byy,, for minor species.
the compositionsy' (x,t) that occur in different realizations
of the flow are restricted to an,-dimensional manifold in B. The PDF and CMC equations
the ng-dimensional composition spaca,&ng). This mani-
fold is denoted byZ(£x,t), wheregz{gl,gz,...,gnr} are
reference variables that parametrize the manifold, Amds
Ng components{Zl,Zz,...,Zns}. The assumption that(x,t)
is restricted to this manifold is then written as

An accurate evaluation of the reaction rates requires the
specification of the one-point joint PDF of the species mass
fractionsPy or of the Favre joint PDFPy . The Favre PDF
of all species is denoted by (y;x,t); of a subset by
F’Y(ym ;x,t); and of major species bNEY(y{i} X, t).

The transport equation for the Favre P can be
Y(H=2(& %), @ derived from E)l) bquell-established technig?:::é@:27 For
flows with large Reynolds numbers, transport by molecular

— [k gk * i H H _
where £ ={&7 &7 ,...,§nr} is a random point in the refer diffusion can be neglected and the PDF transport equation is

enceé space. Note thaf (£,x,t) is a deterministic function,

; ) given by
and the randomness ¥f(x,t) is reflected in the randomness
of £&*. ¥p)Py ~ IWi(p)Py  #*Nis(p)Py
An important special case to consider is that in which o TV u(p)Py)+ oy T oy, O
there is a set oh, “major species” such that there is a (4)

one-to-one mapping between the manifold and the mass frac-
tions of these major species. We denote Yy, the mass where
fractions of the major species, and ¥y,, the mass fractions D
of the remainingng—n, “minor” species. In this case, N,J(y{K};x,t)E(pX|J|Y{K}=y{K}>/pY, x13=—VY,-VY,,
knowledge of the major specieé;, determines a unique p
f)homt on the ma_mlfold, and henc_e the mass fractigpg of u(yqy %D =(pv|Y =y oy,
e minor species. Thus, the minor species (aseassump-
tion) determined by the major species; and so there are n@/,(y; ;x,t)E(pQ,|Y{J}=y{J}>/pY, (5)
fluctuations in the minor species about their means condi-
tioned on the major species. These conditional means arr (Y XD =(p[Y 1 =yq),

denoted by ~
Py(ypy i % 0)=Pypy/{p),
Qa(Y{i},x,t)=(Ya(x,t)|Y{i}(x,t)=y{i}>. (3 and the indiced, J, K run over all species or any given
subset of 1,.. ,ng.
Locally on the manifold(i.e., in the neighborhood of a If the set of species considered in the equation is com-

general point£’), it is always possible to find a set of plete(i.e., Y3 =Y={Y1,Y5, ... 'Yns})’ then conditional av-
species such that their mass fractions have a one-to-one magrages of the reaction rates and density are simply given by
ping with points on the manifold. But, if the manifold has

folds, a set of “major” speciegfor which, globally, there is Wi(y;x, ) =Q,(y),  py(y;xt)=p(y). (6)

a one-to-one mappingnay not exist. In the model presented |1 shouid be noted, however, that the joint PDF of the com-
below, there is no assumption about the existence of MajQfjete set of species is most likely singular: the PDF takes
species, and indeed all species are treated equally. Howevefysitive values only within a certain attainable manifold
some of the properties of the model are deduced, assumingnije remaining zero in the rest of the composition space.

the existence of major species. Furthermore, some concepf§,,s, all PDF equations should be conventionally interpreted
are more easily understood, and the model is more 0bV'°”S|¥ccording their generalized sense.

related to CMC, when major species exist—as is assumed in  aq is discussed in the preceding subsection, we assume

this and the next section. ~ . .. s :
Before proceeding, we clarify the notation used for sub—that the PDFPy(y;x,1) is positive only within a certain ma

. : . Lor manifold and can be characterized by a reduced PDF of a
sets of species. Bracketed subscripts are used to specify t & tai . . . .
span of a vector when clarification of the dimensionality of o Smaller dimensiom, . If a set of major specie¥y;, ,
P : Y O\ hich is sufficient to characterize the majore., allowed
the vector is needed. For examphg, (upper case Roman ) , . ~
suffix) is a value indexed by a running indéx while Y, fluctuations, is selected, then the Jomt~PBE(y;x,t) can be
represents the whole sgY;,Y,, ...}, as determined by the effectively replaced by the reduced PBR(y;; ;x,t) supple-
span of the dummy inde If the dummy index is not speci- mented by the conditional expectatiol,=Q.(yi;;%:t)
fied, then the vector involves all relevant components: =(Y.|Y( =Y. Specifically, we have
={Y.,Y,, ... 'Y"s}' A major species is denoted by (lower ~ ~
. . Py(y;x,t)=P X O(Qrar (Vi i X, 1) — Vi), 7
case Roman suffjxand the complete set of major species V(XD =Py %0 8Quay (Yyiy i) ~ Vi) @
by Y, . Similarly, a minor species is denoted by, (lower  where, in general, a delta function with a vector argument
case Greek suffix and the complete set afs—n, minor  denotes the product of the delta functions with the vector
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components as arguments. The delta-function produ€f)in Q,. These equations could be solved if models were avail-
is the PDF of the minor species conditional upon the majomble for the two unknowns—the conditional velocityand
species. the conditional dissipatiolN;; . However, becaus&l;; ap-
Whatever the choice of the major species may be, th@ears as a negative diffusion coefficient in the PDF equation
reduced PDFPy(yy;;;x,t) and the conditional expectations (8), the explicit modeling ofNj; does not lead to a stable,

Q.(ygiy:x.t) should satisfy the equatioh?’ realizable model. Instead, we proceed indirectyg in the
< >~ mapping closureand use the space of the reference variables
0 P PY

IWi(p)Py N #Nij(p)Py 0 to formulate the modeling equations.
ot ay; ay;dy; o The model which we can call “the model with multiple
(8) mapping conditioning”(MMC), is represented by the fol-
lowing equations for then,-dimensional manifoldZ(§,x,t)

+V-(u(p)Py) +

and
, which are to be solved in the space of the reference variables
d a d a d a = -
Q +U'VQa+Wii_Nij—Q:Waa (9) gk! k 1!21 Ny
at aY; dYidyj | 27, (922|
wherei, j, andk run over major species; runs over minor - TUVZ +Ak&_§k =B GETE =0,(2), (13)

species; Njj=Njj(Ypq:Xt), u=u(ypq;xt), and W

=W(ypq ;%t) are the scalar dissipation, velocity, and reac-whereZ, (1=1,2,...,ns) correspond to each of the species
tion rates defined irf5) and conditioned on the mass frac- involved. The values of the coefficientg=Ay(&X,t), By
tions of the major species. Since the major species are as=By (& x,t), U=U(& x,t) are discussed below. The solution
sumed to set a sufficient number of conditions for taking intoof this equationZ,=Z,(£,x,t), is a deterministic function of
account all major fluctuations so that the fluctuations withits arguments.

respect to the conditional means can be neglected, we con- In order to model stochastic properties of turbulent com-

ventionally put bustion we introduce stochastic fieldg = & (x,t). The
) _ B function P.=P(&x,t), which represents the one-point,
Wi (yiy %D =(Q Yy, YD Y=y one-time joint PDF of7 , ... &7 , is required to satisfy the
=0(Yiy,Qrap) equation
and Hp)P IAP)P:  °Bi(p)P
(p) §+V°(U<p>P§)+ Kp) £ ki(p) £ _

py(Yiiy %) =(p (Y, Yiap) Y i =Yii) = p(¥iiy Qpay) ot €k &€

in (8) and(9). Neglecting minor fluctuations also allows the

neglect of the tefmTD\?1V‘((U"(Ya)"|Y{i}ZY{i}>|3y) that,  This equation is called the reference PDF equation wijle
otherwise, should be conventionally present(® (these is referred to as the reference PDF. Satisfying the reference
fluctuations can be also neglected in some other cases-EDF equation is a mathematical requirement whose necessity
CMC shear flow equatiorf, for example. The double- is demonstrated in the following subsection. The valges

prime superscript denotes the conditional fluctuations, fofnay be generated/modeled in different ways as long as its
example, ¥,)"=Y,—Q,. PDF complies with(12), although Eq.(12) does not neces-

