,A| [P Fiuids

Matchlng the conditional variance as a crlterlon for selectlng parameters in
the simplest multiple mapping conditioning models
A. Y. Klimenko

Citation: Phys. Fluids 16, 4754 (2004); doi: 10.1063/1.1803742

View online: http://dx.doi.org/10.1063/1.1803742

View Table of Contents: http://pof.aip.org/resource/1/PHFLE6/v16/i12
Published by the American Institute of Physics.

Related Articles

From large-scale to small-scale dynamos in a spherical shell
Phys. Fluids 24, 107103 (2012)

Numerical simulation of nonlinear acoustic streaming in a resonator using gas-kinetic scheme
J. Appl. Phys. 112, 083501 (2012)

Analysis of Reynolds number scaling for viscous vortex reconnection
Phys. Fluids 24, 105102 (2012)

Hydrodynamics coalescence collision of three liquid drops in 3D with smoothed particle hydrodynamics
AIP Advances 2, 042106 (2012)

A new approach for the design of hypersonic scramjet inlets
Phys. Fluids 24, 086103 (2012)

Additional information on Phys. Fluids

Journal Homepage: http://pof.aip.org/

Journal Information: http://pof.aip.org/about/about_the_journal
Top downloads: http://pof.aip.org/features/most_downloaded
Information for Authors: http://pof.aip.org/authors

ADVERTISEMENT

Running in Circles Looking
for the Best Science Job?

Search hundreds of exciting [oTreo
new jobs each month! ;

http://careers.physicstoday.org/jobs [=]
physicstoday JOBS

Downloaded 02 Nov 2012 to 130.102.158.22. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions


http://pof.aip.org/?ver=pdfcov
http://careers.physicstoday.org/post.cfm?ver=pdfcov
http://pof.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=A. Y. Klimenko&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pof.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.1803742?ver=pdfcov
http://pof.aip.org/resource/1/PHFLE6/v16/i12?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4757661?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4759345?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4757658?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4757966?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4748130?ver=pdfcov
http://pof.aip.org/?ver=pdfcov
http://pof.aip.org/about/about_the_journal?ver=pdfcov
http://pof.aip.org/features/most_downloaded?ver=pdfcov
http://pof.aip.org/authors?ver=pdfcov

HTML AESTRACT * LINKEES

PHYSICS OF FLUIDS VOLUME 16, NUMBER 12 DECEMBER 2004

Matching the conditional variance as a criterion for selecting parameters
in the simplest multiple mapping conditioning models
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The simplest model within the multiple mapping conditionidMC) approach, that involves a
single mixture-fraction-like reference variable, is considered in the Brief Communication. An
important parameter—the minor dissipation time—remains unknown in the probabilistic version of
the model. The present work demonstrates by the specially developed asymptotic analysis that the
simplest MMC possesses an abiliglithough somewhat limitgdo match the physical intensity of

the conditional fluctuations and this match represents the criterion for proper selection of the minor
dissipation time. €004 American Institute of PhysidDOIl: 10.1063/1.1803742

The multiple mapping conditioningMC) approacﬁto_ _ In conditional MMC, Z, is interpreted as a model for
turbulent nonpremixed combustion is characterized by dividreactive scalars while, in probabilistic MM, is treated as
ing all fluctuations of the reactive speci@e., the composi-  the reactive scalar value. The role of the oper&erZ,],

tion space accessible by the spebjésto major and minor.  which can be called the “minor dissipation operator,” is to

The major fluctuations are treated with assistance of the reﬁieep 7" close toZ and the probabilistic and conditional
erence variables while the minor fluctuations are either ne; ! !

" : "~ ""~versions of MMC are reasonably similar but not identical.
glected(conditional MMG or treated by conventional miX-  petermining a proper value of the “minor dissipation time”
ing models(probabilistic MMO.™~ In its treatment of major

! . . ) 7% 715 (i.e., the characteristic dissipation time of the oper&por
fluctuations, the MMC approach is compliant with all mixing is the focus of the present work. In conditional MMC, the
criteria (such as linearity, independence, localness, bound- =

