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Lagrangian particles with mixing can be used as direct numerical simulations �DNS�, large eddy
simulations �LES�, or filtered density function �FDF� methods depending on conditions of the
simulations. We estimate major parameters associated with the DNS, LES, and FDF regimes and
demonstrate that, under certain conditions specified in the paper, simulations using different mixing
models approach the DNS limit. © 2007 American Institute of Physics. �DOI: 10.1063/1.2711233�

The results presented in the most recent “Turbulent Non-
premixed Flames Workshop”1 indicate a very interesting
trend: the sensitivity to different mixing models is reduced
when used in conjunction with large eddy simulations �LES�.
We believe that this is not a coincidence—in the LES
framework,2 mixing models operate in more local conditions
and this localness improves the performance of conventional
mixing models. A similar improvement3 is observed in the
multiple mapping conditioning �MMC� approach,4 where lo-
calness is forced upon conventional mixing operators by us-
ing MMC reference variables. In this Letter, we consider a
class of models involving mixing between Lagrangian par-
ticles and demonstrate that this behavior should be expected.
We show first that, under certain conditions, Lagrangian mix-
ing models approach solutions of the scalar transport equa-
tions and, thus, can be used as direct numerical simulations
�DNS� of scalar transport. The error in approximating the
scalar transport is estimated. We then consider Lagrangian
simulations when turbulent scalar fields are not fully re-
solved and distinguish two regimes in these simulations—
large eddy simulations �LES� �Ref. 2� and filtered density
function �FDF� �Ref. 5�—depending on how parameters of
the model are selected.

Our present analysis focuses on conceptual issues and,
for the sake of simplicity, we consider constant density
flows. We begin our consideration with the continuous scalar
transport equation,

�Z

�t
+ ui

�Z

�xi
− D

�2Z

�xi�xi
= 0, �1�

where i=1,2 ,3 and the sum is taken over repeated indices.
The velocity field is presumed to be fully described, i.e., the
flow can be laminar or turbulent but, if it is turbulent, all the
smallest scales are resolved in the representation of the ve-
locity field ui=ui�x , t�. At this stage, the velocity field is
treated as fully specified and no stochasticity associated with
the velocity field is considered. Equation �1� can be seen as a
Fokker-Planck �direct Kolmogorov� equation that specifies
the number density of particles moved according to the fol-
lowing system of stochastic �Ito� equations:6

dxi
* = ui�x*,t�dt + �2D�1/2dwi, �2�

where wi represent independent stochastic Wiener processes.
Assuming that a number of particles is distributed randomly
with initial probability proportional to Z0�x��Z�x , t0�, the
probability of finding a particle at a particular location is
proportional to Z�x , t�. Equivalently, Z�x , t� can be inter-
preted as the value that is proportional or equal to the aver-
age number density of particles �p=�p�x , t0�. If the total
number of particles np is very large, then the actual number
of particles within a given volume is indicative of the aver-
age number of particles within this volume and this value is
linked to the integral of Z�x , t� over the volume. This equiva-
lence of continuous deterministic diffusion �1� and stochastic
differential equations �2� �representing particle random walk�
is one of the principal properties of nature known in physics
and mathematics.6 In fluid mechanics, approaches �1� and �2�
are generally referred to as Eulerian and Lagrangian.

The Lagrangian formulation presented above does not
involve any mixing but can be modified so that mixing ap-
pears as an essential part of the simulations. Indeed, we do
not need to distribute particles according to certain initial
conditions but may well use uniformly distributed particles
having an average number density of �p

� =const. In this case,
we simply mark the particles so that the average number
density of the marked particles �p is initially determined by
the continuous initial distribution Z0�x�. This marker, which
can be denoted by Z*, is 1 for the marked particles and 0 for
the particles that are not marked. The function �p�x , t0� rep-
resents the required solution of �1�. The same value �p can be
equivalently interpreted as an average Z*-weighted density of
all particles defined by �p= ���p�

nV Z�p�
* �x , t� /V, where the sum

is taken over p=1, . . . ,nV particles located in a small volume
V. Here, we use conditional expectations to emphasize that
averaging is performed at a given location and time. Since
the scalar transport is linear, one can consider superposition
of different markers with arbitrary weighting coefficients and
this superposition remains compliant with Eq. �1�. We con-
clude that Z* does not have to be zero or one and can take
any other value. At this point we obtain a new formulation of
the stochastic problem that remains equivalent to the con-
tinuous formulation of the scalar transport. In the new for-
mulation, the particles are uniformly distributed in the flow
and each particle has a weight, Z*, that remains constant oncea�Electronic mail: klimenko@mech.uq.edu.au
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the simulation is started. Assuming that Z0�x� is a smooth
function and that the number of particles is sufficiently large,
we set the weight values to Z*=Z0�x*� for each particle. The
value �p �defined as the average Z*-weighted density of par-
ticles� remains to be a solution of �1�. This relationship can
be written as �p= �Z* �x , t��p

� , where �p
� = �nV �x , t� /V=const.

We conclude that Z�x , t�= �Z* �x , t�, since �Z* �x , t� complies
with both the transport equation �1� and the initial
conditions.

While the initial conditions are set so that the values Z*

do not have any scattering around Z0�x*�, the random com-
ponent of particle motion introduces such scattering. The
scattering grows in time and this makes evaluation of the
conditional averages more and more difficult. It is logical to
use a mixing procedure to suppress the unrestricted growth
of the scattering. Indeed, if at a certain moment t= t1 the
positions of two random trajectories coincide, then, due to
the Markov properties, the process can be terminated at this
moment and restarted with the initial conditions that corre-
spond to the particle distribution at the moment of termina-
tion. The two particles located at the same point can be as-
signed any new values Z�1�

*+ and Z�2�
*+ , instead of the old values

Z�1�
* and Z�2�

* , provided the total weight of these particles is
preserved, Z�1�

*+ +Z�2�
*+ =Z�1�

* +Z�2�
* , although Z�1�

*+ =Z�2�
*+ = �Z�1�

*

+Z�2�
* � /2 corresponds to maximal reduction of scattering. If

nm particles with weights Z�p�
* �p=1, . . . ,nm� have the same

location then multiparticle mixing can be used,

Z�p�
*+ = Zm

* + ��Z�p�
* , �3�

where Zm
* �nm

−1��p�
nmZ�p�

* , �Z�p�
* =Z�p�

* −Zm
* , and 0���1 repre-

sent the extent of mixing ��=0 for complete mixing and �
=1 when no mixing occurs�. The extent of mixing � can be
random or deterministic. If nm=2 this mixing is similar to
Curl’s and modified Curl’s mixing, while mixing with large
nm would approach the interactions by exchange with condi-
tional mean �IE�C�M� model �specific information about
these and other models can be found elsewhere1,2,5,7,8�. Mix-
ing in �3� is conservative �i.e., preserves the total weight of
the particles� and results in the following decrease of the
conditional variance �= ��Z*��2 �x , t�, Z*�=Z*− �Z* �x , t�:

��

�
= 	1 −

1

nm

�1 − �2� . �4�

This can be characterized by the mixing time �m,

�m =
�

N
=

2�t

��/�
=

2�t

	1 −
1

nm

�1 − �2�

, �5�

where �� /�t=2N is the dissipation of the scalar over dura-
tion of the time interval �t associated with the mixing event
and ��=�−�+ is the dissipated variance. The equilibrium
value of the variance can be determined from the balance of
the generation and dissipation terms3,8

2DG2 − 2
�

�m
= 0, G2 �

�Z

�xi

�Z

�xi
, �6�

where G denotes the magnitude of the gradient of the scalar.
Due to Markov properties, resetting the values of Z�p�

* to Z�p�
*+

is a legitimate operation that reduces scattering but does not
affect the link between the discrete and continuous formula-
tions. While the original approach �2� required an additional
set of particles to simulate another scalar, the system of sto-
chastic particles with mixing can be used to simultaneously
simulate ns scalars with the same set of particles by assigning
several values of ZI

* �I=1,2 , . . . ,ns� to every particle. Mixing
operator �3� is independently applied to each value ZI

* that
corresponds to Ith scalar. The initial conditions ZI

*�t0�
=ZI�x* , t0� are, generally, different for different scalars but all
simulated scalars satisfy the same equation �1�.