It is important to observe that if8) and (9) the only  sarily reflect the physical nature of the fluctuations simulated
“unknowns” are the conditional mean velocity and the by & . Depending on the implementation of the model, dif-
scalar dissipatioN;; . Hence, if models are provided for ferent&" may simulate fluctuations induced by different fac-
these quantities8) and (9) provide a closure for species in tors (i.e., by fluctuations of the mixture fraction, fluctuations
turbulent reactive flows. of velocity, fluctuations of dissipation, efc.The conserva-

In the subsequent analysis, use is made of the conservive formulation of the MMC model,
tive form of the CMC equation, which is readily obtained

(12

from (8) and (9); %+V%U<pwgz,)+ (3’Ak<5§>P§ZI (P,
~ _ k
d P ~ W, PyQ,
AR 9. (u(p)ByQ, ) + T e S RLTL
Yi - 07§k kI\P §5§| | &gl
d [ INi(p)Py 5 9Qa| _ 5 p 9z, IBu(p)PeZ
ayi| Qe gy, ~NulPIPy 07| =Walp)Py. :ﬁ—gk(zsk.@)Pga—gl’—%), (13)

10
(10 can be obtained from Eq§ll) and (12). This form appears

to be convenient for numerical implementations.
Here, we also consider the stochastic field$
With the assumptions madprimarily the neglect of the  =Z7,[ £ (x,t),x,t], which are represented by deterministic
conditional fluctuations of the minor specie&gs.(8) and  functions of stochastic arguments. The joint PDF of the val-
(9) describe the evolution of the joint PDF of the major uesz?’l} is denoted b)PZ: PZ(Z{l};X’t)Y Wherez{l} represent
speciesPy, and the conditional means of the minor specieshe sample space variables fbjﬁ}. The span index may

C. The modeling equations
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vary in the definition ofP; so that the definition corresponds of all species while the small indicés j, k run over all
to the PDFs of different levels. The asterisk superscript igeference variables. Although, in this section, we do not
used to indicate the stochastic nature of the variables amake any explicit assumptions about the dimensions in-

fields.

The one-point joint PDF of the, fields Z* is denoted
by Ps(zx¢t) and, through the relation Z*
=Z[ & (x,1),x,t], it can be obtained fror®, by

PZ(Z;X1t) = J’ P§(§1X1t) 6[Z(§1X1t) - Z]df,

volved, it should be noted that, if the dimensionzﬁ} ex-
ceeds the dimension &, the PDFP,(z;,;x,t) must be
singular due to a deterministic functional dependence be-
tween some of the valuezf,}. Conventional generalized
interpretation is assigned to all equations dealing with singu-
lar PDFs. We demonstrate now th4 satisfies Eq(4) gov-

erningPy, provided the reference PO, satisfies Eq(12)

where integration is over the entire reference space. Thiand the coefficientdN,; and u are modeled by(16). The
PDF is the model for the Favre PDF of the speciesproof is based on Bayes theorem in the form

Py(y;x.t). In the following sections the connection between

P, andPy is established by showing that under certain con-
ditions specified below, the MMC model gives solutions of

Egs.(8) and(9).

PZ(Z{|};X,I)=J' P21(zin| EX,1) P(£x,1)dE,

17
wherePy; is the PDF ofZ{;, conditioned ong* =§. Since

This interpretation, of course, assumes a certain link bethe functionsZ,(£;x,t) are deterministic, this PDF is given

tween the coefficients of Eq#8) and (9) and (12) and (11)

(i.e., MMC has also to be a model for the unknown coeffi-

cientsN,; andu). In the following section, it is shown that,
generally, the relationships between the coefficients are

Wi (zpy 1) =(QF |Z]5,=7;3),

by
P2zl &x,0) = 8(Zy(Ex,0) = zpy), (18

where the Dirac delta function applied to vector arguments
denotes the product of delta functions applied to the vector
components.

The PDF transport equation fét . obtained from Eq.

u(z{,};x,t):<u*|z{|}=z{,}>, (14 (11) is given by
. —/N*|7* — o

Nis(Zgy i %0 = (NI Zfy = 1) Pale  Goyp. o p 0P PNy Pz 0Q,Py;

where ot 2T e 92,07, 9z,
EQI(Z*)! &2P2|'§ (19)
Kl 9 2¢
o d&kd
Ur=U[E (x,).xt], NS=NLIE(xDxt], (15 ) o4,
whereN,; is defined in(15). This equation can be derived
o _ &_Z|&_ZJ using the following identities and the standard PDF tech-
Ny;(£X,t)=By . .
A€ 9§ niques:
The reaction source terms are also included to emphasize (9Pz\g d aZ| IPz|¢ d dZ,
thatW| is considered to be a model fa¥, in (4). If the set of o gz |\ AEat 0E. oz |\ HEag)
Z,(éx,t) uniquely determines the values ofy

=§k(Z{,} X,t) that correspond tdy,, then Eqs(14) can be VP. .= — P2V Z,
simplified. Indeed, in this case the conditiaff;, =z, 2l iz,
uniquely determines the values &f and the values aver- ) 5 )
aged in(14) cannot fluctuate around their conditional means J PZIs‘E: J ( ‘?_Zla_ZJ) J ( 9°Z, )
so that we can write IEIE 97,9z, 0k 0§ | oz Zlgé’gké’fl

ulZ(EX,0)x,t]=U(&x,t),
Nis[Zyky(£X,);%,t]= Ny (£,x,1).

It should be noted that, unles;, and £ have the same
dimension while the functiong, = Z,(£,x,t) provide one-to-
one mappings of into Z;,, not all combinations to,} are
realizable(i.e., having a positive probability

(16)

D. Compliance with the PDF equation

Although Egs.(11) for Z, are deterministic, the values
Z =Z,(& ,x,t) are stochastic due to the randomnesg’af
Stochastic valuesZ{ can be characterized by a PDF
Pz(zyy;x,t), which, as it is shown below, is a model for

I~3Y(y{,} ;X,t). In this section the values indexed byJ, K

represent any selected subset of the species or a complete set

The last identity is used in the derivation after being multi-
plied by By,(&;x,t) and interpreted in accordance with the
definition of N;; in (15).

The evolution equation faPz(z;, ;x,t) is obtained from
Eq. (17) by multiplying Eq.(19) by (p)P:(&x,t) and inte-
grating over all§. The terms involvingd/ 9§, are integrated
by parts. During this integration we also take into account
that

P2 (i EX D P EX,1) =P yz( 8211 5%, D) P21 5%,1),
(20)

and replacePz P, by PP in the following integrals:

f Ni;(&X,1) Pz P dé=(N|Z{ic; =z Pz

=Nis(Zky ;%1 Pz, (21
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First, we consider a joint PDP,(z;; ;x,t) for the set of
f U(&q s X, Pz P dé=(U*|Zf, =27 P n,+1 variablesz,={z;,.z,}. As it is shown in the previ-
ous section, the MMC PDIP; satisfies Eq(4). After mul-
=u(zyy;x,t)Pz, (22 tiplying this equation byz, and integrating over alt,,, we
obtain
— * *
| oszexopap e osiz-ue: QPP o A 23210 P
- _ m +V-((U*Z} |z {p)P2) + e
_WJ(Z{I} ,X,t)Pz. (23) !
Here, in these integrals, we use the equations and definitions n i f9<Nﬁ Z§|Z{i}><P> Pz C2(NE |2 )(p)P
specified in(14). The result is given by 9z, Jz; il 4iy/\P/ T2
2 _ * 7%
&<ZiPZ+V-(u(p>PZ)+ 3W|(§5>Pz+ J ':‘9;({91;)'32 (Q%Z%1Z,){p)Pz. (25)
! 174 In this section, we use the abbreviatipriz;;,) to denote the
o) P IAp)P conditional expectatiof-|ZF,=z;). SinceZy;, forms a set
=f (%-FV'(UQ»PQ‘F % of major species and the E:E)ngi{ti}d‘fi}:z{i} i{s}sufﬁcient to
specify all fluctuations present in the model, all correlations
azBH(p)Pg in (25 can be decoupled. For example, we can write
T P2 d¢. (24 (N5 Z3 125 =N;;Q,, and, with the use of Eqg15 and
(16), (Niafz{i})= Ni;dQ,/dz;, whereN;; = N;;(z;,;%,t) and

It is easy to see now that E(L2) nullifies the right-hand side Qu=Qu(Z;};%1). After decoupling, Eq(25) can be easily
of Eq. (24) and results in Eq(4). That is the joint PDF  yansformed into the CMC equation given £8). Thus, the
modeled by MMC satisfies the PDF transport equation proy\c model is compliant with the CMC equations for any
vided the reference PDP, complies with the reference PDF proper choice of the conditioning maja, and conditioned
equation given by12). minor Z* , species.