L N . .
ness, eté: Effectively, MMC unites the conditional methods deV|at|_o ns of-Z from Z* are considered tq repre_sent_ the
[conditional moment closufeCMC)] with the probability numerical noise and the opera®suggested in the diffusing
distribution function(PDF) methodsmapping closure, inter- ¢louds methotlis optimized for determining’. In probabi-
actions by exchange with the me&EM) or conditional listic MMC, the minor dissipation times must be selected to
mean(IECM), Curl’'s and other models reviewed in Refs. 5 match the physical properties of turbulent mixing. Although
and §. The MMC approach can be formulated by using theMMC can be combined with different forms of the operator

following stochastic Ito equations: S representing_ con_ventional mixing_ mode(for exa_mple,
Curl's model, diffusing clouds, et;.Sis always required to
dx* = U(&*,x*,tdt, (1) satisfy(S'|&,x)=0 and some other restrictiohgn most of
the present work we use a simple linear relaxat®rwhich
dé = AE*  x*  Ddt+by(£%, x*, Hdw, (2) s similar to the IEM(or IECM) model. The valuén] rep-
resents the reactive source term which is assumed to be a
dz = (W +9)dt, (3)  function of the reactive scalars so thaf=W,(Z*) in proba-
bilistic MMC andV\ﬁ:V\A(Z*) in conditional MMC. In this
where Brief Communication, we, generally, follow the former defi-
. Z-7Z = . nition but introducew, = (W, | €,x).
S = T, Z/(£x,1) =(Z/|€x). (4) The MMC model, formulated by the stochastic Ito equa-

s tions (1)«3) can be equivalently specified by the Fokker—

X* traces motions in the physical spa :‘={Z*l, ,Z:,} Planck-type PDF equatior]lst-\ll these equations have similar
models the reactive speci@’;:{gz, ,g;} represents ?he terms and, in order to avoid rgpetition§, we introduce the
stochastic reference variables, am’ﬁdis the standard vector special drift/diffusion operator®® and D and write the
Wiener process. The asterisk superscript is used to outlin®IMC equations in the form

the stochastic nature of the variables while the abbreviated

form is used for conditional averages. For exampe, .

=(Z'|£,x) denotes(Z |£*= £,x*=x) and Z, =Z,(£*, x,1). D*(U,A",B,W+ SP(Z,£x;t) =0, 5

- . - . X 2 z
The small indices, j, k, I=1,... n, run over all reference £
variables and capital indicésJ=1, ... nsrun over all react-
ing species while, is selected so that, <n,. o
—+V -(up)=0, (6)
¥E|ectronic mail: klimenko@mech.uq.edu.au ot P
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D(U,A,-B)pP,;=0, (7)
X @
D*(uz,W,-N)pP,=0, (8)
X 7z 72
D’(U,W,-N)pP7=0, 9)
7
D(U,A,B)Z,=W,, (10)
X gg
where
. N,P, — )
(S]z,x)P,= 0; Z Ny =(N,(£*,x*,D|Z,%), (11)
-J
97, 92, 2 B P
NIJ = Bk|_|_J1 A(I,( = + _ﬁa (12)
dé 9§

Pe 9§
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order to conduct this analysis, we first consider replacement
of the reference variable§* by a new reference variables
&* = &(&*,x,1), the stochastic valueg* still represent a
Markov process which satisfies all of the MMC equations
given above but with the new drif; and diffusionB;; coef-
ficients,

AI D(%(Jy'iang)gn B|] klé,gké,gl- (13)

Note that these equations simply represent the Ito differen-
tiation rule for the stochastic process which is the
time-reversé of (1) and(2) and is equivalently specified by
Eq. (7). One can note that, if the subset of the variatiles
which we denote ag{i} (the major subsgtrepresents a non-
singular replacement of the variablzé-é:Z(g*,x,t) then
A:V_Vi andEij:ﬁij. By itself, the mapping of, into Z:Zfi
does not represent a closure since the PDE & unknown,

but it is most convenient for the purposes of comparing the

2By =bgby;, P(...;t) is the joint PDF of its arguments at probabilistic and conditional versions of MMC pursued here.

givent; the average density is modeled py mP(x;t) with

The most simple form of MMC, which is considered in

m denoting the total mass in the domain under consideratiorthe present work, corresponds to a two-stream mixing prob-