Practically, particle trajectories can intersect only in low-
dimensional spaces and we have to account for the fact that
particles have to interact at nonzero distances. The numerical
errors associated with incomplete localness of mixing need
to be assessed. Mixing involves the exchange of the values
Z* �or fractions of these values� and this generates additional
diffusion that is herein referred to as numerical diffusion.
Indeed, assuming that only a single particle has a nonzero
value of Z* in a mixing group, complete mixing would result
in redistribution of the following fraction �= �1−nm

−1��1−��
of this value between all particles of the mixing group while
the fraction of 1−� remains assigned to the particle. Due to
incomplete localness of the model the fraction � performs
random jumps to the location of other particles in the group.
The effective numerical diffusion coefficient that is associ-
ated with this process is given by Dm= ���dm

2 / �2�t�, where
dm

2 is the average of the squared distance between the par-
ticles in the mixing groups along a selected direction. If dm is
small, mixing is localized in physical space. Taking into ac-
count Eqs. �4� and �5� results in

Dm =
dm

2

	�m
, 	 �

�1 − �2�
�1 − ��

. �7�

The parameter 	 depends on the type of mixing model used
in simulations but it is easy to show that 	�1. Indeed, we
note that 1−�2= �1+���1−�� and 1�1+��2, hence �1
−�2��2�1−�� and �1−�2�
 �1−��, resulting in 1�	�2.
Thus, the specific form of the mixing model has only a lim-
ited effect on the intensity of the numerical diffusion.

We considered the system of stochastic differential equa-
tions �particles� with values Z�p�

* assigned to each of the par-
ticles. The values are subject to mixing which is required to
be �1� conservative �preserving the sum of Z�p�

* �; �2� local
�mixing is performed within the distance of dm in physical
space�; �3� linear with respect to Z�p�

* ; �4� independent �if
several scalars are introduced, mixing is independent for
each of the scalars�; �5� preserving boundedness of scalars
�i.e., 0���1�; and �6� applied to all particles in a stochastic
or deterministic manner but without discrimination so that
the scalar variance is consistently reduced as characterized
by a certain mixing time scale �m. Most of these conditions
are well known.7 The calculated values approach the solution
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of continuous transport equation �1� provided �m→0 and
dm→0 in a way so that dm

2 /�m→0. The condition �m→0
ensures that variation of Z* around Z determined by �
=DG2�m in �6� tends to zero while the condition dm

2 /�m→0
minimizes the bias introduced by numerical diffusion Dm

associated with mixing. Substituting �m=	−1dm
2 /Dm into �

=DG2�m introduces a new interpretation of Eqs. �6� and �7�,

�Zm
2 = 	�

Dm

D
, �8�

where �Zm�Gdm determines localness of the mixing opera-
tion in the scalar space. The uncertainty of stochastic simu-
lations � and the relative value of numerical diffusion Dm /D
can be small at the same time only when mixing is local and
�Zm is small. We can introduce the characteristic cutoff scale
dc=�1/2 /G so that the scales �x�dc are resolved in simu-
lations while the scales �x�dc are not resolved due to sto-
chastic variations of Z* around Z. Equations �6� and �7� in-
dicate that dc

2=D�m=dm
2 	−1D /Dm. Since physical diffusion D

should be dominant over numerical diffusion Dm, we obtain
dc
dm, i.e., the spatial resolution dc is limited by the mixing
scale dm. Practically, even if only the closest particles are
selected for mixing, dm

2 cannot be smaller than d1
2 /nd, where

d1 is the characteristic distance between particles and nd is
the dimension of the physical space. �When dm�d1, mixing
between just mixed particles, which does not reduce the vari-
ance, can still be avoided assuming Dm /D is sufficiently
small.� Hence, in order to make dm

2 smaller and smaller we
have to decrease spacing between particles by increasing the
number of particles np used in the calculations.