Another question that may be of interest to the reader is {a}
whether the compliance &, with the reference PDF equa- £ The Gaussian shape of the reference PDF

tion is a necessarily condition for the MMC model to be in

agreement with the PDF transport equation. In general, it is 1he MMC equations presented above do not represent
possible to find an example when the expression in th&€t @ complete model. Indeed, the coefficieAts By, and
brackets on the right-hand side (#4) is nonzero but the U have to be specified consistently with the PBE. Al-
integral in (24) remains zero. However, iZ;,=Z(£,x,t) though other assumptlons_ stipulating the shape of the refer-
uniquely determines a single poigtin the reference space, €nce PDFP. are possible, in the present work, we follow the
then Eq.(12) must be satisfied in order to ensure the com-ideas of mapping closufé'* and require that the valugg
pliance ofP, with the PDF transport equation. Inded;, &€ stochastically independent while having Gaussian distri-

defined in(18) represents a delta function, so that for a givenPutions with zero mean and unit dispersion for angndt:

point in Z space there is only one point in tlgespace that P6=G G e
contributes to the integral i{24). Hence, practically, it 8 (£)6(&2) (&n,).
would be very difficult to suggest a reasonable mapping 1 &2 (26
model with the reference field® whose joint PDF does not G(&)=—exp — —k) :
comply with Eq.(12). 2m 2
. ) ) This PDF satisfies Eq12) provided that
E. Compliance with the CMC equation W
. —_11(0) 1
The dimension of the reference spateis, generally, U(&ug %, D=V 06D+ U (X U éi,
expected to be smaller than the total number of spetjes 9By (27)
Thus, the fluctuations a* lie within a manifold of dimen- A== g TBabita adxh= mv-(<p>Uﬁ”>-

sion n, that can be specified by, major variableszﬁ}. If
the major variables are selected, then the rest of the varifhat is,U depends linearly og . (The linear dependence of
ables,Zz‘a , cannot fluctuate independently and can be fullyconditional velocity on conditioning scalars is repeatedly
characterized by their conditional expectation®,  used in publication&2% This point can be easily proved by
=Qu(Ziy ;%) =(Z}|Zf;,=7;5). As is discussed above, substituting the values dfi, By, Ac, andP; into Eq.(12)
Q.(ysiy;x,1) is expected to satisfy the CMC equati® for ~ and noting the following relations:

any choice of the major variables that can fully specify the JP JP

allowed fluctuations. This property of the MMC model is p§§|+_§:0, U@ =7, _‘520' VP,=0,
demonstrated below. The conditional transformations consid- 9 at

ered in this section are not much different from those used bypq

the standard CMC techniqusilthough they are applied to

the “surrogate” modeling variableg* instead of the physi- ap) . _ . (1)
cal mass fractiony¥ . o TV PV =6V-((p)Ui).
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The last relation takes into account the mean continuity Py(yy)
equation. Note thdt/(®)=(U)=V since(&} )=0. In MC, it is _ L ~
conventional to assume thBy, is independent ot: Py(Y2lY1) =Py(Y1,¥2)/Py(Y1),

Bii=B(x,t). (28) o

The values of the coefficients®, UM, and By, are Py Yin-1) =P ) Pr¥in ).
linked to the well-explored properties of turbulent Ateach ofn, steps of the mapping procedure, the mapping is
transport—the Favre mean velocify the Favre turbulent sought to comply with the corresponding reduced PDF. Spe-
oy cifically, at any stepl, the mappingY,=Z,(& ,&i_q) is
determined as the monotonic functiongf, which matches
the conditional PDFIBY(y,|y{,_1}). The valuesg],_,, are
—_— 9Z: 97 treated as parameters of the mapping aygd_q
uO@=v, UM(EzZF)=v"Y!, Bk'<¢9_l &—J> =Xij - =Z;-1y(£-1)) are determined by previous-1 steps. At
&k 98 (29 the first step, the mappiny;=Z,(£¥) is identical to the
one-variable mapping problem while for the other steps map-
The Favre averageswhose example is given by, ping is different from one-variable mapping only by the pres-
=(xijp)/(p)) are the averages evaluated with the use of th&nce of additional parameters. The overall mappind @f,

Favre PDFPy . The PDFsP, and P, are the conventional Nto &, is given by

fluxesv"Y{ and the Favre-averaged dissipation tergprof
the major species—by the following equations:

PDFs of the stochastic variables;, and &, anq the aver- Y,=2Z,(&),
ages using these PDFs are shown as conventional. However,
one should remember that the conventional PR}Frepre- Yo=Zy(& &),y Yo =Zn (&, ... &)

sents a model for the Favre PDP, [i.e., Py(z;:x.t)
=Pz(zi;x,1)]. If the dissipation properties of all scalars are
similar (i.e., the same dissipation scale is assumed for al

Although this mapping represents a solution of the initial
onditions problem, there are still several questions to be

scalars and the differential diffusion effects are neglected nswgred. .If the. varlabl_q“sl, . -_,fnr are assu_med tobe stp .
then the approximation, chgshcally |dent|ce_1l, their ordering does not impose any limi-
tations. The physical scalarg,, ... ,an are not identical
Biy=B(X,t) 5, (30)  and their ordering can be performednpl different ways+*
This shows that, generally, the initial mapping is not
should be appropriate. uniquely determined by the initial joint PDF. The monotonic
character of the mapping functions is another restriction,
G. Initial conditions which is, generally, not required by MMC. Without this re-

) i ) L , striction even one-variable mapping is not unique. We can

In this section, we consider how the initial mapping of o hat for such complicated phenomenon as turbulence the
the major species into the reference space can be set in orggy jca| evolution of the PDFs is likely to be determined not
to comply with a given PDF specified byy(y;;)  only by the initial conditions imposed on the PDFs but also
=Py(y;i; . %:to). The arguments andx are, generally, omit- by other parameters of turbulenteThe influence of the
ted in this section since all considerations are applied to thether parameters is neglected by the models that presume
initial momentt=t, and a certain poink in the physical that the initial value of the PDF uniquely determines its evo-
space or its vicinity that is sufficiently small to be treated aslution. Potentially, the additional freedom in initial mapping
spatially homogeneous. The PDFs of minor species are rezan be used to match the effect of the other parameters on
stricted by Eq«(7) and are not considered here. evolution of the PDF.

One of the methods, which allows algorithmically for
the setting of the initial condition¥;=2;(£*), correspond- H. Qualitative properties
ing to the given initial joint PDF, is to follow Popéand use

. ) X . In the end of this section, we note some quite obvious
the ordering procedure. The major presumption of this pro- : )
: features of the MMC model, which make its use very attrac-
cedure is thatY{nr} represents an ordered set of the scalar

C Yive. Note that these properties are related to general MMC,
{Y1,Y2,....Yn } andPy(yn,) is its joint PDF.(Although  while setting the initial conditions by ordering the scalars is
some procedures that may serve as a certain justification efot complying with some of the properties. The diffusion/
the ordering are presented later in the present work when theonvection part of the MMC moddi.e., we formally put
discrete version of MMC is introduced, ordering of variables(),=0 in (11)] has the following properties that match well
in not consistent with the independence princiffleThe sto-  the properties of turbulent transport in a realistic flow.
chastic reference variables are represented by the ordered %E)'t

— * * * H
g{*nr}—{;l &5, jgnr} and their . PDF usual!y assumed tion by the MMC model is local.
Gaussian. The joint PDF determines the series of reduceg)  The MMC model predictions for scalars and their lin-

PDFsPy(y1), Py(Y1.Y2), - - -, Py(¥jn,) that can be equiva- ear combinationgwhich satisfy the modeling trans-
lently represented by the series of the conditional PDFs, port equationsremain bounded.

