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Matching the conditional variance as a criterion for selecting parameters
in the simplest multiple mapping conditioning models

A. Y. Klimenkoa)

Mechanical Engineering Division, The University of Queensland, Queensland 4072, Australia

(Received 28 August 2003; accepted 5 August 2004; published online 11 November 2004)

The simplest model within the multiple mapping conditioning(MMC) approach, that involves a
single mixture-fraction-like reference variable, is considered in the Brief Communication. An
important parameter—the minor dissipation time—remains unknown in the probabilistic version of
the model. The present work demonstrates by the specially developed asymptotic analysis that the
simplest MMC possesses an ability(although somewhat limited) to match the physical intensity of
the conditional fluctuations and this match represents the criterion for proper selection of the minor
dissipation time. ©2004 American Institute of Physics. [DOI: 10.1063/1.1803742]

The multiple mapping conditioning(MMC) approach1 to
turbulent nonpremixed combustion is characterized by divid-
ing all fluctuations of the reactive species(i.e., the composi-
tion space accessible by the species2) into major and minor.
The major fluctuations are treated with assistance of the ref-
erence variables while the minor fluctuations are either ne-
glected(conditional MMC) or treated by conventional mix-
ing models(probabilistic MMC).1,3 In its treatment of major
fluctuations, the MMC approach is compliant with all mixing
criteria (such as linearity, independence, localness, bound-
ness, etc.1,3 Effectively, MMC unites the conditional methods
[conditional moment closure4 (CMC)] with the probability
distribution function(PDF) methods[mapping closure, inter-
actions by exchange with the mean(IEM) or conditional
mean(IECM), Curl’s and other models reviewed in Refs. 5
and 6]. The MMC approach can be formulated by using the
following stochastic Ito equations:

dx * = Usj * , x * , tddt, s1d

djk
* = Ak

+sj * , x * , tddt + bklsj * , x * , tddwl
* , s2d

dZI
* = sWI

* + SI
*ddt, s3d

where

SI
* =

Z̄I
* − ZI

*

tS
, Z̄Isj,x,td ; kZI

* uj,xl. s4d

x* traces motions in the physical space,Z * = hZ1
* , . . . ,Zns

* j
models the reactive species,j* = hj1

* , . . . ,jnr

* j represents the
stochastic reference variables, andwl

* is the standard vector
Wiener process. The asterisk superscript is used to outline
the stochastic nature of the variables while the abbreviated

form is used for conditional averages. For example,Z̄I

=kZI
* uj ,xl denoteskZI

* uj* = j ,x* = xl and Z̄I
* ; Z̄Isj* , x ,td.

The small indicesi, j , k, l =1, . . . ,nr run over all reference
variables and capital indicesI, J=1, . . . ,ns run over all react-
ing species whilenr is selected so thatnr øns.

In conditional MMC, Z̄I
* is interpreted as a model for

reactive scalars while, in probabilistic MMC,ZI
* is treated as

the reactive scalar value. The role of the operatorSI
* =SfZI

*g,
which can be called the “minor dissipation operator,” is to

keep ZI
* close to Z̄I

* and the probabilistic and conditional
versions of MMC are reasonably similar but not identical.
Determining a proper value of the “minor dissipation time”
tS (i.e., the characteristic dissipation time of the operatorS)
is the focus of the present work. In conditional MMC, the

deviations ofZ* from Z̄* are considered to represent the
numerical noise and the operatorSsuggested in the diffusing

clouds method1 is optimized for determiningZ̄. In probabi-
listic MMC, the minor dissipation timetS must be selected to
match the physical properties of turbulent mixing. Although
MMC can be combined with different forms of the operator
S representing conventional mixing models(for example,
Curl’s model, diffusing clouds, etc.), S is always required to
satisfy kSI

* uj ,xl=0 and some other restrictions.1 In most of
the present work we use a simple linear relaxation(4) which
is similar to the IEM(or IECM) model. The valueWI

* rep-
resents the reactive source term which is assumed to be a
function of the reactive scalars so thatWI

* =WIsZ * d in proba-

bilistic MMC and WI
* =WIsZ̄* d in conditional MMC. In this

Brief Communication, we, generally, follow the former defi-

nition but introduceW̄I ;kWI
* uj ,xl.