The previous consideration proves that particle tracing
with mixing can be used to solve the scalar transport equa-
tions and a large class of mixing models can be used for this
purpose, provided mixing becomes localized �Zm→0 and �m

is adequately selected. If the flow is turbulent, then calcula-
tions resolving the viscous �Kolmogorov� scales in the flow
become DNS of the scalar transport �note that averaging is
performed only over the Brownian-type fluctuations simulat-
ing molecular diffusion, but not over realizations of the ve-
locity field�. Performance of different mixing models varies
significantly when the long-distance mixing is allowed, but
as localness of the models is enforced by allowing interac-
tions only at smaller and smaller distances, different mixing
models should converge to DNS. Using Lagrangian particles
with mixing as a DNS tool is, however, not always practical.
Ideally, to enforce strict localness, the particles should be
spaced from each other by a distance that is much smaller
than the Kolmogorov scales. This would require very large
computational resources. Even if characteristics of the dy-
namic field are fully resolved �this is by default presumed
throughout the paper�, resolving all small-scale details for
tens or even hundreds of reacting species in a realistic stiff
chemical kinetic mechanism is, and will remain, extremely
difficult.

At this point, we consider a more practical situation
when the characteristic distance between the particles d1 be-
longs to the inertial interval of turbulence. Whether or not
the velocity field is fully resolved in simulations, the scalar

fields cannot be resolved at distances smaller than d1. This
means that, under these conditions, the scalar simulations
become LES �Ref. 2�, rather than DNS. Thus, Lagrangian
simulations of scalar transport have a cutoff scale, dc, which
is presumed to belong to the inertial interval. The fluctua-
tions with length scales smaller than dc are not resolved and
can be conventionally called subgrid or subfilter fluctuations
�we refer to the “Lagrangian grid” that is represented by
moving particles and is different from the Eulerian grid that
is used for velocity simulations�. The scalar fluctuations of
scales greater than dc are resolved in simulations. If the ve-
locity field is fully resolved, and this is what we assume in
our analysis, then particles move according to the algorithm
�2�; but if the fluctuations of the velocity field are filtered out
below a certain scale of dv, then D in �2� has to be replaced
by the effective coefficient Dv���tdv

4�1/3 that simulates the
influence of subgrid diffusion. Here �t is the dissipation of
energy, averaged over realizations of the velocity field �tur-
bulence averaged�. The mixing model is characterized by the
mixing scale dm that, presumably, also belongs to the inertial
interval of turbulence. If the characteristic mixing time �m is
selected so that dm

2 ��t�m
3 , then, as discussed below, dc�dm.

If �m increases while dm remains the same, dc increases ac-
cording to dc

2��t�m
3 �dm

2 . Indeed, both fields Z and Z* have
the same large-scale structure and, therefore, the same
turbulence-averaged scalar dissipation Nt �although local val-
ues of the dissipation may be quite different for Z and Z*�.
According to the definition of �m we obtain that ��Nt�m

increases with �m introducing a greater uncertainty into simu-
lations �� is the variance of Z*�=Z*−Z�. The scale dc is
linked to the scales �m and � by the equations dc

2��t�m
3 and

dc
2��tNt

−3�3 of the inertial interval of turbulence. Decreas-
ing �m below dm

2/3�t
−1/3 reduces scattering � but does not

improve resolution due to the bias introduced by numerical
diffusion Dm�dm

2 /�m. In this case dc��Dm
3 /�t�1/4

��t
−1/4dm

1/2�m
−3/4 increases when �m decreases. Assuming that

dm is fixed, the resolution of dc�dm is achieved in Lagrang-
ian LES when �m��t

−1/3dm
2/3 and both the random scattering

and numerical bias are of the same order of magnitude. Scat-
tering �
Nt�m is inherently present in simulations, and any
further reduction of � by decreasing �m below �t

−1/3dm
2/3

worsens the resolution due to increasing Dm. The scattering
� is more obvious when many particles are located within
the mixing distance dm from each other but, even if dm�d1,
the value Z* still has some scattering around Z due to �
�Nt�m�0. We will term the fluctuations Z*�=Z*−Z as “mi-
nor fluctuations.” Any further increase in the range of re-
solved scales requires reduction of dm. A progressive reduc-
tion of dm can be achieved only by decreasing d1 and
increasing the number of particles np.