The description of the turbulent diffusion and convec-
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(i)  All scalars are treated by the MMC model in the samep
way without any discrimination.

(iv) The MMC prediction for the turbulent transport of
one scalar is not affected by the other scalars.

(v)  In homogeneous turbulence, the PDFs approximate«i
by the MMC model evolve toward Gaussian PDFs.

¢). The goal of the model is to fing, (§,x,t), which, as it
is shown below, satisfies the MMC equatiaiid).

The valueS'P is any arbitrary operator that does not
Iter the conditional expectations, as specified by the second
guation in(34). This operator is related to the numerical
realization of the model and is discussed ldier purpose is,

Although the localness of the MMC model is related to 9enerally, to keeZ® close toZ{?). At this moment, we
the localness of the differential operators used in MMC, gonly note that the following simple examples 8f *—(1)
more physical consideration of this property is offered in theS' P=0, and(2) SfP=(Z;P—ZP)/ 75 (whererg is a certain
following sections, where a discrete numerical version of therelaxation tim¢—satisfy the required condition i(84).
MMC model is analyzed. The boundedness is a common The system specified b§81)—(36) is equivalent to the
property of parabolic equatior{¢) of not exceeding the up- following direct Kolmogorov(Fokker—Planck equation:
per and lower limits specified by the initial maximal and
minimal values ofY,. This property is preserved by Eqs. 9Prp
(12), specifying the MMC model. The relaxation to a Gauss- dt
ian shape is an obvious common property of MCs using
Gaussian reference fields. Although the PDFs of scalars in  — ™" (37)
turbulent flows may be quite different from Gaussian, thefor the joint PDF,

PDFs, generally, tend to evolve toward the Gaussian shape
unless they are disturbed by boundary conditions or other Pgp=Pga(Z,&X;1)

factors. =(8[z—Z*P(t)]8[ €~ EP(1) ]S x—x*P(1)]),

WhereV_\/,EQ,(f).
I1l. STOCHASTIC REPRESENTATION OF THE MMC =3 . . .
MODEL The valueZz, defined in(35) can be equivalently repre-

sented by
The modeling equations specified 1) can be solved

deterministically by a finite difference numerical method. Z(fxt)= Fi(&x0)
However, obtaining deterministic solution seems problematic T R

for the multidimensional spaces of reference variabies where the following integrals:
>1. In this case, using stochastic differential equations uti- '
lizing n, independent Wiener processesw*
={w},...,wy} can be more economical for numerical cal- Fo(§,X,t)=f Prpdz, F|(§X,t)=J Pepzidz, (38

culations. The stochastic model is represented by the follow-

(7A:<PFP_ PBiPep (Wi +S)Pep
29 2943 9z,

+V.(UPFP)+

ing system of stochastic Ito equations: are introduced. The condition i{84) leads to the following
constraint:
dx*P=U(&P,x*P t)dt, (31
d&g P=A(EP X P 1) dt+ by (£P x* P t)ydw]" (32 f PepSdz=0, (39)
dZfP=(W;P+SP)dt, (33  for the operatorS, . In addition to these integrals, we also

introduce the quantityn representing the integral ¢p) over

W P=0Q,(Z2*P), (SfP|§P=£x*P=x)=0, 34 the whole physical domain under consideration,

zl* pEZ(g* p!X* pyt)i

Z/(Ex,0)=(Z[P|§P=Ex"P=X),
2 JBuP The stochastic model introduced in this section represents a
A=A+ — — L 2B, =byby . (36)  stochastic version of the MMC modgdithough this does not
Pe 9§ mean, of course, that the model is intended to simulate all
We use the superscriptp” to distinguish the values linked Stochastic properties of turbulent diffusjoindeed, assum-
to stochastic trajectories, which are also called “stochasti¢nd that the distribution of the MMC particlgse., stochastic
particles.” Unless the contrary is specified, the capital sublirajectories whose evolution is specified by the equations
script indicesl,J, andK run over all species 1,2,.,n,, (31)—(38)]is set initially and on boundaries inspace such
while the small indices run over the dimensions of the referthat Fo=(p)P,/m and F,=(p)Z,P;/m, the further evolu-
ence space. The vectors without indices correspond to thigon of the functionsFy(&,x,t), Fi(§x,t) and Z,(§x,t),
vectors of maximal possible dimension for the quantitywhich are interpreted as
specified by the vector. The POH; of the reference fields is
assumed to be known and the valdgs$ are used to simulate = :<p>Pf = Z(p)Pe 7 = i =7 (41)

0 N A 1

(35) m= J <p>dX. (40)

the diffusion in the reference spag@ather than to determine m m
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satisfy Egs(12), (13), and(11) correspondingly. In order to pends onz and complies with restrictiori39). Since P,

prove this statement we, first, note that the functibgsand
P, have a consistent normalization,

mj Fo(g,x,t)dgdx=m=f (p)P&x,1)d&dx.

satisfies(19) and Fo=(p)P./m satisfies(12), then as it is
shown in Sec. 11D, the PDIP,, defined by

m m
Pz(Z{|}JX't):mf PFF’d§:<7>J Pz ¢Fodé (48

The integrals whose limits are not specified explicitly indi- —the equivalent of Eq(17)—satisfies Eq.(4). Thus, the
cate integrating over all meaningful values of the corre-distribution of the stochastic particles in tdex space rep-

sponding variables. The integration of Eg7) over all val-

resents a consistent model for the joint scalar FF Ac-

uesz results in disappearing of the last term on the left-hanctording to this interpretation of the MMC model, the minor

side of (37). It is easy to see that, since the coefficiefjs
By, andU do not depend og, the resultant equation,

IAFo  *BiFo
€k 29s
can be converted int@.2) by substituting=o=(p)P./m and
the definition ofA, in (36) into Eq. (42). Thus, if initially
Fo=(p)P¢/m, this link betweenF, and P, is preserved

during the evolution of the stochastic model.
The integration of(37) over all valuesz can also be

JF
— 2 V-(UFy)+ 0, (42)

ot

fluctuations are not neglected, although their modeling is not
as detailed as modeling of major fluctuations. The dissipation
of minor fluctuations is specified by operat§r. The char-
acteristic dissipation timeg [that is used in a simple relax-
ation modelS,=(Z,—Z2,)/rg] should be selected to match
the physical dissipation properties if the minor fluctuations
are not neglected. The dissipati®; that represents the
average of\}; over £ as specified if21) is a model for the
scalar dissipation tensor. It should be noted that this value
may fluctuate arouni,; introduced on the basis of Eq45)

performed after multiplyind37) by z, . In this case, the last and(21).

term on the left-hand side of E€37) does not disappear and

it has to be integrated by parts to yield
IAF  PByF|
IEkIE|

JF _
— L+ V-(UF)+ W,F,.

at IEx 43

IV. NUMERICAL IMPLEMENTATION

The MMC model can be implemented by solving a
finite-difference representation of the deterministic equations

The term involvingS, disappears due to the constraint speci-given by (11) and, for low dimensions, ~1, this would be

fied by Eg.(39). With the use ofA; defined by(36) this
equation can be transformed into

Fioiur s PAF
- TV-(UF) ’r
4 0|z B g o 72 —W,F (44)
&N 0§ M09 "o

providEdF0=(£>P§/m. Equation(44) is equivalent to(13)
sinceW,=((Z). Equations(44) and(42) determine that

iz, _
— 4+ U-VZ,+A,

Z, 7, —
p — By

aZ

— —=W,.
3" 23949 '
Equation(45) coincides with Eq(11).

