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Both parts of this work present a more detailed and specific analysis of ideas introduced in the
previously published letter �Phys. Fluids 19, 031702 �2007��. In Paper I �Phys. Fluids 19, 065101
�2009��, we show that the continuous scalar transport and diffusion can be accurately specified by
means of mixing between randomly walking Lagrangian particles with scalar properties. Here, in
Paper II, we deal with the situation where the number of particles is not sufficient to resolve all
scales in turbulent flows and Lagrangian particles with mixing become an approximate model rather
than a stochastic framework for solving exact scalar transport equations. We consider
sparse-Lagrangian methods that use relatively small numbers of particles compared to the number
of Eulerian grid points and discuss similarities and differences with conventional large eddy
simulations—filtered density function �LES-FDF� methods. Special attention is paid to multiple
mapping conditioning �MMC� formulation for sparse-Lagrangian simulations. Physical and
simulated equations for joint FDFs of reactive scalars are compared and analyzed. The efficiency of
the MMC-LES approach that was demonstrated in several recent publications is explained from a
methodological perspective. © 2009 American Institute of Physics. �DOI: 10.1063/1.3147927�

I. INTRODUCTION

The models utilizing Lagrangian particles with mixing1,2

appeared decades ago as an effective tool in simulating prob-
ability density functions �PDFs� in turbulent reacting flows.
In turbulent flows the dissipative influence of diffusion is
much more significant compared to spatial transport by mo-
lecular diffusion. This brought mixing into consideration as a
distinct process responsible for modeling of the scalar dissi-
pation. At the time when direct numerical simulations
�DNSs�/large eddy simulations �LESs� of multiple reactive
scalars was a computationally infeasible luxury, the Lagrang-
ian PDF methods gave an opportunity to model joint distri-
butions of all reactive species, which are needed for accurate
evaluation of the chemical source terms, at a more moderate
�although still significant� computational cost.

Rapid computer progress in the past decades opened new
possibilities that involved LES of realistic chemical kinetics
with many reactive species.3 Performance of LES in reacting
flows was good in many respects although neglecting sub-
grid fluctuations in LES caused noticeable errors in evalua-
tion of the chemical source terms.4 These errors would have
been tolerable if they were encountered in a low-cost model
but, for highly expensive LES simulations, existence of these
errors required modifications of the approach. The LES re-
solve large-scale fluctuations while chemical reactions often
depend on the smallest scales in turbulence.

The natural response to the problem was combining LES
and other approaches �flamelet, conditional moment closure
�CMC�, PDF� that can simulate subgrid behavior of reactive
species �see review in Ref. 3�. The combination of LES and
PDF approaches introduced in Ref. 4 was named filtered

density function �FDF�. The FDF approach effectively rep-
resents a PDF method applied to subgrid fluctuations in LES.
Each Eulerian LES cell usually contains between 20 and 100
Lagrangian particles. This approach did produce very good
results but at a very high computational cost due to superpo-
sition of LES and PDF computational expenses.5 This high
cost precluded applying LES-FDF to complex realistic
chemical kinetics and raised questions whether LES-FDF de-
mands computational resources that may be sufficient for
refined LES and whether refined LES would be a simpler �if
not better� option for simulating reacting flows. The term
refined LES or under-resolved DNS can be used for simula-
tions which are close to resolving all scales but do not
achieve the resolution required in proper DNS.

The view of the author of this work is that, in the con-
ventional combination of LES and FDF, the FDF approach is
dominated by the LES methodology: FDF is allowed to func-
tion only on LES subgrid scales and has difficulties in fully
displaying its best qualities under these restricted conditions.
The approach suggested in Ref. 6 and further elaborated here
introduces FDF that are allowed to simulate LES supergrid
fluctuations. The FDF method in this case becomes a
Lagrangian LES on its own and is not restricted to servicing
the needs of the conventional Eulerian LES. This new
understanding of FDF is now called sparse-Lagrangian
simulations.7,8

While general properties of Lagrangian particles with
scalar properties and mixing are considered in Paper I of this
work,9 this article is concerned with the situation when it is
impossible or impractical to introduce the number of par-
ticles that would be sufficient to resolve all scales in a tur-
bulent flow. If the high-frequency range of fluctuations is not
resolved then Lagrangian particles with scalar properties anda�Electronic mail: klimenko@mech.uq.edu.au.
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mixing become not a numerical method of solving exact
transport equations but an approximate model. We consider
the main features of sparse-Lagrangian models that allow for
quality simulations at affordable computational cost and,
specifically, we analyze the multiple mapping conditioning
�MMC� approach in conjunction with sparse-Lagrangian
simulations. This approach, called MMC-LES, was first de-
scribed in Ref. 6 and implemented in Refs. 7 and 8.