Pz(Z;x,)=P(Z,x;1)/P(x;t) and P,=P(&,x;t)/P(x;t) are

conditional PDFsP,=P7(Z;x,1) is the PDF of the stochas-

tic valuesZ*=2Z(&*,x,t), which can be evaluated &3,
:Pgdel(azmg)‘l; u=(U*|x), uy,=(U*|Z,x), and uz
E<U*|Z_,x> are the conditional velocities andJ*
=U(&*,x*,t). The arguments of the operatolfﬁ and D

lem with a single mixture fraction. The reference space is
represented by a single variabde In the rest of the Brief
Communication, we operate with two scaléZsand Y se-
lected from the complete scalar gt Z,,.... ThescalarZ is
presumed to be the mixture fraction with the source term
W,=0 and the minor dissipation operat8f while Y is any

of the reactive scalars with the source téifp and the minor

specify drift and diffusion coefficients respectively, in the dissipation operatoB,. In conditional MMC,?:<Y*|§,X>

spaces of the variables that are shown under the dotted ling
and applied to the functions that follow the operators. If a
space indicator under the line is squared, then the valu

can be expressed as a function 2f(Z* |£,x) while, in
Brobabilistic MMC the stochastic value® and Y* would

above the line represents a diffusion matrix while the othef@ve some dispersion arouliétY(Z,x,t). We need to deter-

values represent drift vectors. Operdidris the conservative

operator whileD is the similar convective operator. For ex-

ample, Eqs(9) and(10) mean that

JpP7 MpP; N ypPy

E+V-(UF|=>§)+ fz+ _”p_zzo,
a 9z, 02,02,

Jz, — p -

_+U'VZ|+Ak_—Bk| =VV|.

at N 9EIE

Note that the negative sign o in (9) corresponds to the

inverse diffusion term in the equation. Equati) is the

Fokker—Planck equation faf)—(3); derivations of the other

MMC equations are given in Ref. 1.

In MMC, the closure is achieved by assuming that the

reference  PDF P, is known (typically Gaussiah or
near-Gaussian The specification of the coefficients, A,

mine the value of the dispersion arou=(Y*|Z,x) (the
conditional varianceand compare it with its expected physi-
cal value. The asymptotic analysis presented below appears
to be more simple with the following formal replacement of
variables: ¢ is replaced by a new reference variablg,
=Z(¢,x,t). The replacement does not alter the closure but
transforms the MMC equations into a new equivalent form
that appears to be more convenient for analysis of the joint
characteristics of the scalak and Z. With the new nota-
tions, Eqs.(5) and(10) take the form

D'(U,A"N,S,, W+ S,)P(Y,Z,Z,x;t) = 0, (14)
X z 22 z Y

D(U,N)Y=W. (15)
X 22

andB that complies with both the PDP; and the average Here and in the rest of the Brief Communicatigrdenotgs
properties of turbulent scalar transport is given in Ref. 1. Théhe new reference variabl¢ and at the same tim&

minor dissipation timers, which does not affecZ* in con-
ditional MMC but does affecZ* in probabilistic MMC, was

=(Z*|£,%) due to the specific selection gf Equation(15)
demonstrates that the simplest form of the conditional MMC

not specified in Ref. 1 and this specification requires speciak equivalent to the first order CMC without the conditional
analysis considered in the present Brief Communication. Irvariance effects, although MMC involves a consistent mix-
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ture fraction PDF method as a part of the model. Thus, the N -z 2K, — 90, \?
minor dissipation timerg cannot be determined on the basis D U,—,—,——5 |[K« == + 2N<—_) + (s,
of the average dissipation properties or the first order condi- x & szz &7y &7d 9z

tional characteristics—these conditions are already satisfied.
In order to determines, we have to consider the conditional (21)
variance and investigate whether the properties not only of .~ L —
Q=(Y*|Z,x) but alsoK=((Y*)2|Z,x)-Q? modeled in the whereA,=A’e -zl 7y andA, = A-e -2/ 74. The coefficientsN
probabilistic MMC. It should be noted that, since both con-andU depend orz=Z-&z and thus, to the leading order, are
ditional and probabilistic MMC fully comply with the joint the functions ofZ but notz while the leading orders oA,
PDF equations, they must comply with all their ==(z/7q)+--- andA,=—(z/ 7g)+--- depend orz. The leading
consequences—the unclosed first and second order cM@der solution of(19) is given by the Gaussian distribution
equations“.‘8 This formal compliance, however, does not _ —