(49)

The stochastic version of the MMC model allows for a

an efficient and simple method. The situation is changed for
multidimensional problems,>1. Indeed, the evaluation of
diffusion terms on a regular grid requires consideration of at
least three node points in each direction totaling toints

in the finite-difference neighborhood of each node. Such
evaluations are computationally problematic. For multidi-
mensional spaces, an efficient numerical implementation re-
quires using the Monte-Carlstochastic particlésnethods'

In these methods, the PDFs are represented pyiscrete
particles. With the use of the delta functions we can replace

Pep by
13
FlZ. 800t = - 2, Z-Z*P(O]oLE- £ (D]l
i

—x*P(1)], (49

different interpretation. Let us introduce a conditional prob-Where the evolution oZ*P(t), £*P(t), andx*P(t) is gov-

ability Pz (z,&x,t) so thatPgp=PFo. Equations(36),
(37), and(42) determine thaP, satisfies the equation

T"‘U'V PZ|§+Ak agk + &Zl
azpz|§
=By ——, 46
N GEIE, (46)
which appears to be consistent witt®), provided
SPy=——". (47)
1TZETT gz,

Here and in(36) we replace\ﬁ, by W,=Q,(Z). This equa-
tion provides a new definition dfl|;=Nj;(z & x,t) that de-

erned by(31)—(36). Hence, the functior-, and F, are re-
placed by

n

1 p
F3<§.x:t>=n—pp§1 S[E—EPMIXx—x*P(1)],  (50)

Np

1 —
Fi (gt = 2, ZEPD &= £ P0]ox—x* ()],
=
(51
One should be able to evaluate the conditional expecta-
tions Z" P while using the discrete representationsPgf,
P 19792 (1)

ZFP(t)=
! UG

(52
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The non-negative weightgP9 specify the contribution of dx*P=0, d&P=bgdw,, dzZFP=S"Pdt. (58)
particleq to the conditional average evaluated at the location
of particlep in thex-£ space. The shape of this function is to The operatorS P is related to the mixing substep since its

be determined later. At the moment, we only note ®t  purpose is to kee? close toZ}P. The finite difference
should rapidly tend to zero as the distance between the pafepresentation of this equation that is to be integrated be-
ticles in thex-§ space increases. Effectively, this means thatweent, andt,=t;+ At, is given by
the sums are to be evaluated, not overrgliparticles, but
only overn, particles ,<<n), located in the vicinity of the A& P=b W VAL, (59
particlep. Equation(52) can be rewritten as

whereb,, is assumed to be constant during this time step and

ghd (53 W represents independent Gaussian stochastic values with
zero mean and unit variance. In the rest of this section we
assume tha® =0 anddZP=0. Note that, for this substep

Z, is not preservedeven if S*P=0) and has to be reevalu-

"p
Z*P(t) — gPaz*d gPd=
ZiP(n =2, §7ZF0. g ST

The interaction matr>x3P9 defined in(53) satisfies the nor-

malization condition ated, as specified by E(2). Indeed, Eqs(42) and(43) now
Np take the form
> §"=1. (54)
a=1 IFe  9°ByF e

—=—, 1°=0,1,... ng, 60
We assume that the coefficients of the model are speci-  dt 29%ds s (60

fied as in(27) and the initial distribution of the particles in _ _ _
x-& space is set according #®,=(p)P./m with Gaussian Which, generally, does not allow fofZ,/3t=0 (where Z,
P, given by (26). (Note that this distribution is preserved =F,/F,). Let us assume thaZyP=Z" before the time
during integration. For each time stept, the increments of ~ step. After the diffusion substeff P remains unchange(s-
the particles’ properties are decomposed into three substepsuming SFP=0) but Z*P changes so that the valu&®

transport(drift), mixing (diffusion), and reaction. This sub- would have a growing dispersion around their conditional
division is neither unique nor compulsory for the method—,aans specified bi*p_

the purpose of the subdivision is, mainly, to simplify the

presentation and analysis py focus_ipg on certain features at@ Tne reaction substep

time. Unless the contrary is specified, the substeps are ap- ) i
plied consecutively: the initial conditions for the following ~ FOr this substep we pu§ =0, B =0, b=0, A,=0,
substep are set by the final conditions for the previous suNdU=0 so that

step. The procedure of numerical integration is now analyzed . p p =,
for each of these substeps. dx*P=0, d&iP=0, dzZfP=W,(z*P)dt. (61)

As it is determined by Eq950), (51), and(52), the condi-
tional expectations satisfy the following equation:
For this substep we evaluate only the drift-type terms

(with the exception of the reaction terms that are evaluated gz, —

A. The transport (drift ) substep

separately The equations for this step can be formally ob- 5 =Wi(Z)=dZP=W,(Z*P)dt. (62)
tained by puttingB,;=0, b,y=0, S;=0, andW,=0:
dx*P=Udt, déP=Aldt, dZ*P=0. (55) Hence dZP=dZP. Since, for this substep, the particles do

_ _ - not move iné-x space, the partial time derivatives are no
These equations are integrated by a finite-difference methogifferent from an ordinary time derivative. Equatioé?) is
betweent; and t,=t;+At. Note that, for this substep, to be integrated between andt,=t;+At, and this deter-
dZyP=0 since Eqs(42) and (43) take the form mines the increments of bothz}® anddZz}®. Considering
o that the reaction rates usually represent a system of stiff dif-

OF - OAF - . : ;

— +V(UFo) + =0, 1°=0,1,...,n,. (56) ferential equations, Eq62) is more preferable thaf6l).
at Iéx Because of the stiffness, the reaction substep is always

This equation determines that, for the transport substep, Placed last, and the most prudent way of evaluating the re-
action substep is to solve the reaction equations in conjunc-

9z, N V4 tion with mixing,
Ziuvz+a sl o, (57 on W miXing
ot A€ _ _
= Zp gz
and Z, is preserved along the characteristics of E§j7) gt = WH(Z )+ : (63)
mix

specified by(55).

where the last term represents the rate of change due to the

mixing process, which is obtained from the mixing substep.
For this substep we puf,=0, U=0, andW,=0 to  Equation (63) is to be integrated between and t,=t;

evaluate the evolution due to diffusion &space by + At from initial conditions set before the mixing substep.

B. The mixing (diffusion ) substep
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D. The mixing substep using diffusing clouds 1 M
. = *P _ P
The major features of the transport, mixing, and reaction Fie(12) Ny 21 Zi"(t)gr(£- £°P(11), A1), (66)

=

substeps are discussed in the previous sections. An evalua- . ]

tion of the transport substep is not difficult and can beWheren, represents the number of particles in the selected

achieved by standard techniques. Although an evaluation dthysical cell and we formally pi,=1. Equationg66) de-

the reaction substep is not easy due to stiffness of the chenfiermine that

cal kinetics, these problems are well investigated and not Ny Skp D

specifically discussed in the present work. Our focus in this Zo(gt )= i: Eppzlzl (t)gil&— & P(ty),At]

section is on the implementation of the mixing substep that ' "% Fy SR gl E-EP(ty) AL

can be done in different ways corresponding to different val- ) S ]

ues of the exchange matrg®®. After the time step, the distribution of the particleséispace
WhenY, is modeled byZy, the analysis of the previous Is no !onger represe_nted by EdS_O), so that we have 0

section indicates that the valu&P are needed only to redls_tr.|bute the particles according 0 the continudts

evaluate the conditional expectatioﬁ_$p If the values specified by(66). Of course, we cannot increase the number

Zp ) R _ o of particles to reflect thay(t,) is smooth and the number of
Z{P, which represent conditional expectations Zff* as-  paricles is to be kept the same for all time steps. The most

signed to the particles, can be evaluated directly during thgimple way of redistributing particles is to alter the position
diffusion substep the@[ " are not needed. Avoiding using of each particle ing space byA&fP=bw* VAt as it is

Z{P promises some other benefits. If the calculations argpecified in(59) with the sameAt as in Eq.(66). One can

based orZ;P, then their dispersion aroung* P will grow
with time. This would make the accurate evaluationZ¢f

see that the PDF of the Gaussian incremeéngsP coincides
with g; specified by (65. The new values ofZ] (t,)

by (52) more difficu.lt and would require allarger number of =Z[§*q(tz).tz] are given by the equation
particles for averaging. In the present section we demonstrate

that the direct evaluation 5}* P from the transport equations

during the diffusion substep effectively determines the best
value forgP9. The influence of mixing can be assessed in a

200 ZFP(t) gl £ 9(to) — £ P(1y) At
S0P gil £ %(t) — £ P(ty),At]

Z§ () = , (68

semistochastic manner: each discrete particle is replaced byadtained from(67). Equations(66) and (68) correspond to
diffusing cloud that expands with time. At the end of eachEq. (53),

mixing substep, the particle positions are to be regenerated in

accordance with density of superimposed clouds.