The distinctive feature of MMC models is localization of
mixing in the space of reference variables. These variables
are introduced in MMC to emulate properties of turbulence
that affect mixing process. MMC has many common features
with other combustion models. The older deterministic form
of MMC �Ref. 10� effectively represents CMC �Ref. 11�
supplemented by a consistent closure for the mixture fraction
PDF based on mapping closure.12–14 Different versions of
MMC models have appeared.15–18 The stochastic versions of
the model were originally introduced and seen as a stochastic
implementation of the CMC model.10,18 The MMC model,
however, has absorbed many features that belonged to other
models. MMC has many similarities with Euclidean mini-
mum spanning tree �EMST�:19 both models introduce local-
ized mixing and both models use the mapping closure con-
cept. There is, however, one essential difference: EMST
enforces localness directly in the composition space �this
violates independence of scalars and creates problems for
EMST mixing�, while MMC uses reference variables to en-
force localness. It is interesting that MMC is compatible with
many mixing models such as Curl’s20,21 and IEM �interac-
tions by exchange with the mean� �Ref. 22� but is not gen-
erally compatible with its closest relative—EMST. The rea-
son behind this is that Curl’s and IEM mixing do not have
any localization principles on their own and are ready to take
these principles from MMC while EMST has its own local-
ization approach which is not equivalent to the localization
principles used in MMC. We also note that the MMC-Curl
model retains many features of Curl’s or modified Curl’s
mixing. From the perspective of Curl’s model, MMC-Curl is
different from conventional Curl’s model only by a new al-
gorithm of selecting particles for mixing. If a single mixture-
fraction-like reference variable is used, MMC can be viewed
as enforcing CMC on Curl’s or IEM mixing. When mixing
time is small, MMC is very close to CMC, while large mix-
ing time minimizes the CMC effect on the mixing model.
MMC model can effectively emulate other models as its lim-
iting cases. The IECM model23–25 represents IEC model22

localized in the velocity space and corresponds to a MMC-
IEM model with the reference variables represented by ve-
locity �it should be noted that the IECM model was intro-
duced before MMC�. The degree of correlation between the
reactive scalars and velocities is much smaller than between
the reactive scalars and mixture fraction, and it is disputable
whether true MMC regime is achieved in IECM model.26

MMC is also related to velocity-biased Curl’s mixing1 that,
in fact, can be seen as partial conditioning of mixing on
velocity. Although this model was implemented in Ref. 27, it
is not used as widely as IECM. The MMC model also has
many common features with intrinsic low-dimensional
manifolds:28 MMC mapping of reference variables into com-

position space effectively creates a low-dimensional mani-
fold that is partially responsible for emulating behavior of
reactive species. There are, however, differences: species are
free to fluctuate around the manifold in stochastic MMC
while closeness to low-dimensional intrinsic manifold is en-
forced by properties of chemical kinetics.

The MMC-LES approach represents a generalized ver-
sion of MMC:26 the original Markov reference variables are
replaced by a generalized random process which is deemed
to produce better outcomes. Specifically, MMC-LES replaces
Markov reference variables by stochastic processes gener-
ated by LES. Previous publications on MMC-LES �Refs.
6–8� follow the main physical argument of Ref. 26 that LES/
DNS-generated variables enforce more realistic values for
first conditional moments of simulated scalars. Generalized
MMC was introduced as a modification of the original
MMC. Although recent successes of MMC-LES provide jus-
tification for these arguments, there is a significant gap in
MMC analysis. Pope �private communication� noted that
fundamental consistency of MMC and PDF approaches es-
tablished for the original MMC �Ref. 10� is not applicable to
generalized MMC and this consistency has to be established
again. The present paper closes this gap and provides inter-
pretation of MMC-LES model in terms of filtered transport
equations, which are conventionally used in LES.