The MMC model, formulated by the stochastic Ito equa-
tions (1)–(3) can be equivalently specified by the Fokker–
Planck-type PDF equations.1 All these equations have similar
terms and, in order to avoid repetitions, we introduce the

special drift/diffusion operatorsD̂+ and D̂ and write the
MMC equations in the form

D̂+sU
ẋ̇̇̇

,A +

j̇̇̇̇

,B
j̇̇̇̇2

,W+
ż̇̇̇

SdPsZ,j,x;td = 0, s5d

]r̄

]t
+ = · sur̄d = 0, s6d

a)Electronic mail: klimenko@mech.uq.edu.au

PHYSICS OF FLUIDS VOLUME 16, NUMBER 12 DECEMBER 2004

1070-6631/2004/16(12)/4754/4/$22.00 © 2004 American Institute of Physics4754

Downloaded 02 Nov 2012 to 130.102.158.22. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.1803742


D̂+sU
ẋ̇̇̇

,A
j̇̇̇̇

,− B
j̇̇̇̇2

dr̄Pj = 0, s7d

D̂+suZ̄
ẋ̇̇̇

,W
Ż̇̇̇

,− N
Ż̇̇̇2

dr̄PZ = 0, s8d

D̂+sU
ẋ̇̇̇

,W

Z̄
˙̇˙̇

,− N̄

Z̄
˙̇˙̇

2

dr̄PZ̄ = 0, s9d

D̂sU
ẋ̇̇̇

,A
j̇̇̇̇

,B
j̇̇̇̇2

dZ̄I = W̄I , s10d

where

kSI
* uZ,xlPZ =

]NIJPZ

]ZJ
, N̄IJ ; kNIJ

+ sj * , x * , tduZ,xl, s11d

NIJ
+ = Bkl

]Z̄I

]jk

]Z̄J

]jl
, Ak

+ ; Ak +
2

Pj

]BklPj

]jl
, s12d

2Bkl=bkibli , Ps. . . ;td is the joint PDF of its arguments at
given t; the average density is modeled byr̄;mPsx ; td with
m denoting the total mass in the domain under consideration;
PZsZ ;x ,td; PsZ ,x ; td /Psx ; td andPj; Psj ,x ; td /Psx ; td are

conditional PDFs;PZ̄=PZ̄sZ̄ ;x ,td is the PDF of the stochas-

tic values Z̄ * = Z̄sj* , x ,td, which can be evaluated asPZ̄

=Pj dets]Z̄ /]jd−1; u;kU* uxl, uZ;kU* uZ ,xl, and uZ̄

;kU* uZ̄ ,xl are the conditional velocities andU*

;Usj* , x* , td. The arguments of the operatorsD̂+ and D̂
specify drift and diffusion coefficients respectively, in the
spaces of the variables that are shown under the dotted line
and applied to the functions that follow the operators. If a
space indicator under the line is squared, then the value
above the line represents a diffusion matrix while the other

values represent drift vectors. OperatorD̂+ is the conservative

operator whileD̂ is the similar convective operator. For ex-
ample, Eqs.(9) and (10) mean that

]r̄PZ̄

]t
+ = · sUr̄PZ̄d +

]W̄Ir̄PZ̄

]Z̄I

+
]2N̄IJr̄PZ̄

]Z̄I]Z̄J

= 0,

]Z̄I

]t
+ U · = Z̄I + Ak

]Z̄I

]jk
− Bkl

]2Z̄I

]jk]jl
= W̄I .

Note that the negative sign ofN̄ in (9) corresponds to the
inverse diffusion term in the equation. Equation(5) is the
Fokker–Planck equation for(1)–(3); derivations of the other
MMC equations are given in Ref. 1.