The coefficientB,,, as it is defined in(28), does not
depend oné (otherwise, we can assume thBg; remains
constant in a vicinity of a certain point of thespace. As-
suming thaB,, remains constant during the time st&pand
that the flow is homogeneous in physical sp&eecan be
treated as such for a selected cell in physical spdeeus
determine the evolution d¥;-y={F,Fy;} during the diffu-
sion substep from the initial conditions specifiedtatt; .
The substep is controlled by E@O0). This evolution is rep-
resented by the integral

F.e(é,tz)=f Fio(£.t)g1(§— & °,At)d&°, (64)
wheret,=t;+At, and the functiong;=g(A& At) repre-
sents the fundamental solution @0), which is defined by
the initial condition

9r(A§0)=05(A8),
and specified by

BlﬁlAka&)

1
(B4wAt)"r’2€Xp( 4At

B=de(B;;)"".

Note the replacement &f by & so thaté,=b; & converts
By, in Eq. (60) into a unit matrix.

Considering the discrete representationFgf in (50)
and(51) for t=t;, we should replace the integral {(64) by
the Monte Carlo sum

g1(Ag A=
(65)

_ o
ZiP(t)= 2, §PZF (), (69)
with the following interaction matrixja°:
gPd Mp
gPa==_ [J pr
g gP’ g rzl g
(70)

gP9=g¢ & P(ty) — £ 9(1,),At].

Note that the averaging effect is achieved here by advancing
the distributions in time from, to t,=t;+ At. The rate of
mixing that corresponds t¢70) is determined by the finite
difference representation,

(d?rp) CZ[EP(t) ]~ ZFP(ty)
dt | At

SR 8P () - Z ()
a At '

(71)

Practically the sums are evaluated only omgtn,, par-
ticles that make a significant contribution ¢68). The vol-
ume in & space, wherg; is essentially positive can be as-
sessed a¥ ;= (B4mAt)"2. (Considering that the integral of
the fundamental solution remains unity, we use the inverse of
the maximal value of the functiog; as the volume estima-
tion.) Here, we use the isotropic val@efor estimations. The
number of particles used for averaging is then assessed as
n,’3~V§/d2’, whered; is the average distance between par-

ticles in & space whiIed'Ir represents an estimation of the
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&-space volume per particle. The relative stochastic error imithout usingZ P, the values we found still involve a sto-
the evaluation of the convolution integral is estimated ashastic error. These values fluctuating around conditional av-
Ets~(np) "M% Hence, the number of particleg should be  erageZ*P can be also interpreted @3 P with Z} P—Z}P as
sufficiently large to keep the stochastic error small, and thislp_m_ The operatorS, which is used in(58) and corre-
requirement constrains the minimum time stap. (The  sponds to the diffusing clouds method with a mixing rate
minimum time gets smaller when larger ensembles of parspecified by(71), is given by

ticles are used in calculation#\t the same time, very large
values ofAt [although giving precise values &%-P(t,) at
t,=t;+At] would not be accurate in the evaluation of the
time derivative by F{-P(t,) — F-P(t1)]/At. The relative er- . . _
ror in the representation &f:P(t,) by the first-order scheme This equation can be interpreted as
can be estimate@~ (At/At;)?, whereAtf~d?/B is the Np
time scale of the problem ard} is the charactzeristi§ sca/l4e _A—I' ZrP= gPIzFa, (73)
of the problem.  Hence, E;~[df/(BAt)]™ t q=1

~(dy /dg)""2(Ats/At)™4 By equating the order of the er-
rors E¢~E¢s, We obtainEft~(dl/df)”r’zE;”"s. The rela-
tive error in representation of the time derivative is given byg | gcalness of MMC models
Edt~(At/Atf)~Ef1{2. These considerations result in

1(&
srP=A—t(qu gpqer—zrp). (72)

with At representing the relaxation time.

The diffusing clouds method is not the only method that
d, | e+ can be used for an evaluation of the mixing substep. Any
Eai~ Q|_f form of the operato5, that preserves the conditional expec-
) ) ) ) tations and reduces fluctuations around the conditional
For very large dimensions,>1, the relative error in the 6305 may potentially be suitable. New versions of the dif-
representation of the time derivative is proportional tofusing clouds method can be obtained by using different
(d;/ds)?, where d;/d; represents the spatial resolution. specifications ofP that are used i69) or in (72), depend-

Hence, the considered scheme is, asymptotically, at oo,
second-order accurate in space.

Sincen,~E;2~Eg* andd;~n_~™, we can writen;,
~(d¢/dy)¥EN D —(n, /ng) 88 whereng=d, ™ is the
number of particles that corresponds to the schle Thus,
the rate of increase afi, is much slower than that afi,
whenn, is large:

=1/,

!~ 8N +8)
0 )

P
The mixing time stepAt can be estimated frormF’)
~(BAt/d?)""2 s0 that

Atwl n'r) 2/nr~d_i d; 16/(8+n;)
B B '

Np

d;

Note thatAt—0 asd;—0 for anyn,=1.

ing on an interpretation of the model. The major require-
ments for the interaction matrigP? are the following:(1)
localness:gP9—0 when particlesp and g are away from
each other(2) preserving well-mixed condition& ,g°9=1

[as specified by(54)]; and (3) conservativeness of the
schemeX ,§P9=1. Requirementgl) and(2) are satisfied by
diffusing clouds exactly while requireme(8) is satisfied by

a presented version of the diffusing clouds only approxi-
mately.

Another relatively simple possibility is given by the
MMC version of the Curl’é® model: each pair of particlgs
and g that are closest to each other §nspace have their
values of Z*P and Z*9 reset to their averageZ{P
+2Z*9)/2. The particles continue their random motiondn
space and, after a certain period of time, form new pairs.
Whenever two particles get close to each othef $pace and

The number of operations required for the evaluation ofy new pair is formed, the averaging process is repeated.

Curl's model corresponds to the interaction matrix wiftf

the mixing substep can be assesseuhrar%né. In order to
achieve good performance, the exponent in the fundamentat §PP=g9P=g99=1/2 for interacting particles angP%=0
solutiongs(---) should be replaced by a similar but compu- for noninteracting couples. In spite of its simplicity, the
tationally faster function. As expected, the diffusing cloudsmMmcC-Curl model satisfies all three requirements §5F.
method becomes more numerically efficient and accurate for ~ Although Curl’'s model is simpler compared to the dif-
large dimensions),. Evaluation of averages according to fusing clouds method, the diffusing clouds model has the
Eq. (52) unavoidably involves a numerical diffusion &8  advantage of combining averaging with the effect of diffu-
space since it has to be conducted over a certain volume. kjon in the reference space, while averaging is effectively
the diffusing clouds method this numerical diffusion coin- achieved by using the fundamental soluti@®) of the dif-
cides with the rate of diffusion i space required by the fusion equation. The fundamental solution advances the dis-
MMC model. Compared to this method, any overaveragingyiptions in time, and new values @ are calculated from
would result in excessive numerical diffusion while any un- 4 values, as specified by E8). In the case of other
deraveraging would cause an excessive stochastic error in thgathods of evaluating the mixing substep, the diffusion is
evaluation ofZ". simulated by random particle motions §rspace and further
The diffusing clouds methotbr other similar methods  averaging, which, generally, must be localizectispace. In
allows for a different interpretation of its equations. Al- fact, due to the discrete numerical representation of the dis-
though, in this section, we attempted to evaluaté directly  tributions, averaging can only be performed over a cerfain
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vicinity of each particle. The characteristic size of this vicin- (otherwiseZ, can always be rescaledFirst, we form the
ity is determined by the average distance between particle$ollowing correlation matrix:
Thus, unless the number of particles is infinite, averaging N N
over a finite vicinity would create an additional numerical K/ :_i 7/P77P Z/p:ZOp_ii 70pP
diffusion in & space. Mot o T