Generalized MMC with reference variables generated by
tracing Lagrangian particles in LES simulations has strong
connections with DNS/LES type of modeling. As shown in
Refs. 6 and 9, MMC-LES/DNS and other sparse-Lagrangian
models can be considered as LES/DNS tools on their own.
This possibility of converging simulations to DNS under
conditions of very large number of particles used in simula-
tions effectively guarantees the success of this methodology
�although this success based on introducing large number of
particles may come at a very high computational cost�. It was
expected6 and demonstrated7,8 that, in practical simulations,
the MMC-LES model may require a much smaller �in fact
very small� number of particles to achieve high quality simu-
lations. Different models must be compared on the basis of
their performance per actual or nominal �i.e., number of par-
ticles in the reacting region of the flow� computational cost.
The approach of the best quality at any computational cost
already has its well-known solution—DNS—and improve-
ments in performance may be related to approaching the
DNS regime rather than to using a better mixing model. The
MMC-LES model also has direct links with one of the oldest
combustion models—the flamelet model.29,30 Indeed, stretch-
ing the metrics of physical space to ensure better resolution
across isoscalar lines of constant mixture fraction6 has simi-
larities with the flamelet transformation.29,30 Although there
is an underlining similarity that ensures efficiencies of
MMC-LES and flamelet models, it must be noted that MMC-
LES is a full-scale FDF model with DNS capabilities and its
area of applicability is incomparably wider than that of the
flamelet model. The fact that MMC modeling occupies the
very central place in combustion modeling, which unifies
nearly all existing models in the area, is probably the main
underlying feature of MMC that ensures its impressive
efficiency.7,31
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Sections II–IV introduce major equations and discuss
distinctive features of sparse-Lagrangian models. Sections
V–VII deal with MMC-LES model and its major properties.
Conclusions are given in Sec. VIII.

II. JOINT SCALAR FDF EQUATION

Filtering operation is conventionally used in LES. The
filtered quantity �̄ is introduced by applying the following
filtering operation:4,32

�̄�x� = �
�

��x���rf
�x − x��dx� �1�

to any fully resolved field ��x� where the filter kernel �rf
is

characterized by the filtering scale rf. The variations of � at
the scales smaller than rf are filtered out. The subfilter fluc-
tuations of the reactive scalar variables

�
�Y���

�t
+ �U · �Y��� − � · ��D � Y���� = �W��� �2�

are characterized by filtered mass density function F where
F=���Y−Y�� is the fine-grained mass-weighted density joint
distribution function of the ns scalars Y�1� , . . . ,Y�ns�, � is den-
sity, W���=W����Y� represent chemical source terms and � is
Dirac’s delta function. Applying the filtering operation to F
results in a filtered mass density function32 that is referred to
here as mass-weighted FDF. This FDF satisfies the following
equation:4,32,3

�F̄

�t
+ � · �UYF̄� +

��W��� + JY
����F̄

�Y��� = 0, �3�

where J���=�−1� · ��D�Y����, the subscript Y is used to de-
note conditional filtering, for example,

�̄Y =
�F

F̄
�4�

for any � and sum is evaluated over repeated indices. If the
differential diffusion effects are neglected, the FDF govern-
ing equation can be rewritten in the form

�F̄

�t
+ � · �UYF̄� +

�W���F̄

�Y��� +
�2N̄Y

����F̄

�Y��� � Y���

= � · �D � �F�−1� , �5�

where N����=D�Y��� ·�Y��� is the dissipation tensor. These
equations are exact but not closed since conditional filtered
averages in these equations remain unknown. A significant
advantage of these equations is that the chemical terms ap-
pear there in a closed form �provided all reacting scalars are
considered�.

The term on right-hand side �rhs� of Eq. �5� represents
transport by molecular diffusion and it is small in high-
Reynolds flows where the diffusion coefficient D is small.

This term can be written simply as D�2F̄ when � and D are
constant. It must be noted that, in turbulent flows, the dissi-

pation term N̄Y
���� remains significant even if D is very small.

This term is responsible for reduction in scalar variance and

is simulated by mixing. It is easy to see that the direct effect
of the dissipation term does not change the mean values of
the scalars and, thus, does not involve spatial scalar trans-
port.