In MMC, the closure is achieved by assuming that the
reference PDF Pj is known (typically Gaussian1 or
near-Gaussian3). The specification of the coefficientsU, A,
andB that complies with both the PDFPj and the average
properties of turbulent scalar transport is given in Ref. 1. The

minor dissipation timetS, which does not affectZ̄* in con-
ditional MMC but does affectZ* in probabilistic MMC, was
not specified in Ref. 1 and this specification requires special
analysis considered in the present Brief Communication. In

order to conduct this analysis, we first consider replacement
of the reference variablesj* by a new reference variables

j̃* = j̃sj* , x ,td, the stochastic valuesj̃* still represent a
Markov process which satisfies all of the MMC equations

given above but with the new driftÃi and diffusionB̃ij coef-
ficients,

Ãi = D̂sU
ẋ̇̇̇

,A
j̇̇̇̇

,B
j̇̇̇̇2

dj̃i, B̃ij = Bkl
]j̃i

]jk

]j̃ j

]jl
. s13d

Note that these equations simply represent the Ito differen-
tiation rule for the stochastic process which is the
time-reverse7 of (1) and (2) and is equivalently specified by

Eq. (7). One can note that, if the subset of the variablesZ̄
which we denote asZ̄ hij (the major subset) represents a non-

singular replacement of the variablesj̃i
* =Z̄isj* , x ,td then

Ãi =W̄i and B̃ij =N̄ij . By itself, the mapping ofZI into Z̄i = j̃i

does not represent a closure since the PDF ofZ̄i is unknown,
but it is most convenient for the purposes of comparing the
probabilistic and conditional versions of MMC pursued here.

The most simple form of MMC, which is considered in
the present work, corresponds to a two-stream mixing prob-
lem with a single mixture fraction. The reference space is
represented by a single variablej. In the rest of the Brief
Communication, we operate with two scalarsZ and Y se-
lected from the complete scalar setZ1,Z2, . . .. ThescalarZ is
presumed to be the mixture fraction with the source term
WZ=0 and the minor dissipation operatorSZ while Y is any
of the reactive scalars with the source termWY and the minor

dissipation operatorSY. In conditional MMC, Ȳ=kY* uj ,xl
can be expressed as a function ofZ̄=kZ* uj ,xl while, in
probabilistic MMC the stochastic valuesZ* and Y* would

have some dispersion aroundȲ=ȲsZ̄,x ,td. We need to deter-
mine the value of the dispersion aroundQ=kY* uZ,xl (the
conditional variance) and compare it with its expected physi-
cal value. The asymptotic analysis presented below appears
to be more simple with the following formal replacement of

variables: j is replaced by a new reference variable,j̃

=Z̄sj ,x ,td. The replacement does not alter the closure but
transforms the MMC equations into a new equivalent form
that appears to be more convenient for analysis of the joint
characteristics of the scalarsY and Z. With the new nota-
tions, Eqs.(5) and (10) take the form

D̂+sU
ẋ̇̇̇

,Ā+

Z̄
˙̇˙̇

,N̄

Z̄
˙̇˙̇

2

,SZ
Ż̇̇̇

,W+
Ẏ̇̇̇

SYdPsY,Z,Z̄,x;td = 0, s14d

D̂sU
ẋ̇̇̇

,N
Z̄2˙̇˙̇

dȲ = W̄. s15d

Here and in the rest of the Brief CommunicationZ̄ denotes

the new reference variablej̃ and at the same timeZ̄

=kZ* uj ,xl due to the specific selection ofj̃. Equation(15)
demonstrates that the simplest form of the conditional MMC
is equivalent to the first order CMC without the conditional
variance effects, although MMC involves a consistent mix-
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ture fraction PDF method as a part of the model. Thus, the
minor dissipation timetS cannot be determined on the basis
of the average dissipation properties or the first order condi-
tional characteristics—these conditions are already satisfied.1

In order to determinetS, we have to consider the conditional
variance and investigate whether the properties not only of
Q=kY* uZ,xl but alsoK=ksY* d2uZ,xl−Q2 modeled in the
probabilistic MMC. It should be noted that, since both con-
ditional and probabilistic MMC fully comply with the joint
PDF equations, they must comply with all their
consequences—the unclosed first and second order CMC
equations.4,8 This formal compliance, however, does not
guarantee agreement with the actual CMC approach since
the underlying MMC process is, obviously, not identical to
physical turbulent mixing. Matching the conditional velocity/
scalar correlation terms is achieved provideduZ is a good
model for the physical velocity conditioned on all scalars but
the situation with the other generation and dissipation terms
is much less clear and needs a special asymptotic analysis
that establishes a link betweenK and tS and is presented
below.