MMC, in its generalized interpretation, is not restricted __ . - . o , "
to a particular mixing scheme. The major difference betweeﬁrh's. matrix is, obwously, symmetri; =Ky, and positive
the MMC model and conventional mixing models is relatedsem'def!r."te' Hence, with the. use of the singular value de-
to the following features of MMCI(1) particle positions in composition(svd, we can achieve that

the referencet space are traced; an@) only the particles 1 M
that are close to each other §rspace(and in the physicak = K(,)ﬁ,Jzn— > Z/PZP=M K My,
spacg are allowed to be mixed. The second condition pro- pp=i

vides the localness of the MMC mixing operators. Some of 7P = M, Z.P
the reference variables can be used to simulate diffusion of ! KoK
the fluid particles in the velocity phase spdoete thatU is ~ where no sum is taken over the bracketed indlex the
a linear function of¢ and & conditioning effectively repre- second term of the first equation, the mathil; is unitary
sents velocity conditioningbut the meaning of reference and K, are the singular values. The mapping is to be per-
variables in mapping closures should not be reduced to simfermed usingZ{'® (i.e., the firstn, values ofZ; that corre-
lating only velocity-type conditioning. The reference vari- spond to then, largest singular valuek;). The valuesz'
ables represent a sampling scalar behavior in a turbulent fielgpresent a good choice for the major subspace.
that can be used to simulate the scalar PDFs. The events that The particles are then sorted according to the valjés
are physically close to each other should have the values &fo that, for new indicegsj=q(p), we haveZ’l’ls sz
the reference variables that are also close to each other. This---<Z7". Fork=1, the values};" are assigned according
condition ensures the localness of the MMC model, which igo the equation
further refined with an increasing number of the reference
variables. £9= —1( q- 1/2) 74

The EMST mixing modéf performs mixing locally in “ Np )’
the species spade space. But by using distances measured
in z space, the EMST mixing model violates the linearity and
independence principles of scalar mixiffgin contrast,

where® ~ ! represents the inverse of the standardized Gauss-
ian cumulative distribution function,

MMC performs mixing locally in£ space, and thereby satis- D)= ¢ Giad
fies these linearity and independence principles. (&)= —w (£)de.
F. Setting the initial conditions The particles are sorted into several groups with close values

hi , , ¢ of £29 (each group represents particles that are effectively
_In this section we use some ideas of Sec. IIG and congqqitioned on a given value @£%). This algorithm ensures
sider how the initial conditions can be set for the particles

S o _ that the particle distribution in the space of the variag{iéis
We assume that the initial conditions for all species are rePiaussian with zero mean and unit dispersion
resented by the distribution of, particles, '

The procedure, which is specified in the previous para-
Z¥P(t)=2%, 1=1,...n p=1,...n,. graph, is then repeated separately for the particles of each
IR b s B group: the particles are sorted within each group according to
Here, as in the previous considerations, we either consider eir valuesZ5® and the new indiceg are calculated. The
homogeneous case or apply our consideration to a physic¥plues & are calculated according 4) for k=2, new
cell, which is sufficiently small so that spatial variations Values ofq andn,, specifying the number of particles in each
within the cell can be neglected. If the initial distribution in Of the groups. Thus, the distribution of particles in ¢
Z-space is specified by the PDF, the particles should first béPace conditioned on a given value &f is also Gaussian
distributed in accordance with this PDF. The MMC modelWith zero mean and unit dispersion. Each of the groups is
requires the specification, not only @fP, but also that of ~then split into subgroups with close valuesgf. The pro-
the reference variables valuggP(to)=£2° (k=1,...n,) cedure is then repeated for the rest of the variables
so that the distribution of the particles in the referenceés - - -.én . At each levek of the procedure, the particles
n,-dimensional space is Gaussian. In the case of multidimerare conditioned on the values &}9, . . . &, and their con-
sional spaces, this procedure of mapping the vaifsnto  ditional distribution in the space @f9is set to be Gaussian
the Gaussian reference space is not unique. The choice ofvath zero mean and unit dispersidgire., it is independent of
particular mapping should be based on physical consideithe conditioning variablgsAt each level, each group of par-
ations. In the rest of this section we suggest an algorithmiticles is redistributed into subgroups unless the number of
mapping procedure, which, in our opinion, corresponds tgarticles in the groups is too small. In this case the number of
the physical nature of the problem. particles is not sufficient to evaluate distributions with mul-
It is assumed here that the scaling of the valdgesor-  tiple conditioning and reduction of the dimension of the ref-
responds to the actual physical significance of each variablerence space tk may be reasonable. Alternativelif the
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dimension of the reference space is not to be redudhd A. Comparison of the analytical solution and DNS
group subdivision process has to be terminated, although the
sorting and assigning process continues.

It is easy to see that the joint distribution of particles in

The MMC formulation of the three-stream problem
given above has an analytical solution that is compared in
this section with the DNS of JP. The major steps of the

0q oq ; . - L
the space of;", . .. ’fnr is Gaussian, as it is required in the analytical solution are outlined below. The MMC equation is
present formulation of the MMC model. Indeed, the PDF 5

P«(&;1;tp) is Gaussian, and all of the conditional PDFs (g—zi+B(t)(§kﬁ—zi— 9°Z; ): 77
Pe(éio - énlér - bie1ito) =G(&) - .. G(&n) are at 9 I ’

Gaussian for any £k<n,. Hence, the joint PDIP«(£) is  \yherei k=1,2, and we have taken into account that the

Gaussian. We note that this procedure is based on the pregalars are conservet{=0). This can be rewritten in the
sumption that the various directions i space are not form

equivalent(which is true for many practical case£ffec-

tively, the method ranks species or directions according to 9% <7_Z|_£i<r Ei)_i&_
their level of fluctuations. This makes the initial conditions aT farg Mg drg éar§ ré dg®
for some species dependent on initial conditions for other

species. We will call this method as “mapping by preferen—Where

tial directions.” t
T=f Bdt.
0
V. THE THREE-STREAM MIXING PROBLEM IN With the use of new variables,
HOMOGENEOUS TURBULENCE
1—exp—2T)
The multidimensional mapping closure used in the 7 2 » T=reexp—=T),

MMC method allows for the evaluation of multidimensional .

we obtain

PDFs for two and more independent mixture fractions with-

out any need of ordering or preferential treatment of the vari- 9z, 1 o ( Z,\ 1 §°Z
ables. The case, which is considered in this section, corre- 5= | 5 rW + 2 _aqoz- (78
sponds to mixing of three regions in homogeneous _ _ S
turbulence. This problem requires two independent mixturel he solution of this equation is given by
fractionsY,; andY,. The initial conditions are set &0 in
. . r V3 r 2m
accordance with #so that the regions have the same prob- Z,=—V3F,| —=,0| - =F,| —=, 0+ —
- R . r il 2 r il 3 il
ability and the following: NG V7
Region 1:Y,=0, Y,=1, 3 [ o2m (79
Zo,==F,| =, 0+ —],
. ‘/j 1 2 2 r \/; ® 3
Region 2: le—?, YZ:_E’ (75
where
Region 3: Y=, Y, — 2 o r
egion 3:Y;=—, =—. _
g T2 T2 FiRe)= 3, FARID,(¢), R=7,
v= T
Although the method of mapping by preferential directions
can be used to set the initial conditions for the three-stream r v
mixing problem, the best choice seems to utilize directly the

2
14
symmetrical nature of the problem. The conditions are setin  F»(R)= 571 Tvil) R 1F1(§'V+ 1- T)
the three symmetrically equivalent regions:

2 O )=2(_1)ysin(2)coa{ )
Region 1: O<go<§77, A TV 3 ve
I'(---) is the gamma function, angd=(---) is the confluent
Region 2: Ew<<p<£77, (76) hypergeometric fun(_:tion. The details of this solution are
3 3 given in the Appendix.
4 The analytical results obtained in this section and shown
Region 3: zw<e<2m, to provide a good match to the simulated joint PDF of%P.
The valueo= o (t) denotes the variance of the scalaré
where we introduce the polar coordinatgsand ¢ in the =((27)*=((Z3)?) (note that(Z})=(Z3)=0). The initial
space of the reference variables, conditions specified by75) correspond tar3=1/2 ando,
. ~0.707, wherery=o(0). In the DNS of JP, thanitial value
§171¢SiN(@),  £2=1¢COL Q). wasoy~0.627. In Fig. 1, we follow JP and plot the contour
One can see that the sectors assigned to each of the regiquists for the joint PDF for the same values @fa(=0.8,
are equivalent for the purposes of the MMC model. 0.7, 0.6, 0.5, 0.4, and 0.2hat correspond te/ o of 0.71,
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FIG. 1. The consecutive contour plots of the joint PDF for the three-stream mixing problem predicted by the MMC model.