The process of diffusion is linked to two main effects:
scalar transport by diffusion and scalar dissipation. In gen-
eral these effects are closely related to each other and this

corresponds to combining these two effects in one term J̄Y
���.

However, in high-Reynolds turbulent flows the effects of
transport by molecular diffusion and dissipation are sepa-
rated: the former appears to be small while the later is always
significant. Idealized mixing can be defined as dissipation
that does not have any spatial transport components; mixing
occurs between two �or more� fluid particles at the same
location while fluctuations of particle positions due to diffu-
sional random walk involve spatial transport. Consideration
of mixing distinct from diffusional transport appeared first in
modeling of turbulent flows.1,2

III. SPARSE-LAGRANGIAN METHODS

Simulations of reactive scalars in turbulent flows can be
performed using Lagrangian particles.1,2 In practical simula-
tions the number of particles is insufficient to resolve the
smallest details of the scalar fields. We label these particles
as a “Lagrangian grid” and the scalar fluctuations, which are
not resolved due to a limited number of particles, are called
Lagrangian subgrid fluctuations. Velocity is evaluated on the
conventional Eulerian grid. Modeling under conditions when
the number of Lagrangian particles is much smaller than the
number of Eulerian grid points is referred to as sparse-
Lagrangian modeling.6–8 The opposite case of having many
particles in every Eulerian cell is called here intensive La-
grangian modeling. Figure 1 illustrates sparse and intensive
distributions of particles on an Eulerian grid. If rL is the scale
that characterizes the Lagrangian grid �i.e., rL represents dis-
tance between particles� and rE characterizes Eulerian grid
�representing distance between nodes� then rL�rE in sparse-
Lagrangian models. To avoid confusion related to multiple
grids, in several points of our analysis we may assume that
the fully resolved Eulerian velocity field is available in
simulations—we are most concerned with modeling La-
grangian subgrid fluctuations, which are the largest unre-
solved quantities in sparse-Lagrangian simulations.

The obvious advantage of sparse models is in significant
reduction in the computational cost since the large number of
reactive scalars can be evaluated at relatively few points.

intensive sparse

FIG. 1. Illustrative example for random particle distributions on Eulerian
grid for intensive �200 particles� and sparse �eight particles� conditions.
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Fewer particles, however, provide less information about the
structure of the scalar field. If there is a hundred particles in
a selected control volume, this allows us to determine mean
values, variances and maybe some of the joint characteristics
related to different scalars. While the mean values can be
determined with a stochastic error of 100−1/2=10%, the ac-
curacy of determining joint characteristics of the scalars from
100 particles is much lower. If we have only one particle in
the control volume, we cannot possibly determine any aver-
age characteristics but this does not mean that these charac-
teristics do not exists. The scalar values assigned to the par-
ticle are denoted by Z���, �=1,2 , . . . ,ns—the same as Z��� in
Ref. 9 but in this paper we assume for simplicity that all
particles have equal weights �i.e., Z�0�=1�. Unlike in Ref. 9,
in this work values Y��� are used to denote the real physical
values of the scalars as defined by Eq. �2�. The scalars Z���

are used for modeling of the physical scalars �as interpreted
further in this section� and do not necessarily coincide with
Y���. The values Z��� are random values that posses means,
variances and joint PDFs P�Z ,x ; t�= P�Z�1� ,Z�2� , . . . ,x ; t�,
which account for particle random walk but not for fluctua-
tions of the simulated velocity field. These PDFs are the
same as the single particle PDF PZ or P1 in Ref. 9. The PDF
P�Z ,x ; t� satisfies the equation

�P

�t
+ � · �UP� − � · �D � �P�−1� +

�W���P

�Z��� = �dP

dt
�

mix
, �6�

derived in Ref. 9. Whether we have many or few particles in
the flow, this does not alter the probabilistic nature of the
Lagrangian simulations. We can use convergence with inten-
sification �rm remains fixed�, as discussed in the last section
of Ref. 9, and increase the number of particles without alter-
ing the model to extent that allows evaluation of the PDF in
every small volume. This, however, would impose a large
computational cost on the simulations.