At the first step, we derive equations for the moments of

PsY,Z,Z̄,x ; td represented byP* =PsZ,Z̄,x ; td /Psx ; td, Q*

=kY* uZ,Z̄,xl, andK* =ksY* d2uZ,Z̄,xl−Q*
2: Eq. (14) is mul-

tiplied by 1,Y, andY2 and the results are integrated over all
Y

D̂+sU
ẋ̇̇̇

,Ã +

Z̄
˙̇˙̇

,N̄

Z̄
˙̇˙̇

2

,SZ
Ż̇̇̇

dP* r̄ = 0, s16d

D̂sU
ẋ̇̇̇

,A*

Z̄
˙̇˙̇

,N̄

Z̄
˙̇˙̇

2

,SZ
Ż̇̇̇

dQ* =
Ȳ − Q*

tS
+ W* , s17d

D̂sU
ẋ̇̇̇

,A*

Z̄
˙̇˙̇

,N̄

Z̄
˙̇˙̇

2

,SZ
Ż̇̇̇

dK* = −
2K*

tS
+ 2N̄S ]Q*

]Z̄
D2

+ V* , s18d

where

A* = Ã+ −
2

P*

]N̄P*

]Z̄
, Ã+ ;

2

PZ̄

]ÑPZ̄

]Z̄
,

V* ;kW* Ý* uZ,Z̄,xl, W* =kW* uZ,Z̄,xl, andÝ=Y−Q* .
We use the linear relaxation(4) for S and introduce the

small parameter«;stS/tdd1/2 and the characteristic variable

z=sZ−Z̄d /«, wheretd is the characteristic physical dissipa-
tion time of the mixture fractionZ. Equations(16)–(18) take
the form

D̂+1U
ẋ̇̇̇

,
Az

+

«2

ż̇̇̇

,
N̄

«2

ż̇̇̇2

,
− z

«td
Z
˙̇˙̇

1/22P* r̄ = 0, s19d

D̂1U
ẋ̇̇̇

,
Az

«2

ż̇̇̇

,
N̄

«2

ż̇̇̇2

,
− z

«td
Z
˙̇˙̇

1/22Q* =
Ȳ − Q*

«2td
+ W* , s20d

D̂1U
ẋ̇̇̇

,
Az

«2

ż̇̇̇

,
N̄

«2

ż̇̇̇2

,
− z

«td
Z
˙̇˙̇

1/22K* = −
2K*

«2td
+ 2N̄S ]Q*

]Z̄
D2

+ V* ,

s21d

whereAz
+ ; Ã+«−z/td andAz;A*«−z/td. The coefficientsN̄

andU depend onZ̄=Z−«z and thus, to the leading order, are
the functions ofZ but not z while the leading orders ofAz

+

=−sz/tdd+¯ andAz=−sz/tdd+¯ depend onz. The leading
order solution of(19) is given by the Gaussian distribution

P0 = Gsz,0,tdN̄d,

Gsz,z̄,s2d ;
1

s2ps2d1/2expS−
sz − z̄d2

2s2 D . s22d

Note thatP0 effectively approximates the conditional PDF

PZuZ̄=PsZu Z̄,x ; td. The PDF P* can be represented byP*

=P0PZ or by P* =P0PZ̄ (both representations are the same to
the leading order). The value ofQ* and its integrals are rep-
resented by the expansions

Q* = Q0sZd + «Q1sZdz+ «2Q2sZd
z2

2
+ ¯ , s23d

ȲsZ̄d =E Q*PZuZdZ= Q0sZ̄d + «2tdN̄Q02sZ̄d, s24d

ȲsZ − «zd = Q0sZd − «Q08sZdz+ «2Q09sZd
z2

2

+ «2tdN̄Q02sZd, s25d

where

Q02sZ̄d ;
Q09sZ̄d + 2Q18sZ̄d + Q2sZ̄d

2

and dependence onx and t is implied in these equations.
Substitution of the equations into(20) results inQ1=0, Q2