guarantee agreement with the actual CMC approach since Po=G(z.0,7N),

the underlying MMC process is, obviously, not identical to —,
physical turbulent mixing. Matching the conditional velocity/ G707 = 1 oxdl - ¢&-9 ) (22
scalar correlation terms is achieved providedis a good " (2mo?)Y? 20° )’

model for the physical velocity conditioned on all scalars but
the situation with the other generation and dissipation termd)
is much less clear and needs a special asymptotic analysizz=P(Z|Z,x;t). The PDFP. can be represented by.
that establishes a link betwedf and 7 and is presented =PoPz or by P-=PoP7 (both representations are the same to
below. the leading order The value ofQ. and its integrals are rep-

At the first step, we derive equations for the moments ofesented by the expansions

ote thatP, effectively approximates the conditional PDF

P(Y,Z,Z_x;t) represented byP.=P(Z,Z,x;t)/P(x;t), Q. =07 7 20.(7 Z 2
=(Y*|Z,Z,%), andK.=((Y*)?|Z,Z,x)- Q% Eq. (14) is mul- Q= Qul(2) +eQu(2)z+£°Qe(2)5 + - 23
tiplied by 1,Y, andY? and the results are integrated over all
Y __ _ -

o Y(Z) = | QiP2zdZ=Qu(2) +£°7gNQox(2), (24)

D'(U,A"N,S)P:p=0, (16)

z z N, ! /!
Y(Z-£2) = Qy(2) - eQp(2)z+ SZQO(Z)E
- — = Q- 2, N(
D(U,A«N,$)Q. = + W, (17) +&°7aNQoaA2), (25)
o T
g 727 ° where
A — 2K —{ 9Q.\? = _ Q@) +2Q4(2) + Qx(2)
D(U,A«,N,Sp)K. =~ +2N< Q_) +Q., (18 Qo2) = 2
X ==z 7s oz
zz and dependence ox andt is implied in these equations.
where Substitution of the equations in{@0) results inQ,;=0, Q,
=Qy/3, and
~ 20NP. ~ 2 dNP7 Q —
A=A - ————, =, =041 U.VQ,-NQ,=W.. 26
P. o7 pz P ot QO QO ( )

The “prime” and “double-prime” superscripts denote the first
We use the linear relaxatio@) for S and introduce the g_n.d _second c_ierlvatn_/es. Thg Ieadln.g order term of the proba-
_ 172 . . ilistic MMC is consistent with the first order CMC equation
small parametet = (75/ 74)*'“ and the characteristic variable . . . ;
— > o ] o (note that this consistency does not determige Equation
z=(Z-2)l e, where 74 is the characteristic physical dissipa- (21) indicates that
tion time of the mixture fractio. Equationg16)—(18) take

Q. =(W*Y*|Z,Z,%), We =(W*|Z,Z,x), andY=Y-Q..

the form 47'dﬁ+22 N2
Ki=¢ TdNQZ,
~f AN -z |
DY g2 o PP=0 ) s A QY
P2 K:<K*>E+<Q*2>E_<Q*>Z: C_NZ(E> ' (27

T

where(-); denotes averaging ovErby usingPy andc.=6. It
+ W, (20)  should be noted that the value of the cons@miepends on
the type the operatd® used in calculations.