If relatively few particles are used in the simulations, the
average distance between closest particles is not small and
mixing between these particles generates significant numeri-
cal diffusion Dm�rm

2 /	 where rm is the mixing distance in-
dicative of localization of mixing and 	 is the mixing dissi-
pation time as discussed in Refs. 6 and 9. In practical
simulations, the mixing distance cannot be smaller than the
distance between closest particles. This means that all fluc-
tuations of scale smaller than rm are effectively filtered out
and are not directly reproduced in these simulations. As in
any numerical method, the mixing scale rm must be small
compared to the macroscale of the problem under consider-
ation to avoid the direct influence of numerical diffusion on
marcoparameters. The scale rm is always presumed to belong
to the inertial interval of turbulence, although in sparse-
Lagrangian simulations rm can be noticeably larger than the
conventional Eulerian grid size. If rm is smaller than the
Kolmogorov scale, 	 is sufficiently small and the velocity
field is fully resolved, then our Lagrangian simulations ap-
proach DNS.6,9

We note that the scalars fluctuate around their average
values

	Z���
 � � Z���PdZ . �7�

As in Ref. 9, angular brackets are used to denote averaging
over the ensemble of particles �with turbulent velocity field
being given� and not the averages over the ensemble of re-
alizations of turbulent flows. In the case of convergence to
DNS, the variance 	�z����2
, z����Z���− 	Z���
 is interpreted
as representing stochastic errors indicating incomplete con-
vergence, but in sparse-Lagrangian methods we treat these
fluctuations as representing the high-frequency components
of the fields that are filtered out in simulations and can be
called Lagrangian subgrid fluctuations. This interpretation
corresponds to FDF approaches. The FDF simulations are
not intended to reproduce all details of the scalar field, in-
stead, these simulations are focused on emulating equivalent
statistics. Reproducing realizations of the fields can be called
strong simulations while emulating equivalent statistics can
be called weak simulations, in accordance with commonly
adopted mathematical terminology.7

We now nominate the function that represents a model

for F̄ in Eq. �5�. The filtering operation applied to P produces

a new distribution function P̄ and we assume that F̄= P̄M0

where M0 is a normalization constant that can be interpreted
as the total mass present in the domain under consideration.

The filtered PDF P̄ satisfies the equation

� P̄

�t
+ � · �UZP̄� +

�W���P̄

�Z��� − �dP

dt
�mix = � · �D � �P�−1� , �8�

where

�̄Z =
�P

P̄
, �9�

conditional filtered averages evaluated for any � and condi-
tioned on a fixed value of Z while W���=W����Z� is the
chemical source term in the model. This equation coincides
with Eq. �5� provided the mixing term in Eq. �8� emulates
behavior of the dissipation term in Eq. �5�. We also expect
that UZ represents a model for UY implying local isotropy of
the physical fields at the Eulerian subgrid scales.

The sparse-Lagrangian methods are FDF simulations
that directly simulate the largest fluctuations and emulate the
smaller fluctuations by variations of z���. If the number of
particles is very large, simulations can be performed under
conditions of convergence with localizations approaching the
regime of direct simulation of all fluctuations. Under these
conditions, many mixing models will perform adequately
due to convergence to DNS conditions and quality simula-
tions are achieved at a high computational cost. Economical
simulation using a relatively small number of particles is a
more challenging task for a mixing model, since under
sparse conditions this model handles a larger fraction of sca-
lar fluctuations. High quality of the mixing model is of prime
importance in this case. Thus, in the framework of Lagrang-
ian simulations, quality simulations can be achieved by using
a large number of particles with localized mixing, or by em-
ploying a good mixing model and a limited number of par-
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ticles. Comparing two mixing models requires that compat-
ible number of particles is used in the simulations, otherwise,
this comparison is more linked to computational perfor-
mance than to quality of the models. It should be noted that
the minimal number of particles required in quality simula-
tions is dependent on complexity of the problem: more com-
plex cases need more particles to represent accessible vol-
ume in composition space.33

IV. FILTERED MEAN AND VARIANCE

The modeling Eq. �8� matches the FDF Eq. �5�, provided
that the mixing operator correctly emulates the dissipation
term. This can be symbolically expressed by the following
equality:

�0�dP

dt
�mix =

�2N̄Y
����F̄

�Y��� � Y��� . �10�

This equality, however, is difficult to satisfy exactly and this
problem is well known in all mixing models as the problem
of mixing. Indeed, the first moment of the rhs is zero while
the first moment of lhs is not due to numerical diffusion. We,
of course, can always minimize numerical diffusion by intro-
ducing more and more particles and localizing mixing but
this, effectively, would convert our simulations into DNS
with heavy computational costs. We qualitatively assess the
major differences for filtered mean and variance that stem
from surrogate nature of particle mixing under sparse condi-
tions. In this section, for the sake of simplicity we assume
constant density �=const and neglect the chemical source
term. Here and in the rest of the paper, our analysis is applied
to any scalar selected from Y��� ��=1, . . . ,ns� and, unless
this may cause a confusion, we tend to omit the superscript
index �. This implies that equations under consideration are
applicable to any of the scalars Y�1� , . . . ,Y�ns�. However, the
superscript � is retained when a particular scalar needs to be
nominated �for example, the mixture fraction�. The filtered
scalar transport equation takes the form

�Ȳ

�t
+ U · �Ȳ − � · ��Df + D� � Ȳ� = 0,

where the gradient-diffusion approximation is used �UY

−UȲ�=−Df � Ȳ and Df represent turbulent diffusion coeffi-
cient related to the filtering scale rf. The equation for the
resolved scalar field 	Z


�	Z

�t

+ U · �	Z
 − � · ��Dm + D� � 	Z
� = 0 �11�

involves the numerical diffusion effects represented by coef-
ficient Dm�rm

2 /	 as discussed in Refs. 6 and 9. Here, rm is
the mixing interaction radius, which characterizes locality of
mixing, and 	 is the mixing time. Note that unless the num-
ber of particles is sufficient to achieve the DNS regime, Dm

is likely to be dominant over D. The filtered version of this
equation becomes

�	Z

�t

+ U · �	Z
 − � · ��Df + Dm + D� � 	Z
� = 0, �12�

where the gradient-diffusion approximation �U	Z
−U	Z
�
=−Df � 	Z
 is consistently applied. The direct influence of
numerical diffusion is minimal if Df 
Dm and this happens
when rf 
rm. This implies that distance between particles
must always be much smaller than the integral scale of the
problem under consideration and we always assume that rm

belongs to the inertial interval of turbulence. The other for-
mulation of this restriction is that mean parameters must not
change significantly within the mixing distance rm. It must be
noted that a similar restriction applies to any finite difference
method, Lagrangian or Eulerian: the solution must be ob-
served at scales much greater than the grid size. In intensive
Lagrangian models particles are allowed to mix when they
are within the same Eulerian cell and this generates numeri-
cal diffusion with Dm linked to the cell size. The cell size is
typically much smaller than the macroscale of the problem.
In sparse-Lagrangian methods, rm is larger and we properly
resolve only the largest fluctuations present in the flow. The
filtering length rf is introduced here as an observation
scale—the mixing model does not depend on this scale. In
extreme conditions of having a small number of particles, it
may be difficult to select any reasonable value of rf. In this
case, the filtering operation specified in Eq. �1� and used in
other equations should be interpreted as ensemble average.
Note that Lagrangian resolved scales are always linked to the
mixing distance rm and can be linked to the characteristic
distance between the closest particles r1 only because rm is
never smaller than r1. Perhaps Lagrangian subgrid fluctua-
tions should be more accurately referred to as “sub-mixing-
distance” fluctuations but this notation does not seem appro-
priate from a linguistic point of view.

The numerical viscosity also affects the variance sup-
pressing all small-scale fluctuations of 	Z
 at distances below
rD where rD= �Dm

3 / �̄�1/4= �Dm /D�3/4rK is the scale calculated
on the basis of Dm and rK is the Kolmogorov scale, assuming
that �̄ is the average dissipation of energy and that diffusion
D is the same as viscosity. The fluctuations of intensity �m

��Dm / �̄�1/2̄ are attenuated by the excessive diffusion where
the scalar dissipation is approximately the same for the scalar
and its model