The variables used in LES represent resolved values
with subgrid fluctuations being filtered out. Hence, from a
LES perspective, minor fluctuations represent a numerical
noise that needs to be reduced as much as possible. The
diffusing clouds model4 is a mixing scheme that uses
distance-dependent exchanges between particles and is more
complicated than �3�. This model was introduced in an at-
tempt to reduce the level of minor fluctuations but had a
rather limited success. It appears that the best approach is not
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in trying to reduce these fluctuations but in utilizing minor
fluctuations in a way simulating certain features of the sub-
grid fluctuations of the scalars �we should note that the sec-
ond author of Ref. 4 always held this view�. Since combus-
tion models have to deal with a large number of reactive
scalars, we may wish to see that the joint probability of mi-
nor fluctuations matches the joint probability of subgrid sca-
lar fluctuations. In this interpretation, the Lagrangian par-
ticles with mixing becomes an FDF model2,5 irrespective of
the number of particles present within a subgrid cell. In LES,
the parameter �m was selected to maximize, for given np, the
range of resolved scales while, in the FDF approach, �m is to
be selected to provide a most realistic joint distribution of
scalars and these goals are not identical. We consider now
two scalars, Z and Y, where Z can be interpreted as a mixture
fraction and Y is one of reactive scalars. The conditional
variance �= ��Y��2 �Z�, where Y��Y −Q and Q��Y �Z� is
the conditional expectation, is positive when Q is not a
simple linear function of Z. Generation of the conditional
variance is, to a large extent, associated with small-scale
fluctuations of the scalar dissipation, and correct simulation
of the conditional variance � is particularly important when
dealing with extinction and reignition.3 It seems that, if a
Lagrangian mixing model is subject to the FDF interpreta-
tion, matching the physical level of subgrid-generated condi-
tional variance �rather than enforcing a certain specific value
of �� is the most important criterion for selecting �m and
other mixing parameters.8

The MMC version4,8 of the FDF approach5 gives a good
illustration of differences between LES and FDF interpreta-
tions of mixing models. If the number of particles used in
simulations is not sufficiently large, the value �Zm increases
and localness of the mixing model is compromised. The lo-
calness of the model can be improved without increasing the
number of particles if we take into account that reactive sca-
lars are, typically, more dependent on the mixture fraction
than on physical coordinates. In MMC,4 the localness of
mixing is achieved by using reference variables and this ap-
proach can be used in conjunction with LES. The simplest
MMC model, which is used in conjunction with DNS/LES
and effectively incorporates the features of subfilter condi-
tional moment closure �CMC�9,10 into the FDF framework,
involves simulation of the continuous mixture fraction field
Z�x , t�. It must be stressed that the Lagrangian value Z�x* , t�
is interpreted in MMC as a reference variable, while the
particle property Z* �but not Z�x* , t�� is used as the physical
mixture fraction during evaluation of chemical source
terms.8 We presume that all details of the mixture fraction
and velocity fields are fully simulated �if subgrid fluctuations
of Z are filtered out, these fluctuations can be emulated by a
Markov process as discussed in Ref. 8�. The variables �* are
introduced so that �0

*�Z�x* , t� and �i
*=xi

* for i=1,2 ,3, and

the distance between two particles “p” and “q” is defined by
d�pq�

2 =gjk�� j
*��k

*, where j ,k=0, . . . ,3 and ��*=��p�
* −��q�

* .
The metric tensor gjk is selected to increase resolution in the
mixture fraction space and decrease �Zm, although these im-
provements come at the price of reduced localness in the
physical space. Mixing is localized in this new space and two
particles can be mixed only if d�pq�

2 �dm
2 . The mixing param-

eters are selected to match the level of conditional variance.
Discarding accurate Z and using approximate Z* �which co-
incides with Z only at the resolved scales� in chemical cal-
culations may seem odd from the LES/DNS point of view.
This treatment is, however, very logical if the FDF-based
criteria are applied: Z has inherently inaccurate joint distri-
butions with reactive scalars Y* simulated by the mixing
model due to the differences between Z and Z* determined
by the presence of minor fluctuations.

Depending on parameters of the model, Lagrangian par-
ticles with mixing can be used for DNS, LES, or subgrid
FDF simulations. It is shown that, if the number of particles
used in simulations increases, the simulated scalars will ap-
proach DNS while the differences between mixing models
gradually disappear �provided the mixing models are prop-
erly localized in the physical space�. In the LES framework,
the performance of a subgrid FDF model can be enhanced
intensively �by improving the quality of the mixing model
as, for example, done in MMC �Ref. 3�� or extensively �by
increasing the number of particles used in simulations�.
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