=Q09 /3, and

]Q0

]t
+ U · = Q0 − N̄Q09 = W* . s26d

The “prime” and “double-prime” superscripts denote the first
and second derivatives. The leading order term of the proba-
bilistic MMC is consistent with the first order CMC equation
(note that this consistency does not determinetS). Equation
(21) indicates that

K* = «4tdN̄ + z2

2
tdN̄Q2

2,

K = kK*lZ̄ + kQ*
2lZ̄ − kQ*l

Z̄

2
=

tS
2

ct

N̄2S ]2Q

]Z2D2

, s27d

wherek·lZ̄ denotes averaging overZ̄ by usingP0 andct=6. It
should be noted that the value of the constantct depends on
the type the operatorS used in calculations.
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The consistency of the model and the fast chemistry
limit 9 is now considered. Assuming that,Y is close to its

chemical equilibrium, Y=YesZd, we put PsY,Z,Z̄,x ; td
=dfYesZd−YgPZPsx ; td in (14)

Z̄ − Z

ts
Ye8 =

Ȳ − Ye

ts
+ W, − x

]2Ye

]Z2 = W, s28d

wherex;sN̄+z2/tdd /2 is a model for the instantaneous sca-

lar dissipation in(28) and the conditional meanȲ is evalu-
ated by formally puttingQ0sZd=YesZd and Q1=Q2=0 in

(23)–(25). Substitution of«z=Z−Z̄ and the expansion forȲ
given by(25) into the first equation in(28) yields the second

equation. As expected, the average ofx over Z̄ gives N̄,
although distribution ofz in x is Gaussian but not log-
normal. If W=WsZ,Yd in (28) then this equation can be in-
terpreted as a stationary flamelet equation10 but, in its speci-
fication of the small-scale properties, the probabilistic model
is not fully flamelet consistent: as soon as the reaction zone
becomes thinner than the stochastic dispersionsz in Z space

[which is specified bysz
2=tSN̄ in (22)], Eqs.(23)–(25) and

(28) are no applicable.
The modeled valueK is to be compared with the corre-

sponding value predicted by the CMC variance equation and
DNS.4,8,11,12In the CMC variance equation, the major homo-
geneous generation term, which is induced by the fluctua-
tions of scalar dissipation, can be approximated by

2tNN̄2sQ9d2 while the dissipation term can be assessed as
2K /tK. While, with a single parametertS, simultaneous
matching of the dissipation and the generation terms is not
guaranteed, we, nevertheless, can match the required level of
conditional fluctuationsK. By comparing the steady-state

valueK=tKtNN̄2sQ9d2 with (27) we conclude

tS= scttKtNd1/2. s29d

According to Ref. 11,tK is nearly four times smaller than the
conventional dissipation time scaletd andtN is significantly
less than the Kolmogorov time scale. Thus, indeed, as it has
been assumed in the present analysis,tS should be selected
small compared totd.

The first moment conditional properties of turbulence
(and, consequently, the unconditional averages and dissipa-

tion) are well matched by the MMC models and this match
is, generally, does not form a criterion for selecting the minor
dissipation timetS—one of the key MMC parameters. The
main conclusion of the asymptotic analysis developed in the
present work for the simplest version of the probabilistic
MMC model with a single mixture fraction and a single ref-
erence variable is thattS should be determined by matching
the level of conditional variance(i.e., fluctuations with re-
spect to the averages of scalars, conditioned on a fixed value
of the mixture fraction). The MMC model demonstrates a
notable degree similarity with the expected values of the
terms responsible for the generation of the conditional vari-
ances in turbulence4,12 although the simulation of fluctua-
tions of the scalar dissipation in the investigated simple ver-
sion of MMC differs from the realistic characteristics of
instantaneous dissipation. The obtained asymptotic equation
for tS may need adjustments of its constant when different
variations of the minor dissipation operator are used in the
model.
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