0.62, 0.53, 0.44, 0.35, and 0.18. Figure 2 shows severacatter points for the time momen®={0.1,0.5,}. Each
three-dimensional surface plots fefo(,=0.55, 0.5, 0.4, and point represents a “stochastic particle” with 1/900 of the

0.2 that correspond t@/o(~0.49, 0.44, 0.35, and 0.18. total probability and the density of the points is proportional
(The three-dimensional PDF plots for larger valuesrdfy  to the values of joint PDF. The left column of Fig.

through rapid transformations and becomes almost flat. Thig|q,ds. The right column of Fig[®), (d), ()] represents the
corresponds well to the effects observed by JP. Another fe"’\/'alues €)a=Z[(& (T),T], analytically evaluated at the

tpre, V\.'h'Ch can be 'o'bserved n J.P and the presept Cal?”'@iochastic locationg* (T) using Eqgs.(79). The correlation
tions, Is thqt the mixing 'process |s.|n|t|ally more' |nten5|.ve oefficient defined b)CzE<(Z*)A(Z*)N>/(UAUN) exceeds
along the sides of the triangle. As is expected, in the fina 99 for all plots in Ei 3[Not|e that(IZ*>=0 i used in the
stages of the evolution the PDF is close to Gaussian in both}’ finition opr i gﬁd represenlt the standard devia
z, Opa ON -

JP and the present calculations. We also note that due to tfi;

analytical form of the solution, the three peaks are sharpeions Of Zi')a and &)y so thatCz=1 corresponds to the

than in the DNS of JP. case of perfect agreemerZ{()a=(Z")y).] We should also
emphasize the stochastic nature of the presented results: the

B. Comparison of numerical evaluation and the distribution of points exhibits certain fluctuations of density.

analytical solution These fluctuations remain small if a large number of particles

The problem specified by initial conditiorgs) and(76) is used in the calculations but a larger-than-average fluctua-

has also been solved numerically, using the discrete stochalio" iS always possible. For example, a “bold spot” that can
tic representation of MMC. The mixing step was evaluated®® noticed near the top comer of the triangle in Figs) &nd
by the diffusing clouds method. The numerical solution 3(d) represents a relatively large fluctuation. It is interesting
should simulate not only the shape of the PDF but also théhat the spot is well replicated in both FigscBand 3d).
dissipation rate. Thus, for the result of this section, we The relative dispersion of the scalasgoy, is plotted
specify the timeT, which coincides with the physical tinte ~ versus time in Fig. 4. The solid line corresponds to the ana-
whenB=1. The stochastic valueg§ and ¢ have normal lytical solution, the dashed line shows the expected decay
distributions with unit dispersions and are not shown here. rate for largeT, while the symbols correspond to calcula-
The values ofZ7 andZ3 are shown in Fig. 3 by 900 tions with 900, 90, and 9 particles. Distances between sym-
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a)

FIG. 2. The consecutive three-dimensional surface plots of the joint PDF for the three-stream mixing problem predicted by the MMC model.

FIG. 3. The scatter plots of the values
Z% andZ} calculated numerically us-
ing diffusing clouds with 900 particles
(left column and obtained analytically
(right column. The results are shown
for T=0.1(a), (b); T=0.5(c), (d); and
T=1 (e), (f).

-0.5
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FIG. 4. The relative dispersion/o, versus timeT: analytical evaluation—), numericaln,=900 (--), numericaln,=90 (+++), numericaln,
=9 (00O0), and numericah,=9 (OO0O).

bols correspond to the selected time steps. Two cases aparison with the two-variable joint PDF obtained in DNS by

shown forn,=9 to demonstrate stochastic variations of theJuneja and Pop@for the three-stream mixing problem. The

solution. As can be expected, the precision of the numericadgreement with DNS results is good.

scheme improves with increasing the number of partigjes We also give a stochastic equivalent formulation of the
MMC model that is expected to be more computationally
efficient for multidimensional spaces. The resulting method

VI. CONCLUSIONS is similar to a particle implementation of PDF methods, but

with the particles having additional properties, namely refer-

In this work we have introduced a new approach to tur'ence variableg; . The treatment of the mixing process is
bulent reactive flows based on multiple mapping condition- k- gp

. : . . based on the method of diffusing clou@iatroduced in the
ing (MMC). In essence, this formulation brings together the apej that forces the numerical gchiﬂ‘usicc)jn to match the dif-
CMC and PDF approaches. From the CMC perspective, thg ™ .

. .. . fusion rate required by the model. For the test problem of
present approach represents a generalization to condltlomqﬁree_stream ?nixing ){[he numerical method Ofp diffusing
on n, variables, with a consistent determination of the joint ’

PDF and conditional dissipation of these variables. From th%(;u:;ﬁée;%nge” compared to the analytical solution of

PDF perspective, the approach embodies the idea that the Future directions in the development within the MMC

compositions are confined to ap-dimensional manifold in framework include(a) accounting for the intermittency of
composition space, and it then providesplicitly) a mixing ST : . y
model, which is the extension of the mapping closure toscala_r d|SS|pat|0n(,b) coupling the method W'th th_e PDF of
multiple scalars and inhomogeneous flows. In contrast tgelgmty for mhomogenepus flows, arid) application to a
previously proposed mixing model$2°-34 the present variety of turbulent reactive flows.

model reflects the physics of mixing in all of the following

respects: the mixing is local in composition sp&té: the

boundedness of scaldris preserved; the model satisfies the ACKNOWLEDGMENTS
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* dx
FV(R)=vJ’ exr(—)\z)J,,(R)\)T=f,,(R\/;,r)_ (A9)
0

APPENDIX: ANALYTICAL SOLUTION FOR THE

THREE-STREAM MIXING PROBLEM An evaluation of the integral ifA9) [or that in(A4)] indi-

cates thaf
We consider the equation v
af, 1o of, . 1 o°f, AL v F(E) v R2
{97__ ror r ar r2 (9()021 ( ) FV(R):WWR 1F1(§1V+11_ Z)
for the reference functiori,=f,(r,7,¢), and demonstrate .
that the series o F( ) . V+1 +1R2 R2
- BNV PRy ¥ b Syl
f(nme)= S £ 0, (0), (A2) B | |
v=1 wherel'(--+) is the gamma function,F (- ) is the conflu-
where ent hypergeometric function. The last form of the integral is
(—1)” somewhat larger but it is preferable for numerical evaluation
_ T .
D, (p)=2 sin(—)cos(wp), (A3) of the expression. N - o
TV 3 The last step in obtaining the analytical solution is to

. ™ express the values &; and Z, in terms of the function
fy(r'T):,,f exp(— A J,(r\) —, (A4) F.(R,¢). It is easy to see thal,; and Z, defined by(79)
0 A satisfy the initial conditions set if¥5). [Note that the func-

andJ, is the Bessel function, represents the solution of Eqlion Fr with a constant phase shift still satisfies £47).]
(A1) with the following initial conditions:

—-1/3, 0<e<27/3 Ip. A. Libby and F. A. Williams,Turbulent Reactive Flow$Academic,
London, 1994.
fo(r.0p)=42/3, 2m3<e<4m/3 ;. (A5) 2S. B. Pope, “Computations of turbulent combustion: Progress and chal-
—-1/3, 27wl3<p<2m lenges,” Twenty-third Symposium (International) on Combustidie
Combustion Institute, Pittsburgh, 199¢@. 591.
Indeed, the substitution ({AZ) into (A]_) results in 3N. Peters, Turbulent CombustionCambridge University Press, Cam-
bridge, 2000.
o7f,, 190 &fv v? 4S. B. Pope, “Pdf methods for turbulent reactive flows,” Prog. Energy
T o Tzt (AB) Combust. Scill, 119(1985.
5C. Dopazo, “Recent developments in Pdf methods, Timbulent Reacting
; it it ; ; ; ; Flows edited by P. A. Libby and F. A. WiliamgAcademic, London,
while substituting(A4) in (A6), yields the identity 1994, Chap. 7, pp. 375-474,
‘92‘]1/ 14, V2 5U. A. Maas and S. B. Pope, “Simplifying chemical kinetics: Intrinsic
—+ = + ( N2— _Z)Jv 0, low-dimensional manifolds in composition space,” Combust. Fl888e
arc - roor r 239(1992.

. . . . ... .. 'C.J.Sung, C. K. Law, and J.-Y. Chen, “An augmented reduced mecha-
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