bl u AN
....’82’82
e
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The consistency of the model and the fast chemistrytion) are well matched by the MMC models and this match
limit® is now considered. Assuming thaY, is close to its is, generally, does not form a criterion for selecting the minor
chemical equilibrium, Y=Y(2), we put P(Y,Z,Z,x;t) dissipation timers—one of the key MMC parameters. The
=8 Yo(2) - YIPP(x;1) in (14) main conclusion of the asymptotic analysis developed in the
present work for the simplest version of the probabilistic
MMC model with a single mixture fraction and a single ref-
erence variable is thais should be determined by matching
_ the level of conditional variancé.e., fluctuations with re-
wherey = (N+2°/7)/2 is a model for the instantaneous sca-spect to the averages of scalars, conditioned on a fixed value
lar dissipation in(28) and the conditional meaX is evalu-  of the mixture fraction The MMC model demonstrates a
ated by formally puttingQy(Z)=Y(Z) and Q;=Q,=0 in  notable degree similarity with the expected values of the
(23)«25). Substitution ofez=Z—-7 and the expansion for  terms responsible for the generation of the conditional vari-
given by(25) into the first equation i128) yields the second ances in turbulenéé? although the simulation of fluctua-
equation. As expected, the average yofover Z gives N,  tions of the scalar dissipation in the investigated simple ver-
although distribution ofz in y is Gaussian but not log- Sion of MMC differs from the realistic characteristics of
normal. If W=W(Z,Y) in (28) then this equation can be in- instantaneous dissipation. The obtained asymptotic equation
terpreted as a stationary flamelet equdfidout, in its speci-  for 7s may need adjustments of its constant when different
fication of the small-scale properties, the probabilistic modelariations of the minor dissipation operator are used in the
is not fully flamelet consistent: as soon as the reaction zongodel.
becomes thinner than the stochastic dispersipim Z space

— 1 B “ H
; ; e _ : A. Y. Klimenko and S. B. Pope, “A model for turbulent reactive flows
[which is specified bwg_TsN in (22)], Egs. (23«25 and based on multiple mapping conditioning,” Phys. Fluitls, 1907 (2003.

(28) are no applicable. _ _ 2s. B. Pope, “Accessed compositions in turbulent reactive flows,” Flow,
The modeled valuK is to be compared with the corre-  Turbul. Combust(to be publishey

sponding value predicted by the CMC variance equation andA. Y. Klimenko, “Modern modelling of turbulent non-premixed combus-
DNS.4'8‘11’12In the CMC variance equation, the major homo- tion and reduction of pollution emissionProceedings of Clean Air VII,

. . . Lisbon (on CD-ROM)2003.
geneous generation term, which is induced by the fIUCtua"‘A. Y. Klimenko and R. W. Bilger, “Conditional moment closure for tur-

tioni of scalar dissipation, can be approximated by pylent combustion,” Prog. Energy Combust. S26, 595 (1999).

2TNN2(QH)2 while the dissipation term can be assessed aSSS. B. Pope, “Pdf methods for turbulent reactive flows,” Prog. Energy
p : : ; Combust. Sci.11, 119(1985.

2K/7-K_. While, Wlt.h a S!ngle parametets, S.Imu|tan601.JS 5C. Dopazo, inRecent Developments in Pdf Methods, Turbulent Reacting

matching of the dissipation and the generation te'rms IS NOtFjowg edited by P. A. Libby and F. A. WilliamgAcademic, New York,

guaranteed, we, nevertheless, can match the required level 01994, pp. 375-474.

conditional fluctuationsk. By comparing the steady-state A. Y. Klimenko, “On the inverse parabolicity of pdf equations,” Q. J.

— . Mech. Appl. Math. 57, 79 (2004).
— 2 2
ValueK—TKTNN (Q ) with (27) we conclude 83. H. Kim, “On the conditional variance and covariance equations for
_ 1/2
7s= (C, 7). (29)

Z-Z  Y-Y PY
Yi=—=+W, —x—==W, (28)

Ts T 372

second-order conditional moment closure,” Phys. Fluids2011(2002.

°R. W. Bilger, in Turbulent Flows with Nonpremixed Reactants, Turbulent
. . . Reacting Flowsedited by P. A. Libby and F. A. Williamé&Springer, Ber-
According to Ref. 117 is nearly four times smaller than the |, 1988 op. 25_113. Y y €Spring
conventional dissipation time scatg and 7 is significantly  °N. Peters, Turbulent CombustiortCambridge University Press, Cam-
less than the Kolmogorov time scale. Thus, indeed, as it hasbridge, 2000.

been assumed in the present analysisshould be selected YN. Swaminathan and R. W. Bilger, “Study of the conditional covarience
small compared tor and variance equations for the second order conditional moment closure,”
d.

. .. . Phys. Fluids11, 2679(1999.
The first moment conditional properties of turbulence:zs v, kjimenko, “Conditional moment closure and fluctuations of scalar

(and, consequently, the unconditional averages and dissipasissipation,” Fluid Dyn.28, 630(1993.

Downloaded 02 Nov 2012 to 130.102.158.22. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