̄ = D��Y�2 � Dm��	Z
�2

due to the similarity of the large-scale structures of these
fields. Hence, the resolved variance �	Z
= 	Z
2− 	Z
2 appears

to be smaller than the physical variance �Y �Y2− Ȳ2 by �m

so that �Y −�	Z
=�m. The variance of Z also has two com-
ponents the resolved �	Z
 and unresolved �or subgrid� 	z2
 as
determined by �Z�	Z2
− 	Z
2=�	Z
+ 	z2
 where z�Z− 	Z
.
The equations for the filtered variance can be found in Ref.
34 while the equation for 	z2
 is derived in Ref. 9. The dis-
sipation of resolved variance �	Z
 is given34 by the term 2̄

and the same term represents9 generation of subgrid variance
	z2
. The subgrid variance 	z2
 dissipates due to mixing and
its dissipation term is �d	z2
 /dt�mix=2	z2
 /	. Under quasi-
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steady conditions, generations of subgrid variance matches
its dissipation so that 	z2
= ̄	.

We, of course, wish to see that the subgrid variance 	z2

emulates the variance component �m negated by the numeri-
cal diffusion. Substituting Dm�rm

2 /	 into �Dm / �̄�1/2̄� ̄	
results in 	3=rm

2 / �̄. This is simply the inertial interval link
between time 	 and distance rm—the same estimate was pre-
viously obtained in Ref. 6 from different considerations. This
link, which can be expressed by

	 = Cm rm
2

�̄
�1/3

, �13�

where Cm is a constant, ensures that “correct” subgrid vari-
ance is generated by the model. If 	 is too small, then 	z2
 is
underproduced; if 	 is too large, then 	z2
 exceeds �m.

It should be noted that the filtered mean and variance are
not the only way how surrogate �i.e., simulated� mixing af-
fects the scalars—numerical diffusion suppresses all subgrid
joint features of the scalars at small scales and these features
have to be emulated by a mixing model. For a given mixing
model, it is not guaranteed that these features are emulated
well. In Secs. V–VIII, we consider how emulation of subgrid
fluctuations of the scalars can be improved using the ap-
proach.

V. REFERENCE VARIABLES IN GENERALIZED MMC

The MMC approach is characterized by using reference
variables. These variables simulate properties of turbulence
that affect combustion processes. The choice of reference
variables can include variables simulating mixture fraction,
velocity components, dissipation, and/or other quantities.
The reference variables must not coincide with the simulated
reactive species, otherwise independence of simulated sca-
lars is violated. Hence, if mixture fraction �or mixture
fraction-like variable� is used as MMC reference variable,
there must be another mixture fraction that is linked to simu-
lated reacting scalars. In the original MMC,10 the reference
variables were represented by Markov processes. Here, we
follow a more general understanding of MMC �Refs. 6 and
26� and allow for reference variables being simulated by a
DNS �or LES� solver according to conventional transport
equations

�
���i�

�t
+ �U · ���i� − � · ��D� � ��i�� = �S�i�. �14�

A large class of transport equations can be written in this
form, for example, if ��i� represents velocity then the source
term S�i� must involve the pressure gradient. Note that lower-
case indices i and j are consistently used to denote values
related to the reference variables while the values related to
simulated scalars are indexed by Greek superscripts. The
MMC-LES model introduced in Ref. 6 involves only one
reference variable—the LES mixture fraction. At this stage,
this approach seems to be the most practical.7,8 Here, we
have many reference variables ��1� ,��2� , . . . ,��nr� but do not
consider the differential diffusion effects so that all diffusion
coefficient D� are presumed to be the same. The filtered mass

density function �̄=����−��� satisfies the following equa-
tion:

��̄

�t
+ � · �U��̄� +

��S�i� + J�i����̄

���i� = 0. �15�

The FDF governing equation can also be written in the dis-
sipative form

��̄

�t
+ � · �U��̄� +

�S�
�i��̄

���i� +
�2N̄�

�ij��̄

���i� � ��j� = � · �D� � ���−1� ,

�16�

where J���=�−1� · ��D����i�� ,N�ij�=D����i� ·���j� and the
subscript “�” is used to denote conditional density weighted
filtering

�̄� =
��

�̄
�17�

for any � where �=����−���. Since the term on rhs of Eq.
�16� can be neglected, we note that these reference variables
comply with the conditions imposed in deterministic MMC
�Ref. 10� on the reference variables. Hence, the “filtered”
CMC closure for these equations35,36

�Q�̄

�t
+ � · �U�Q�̄�

+
�

���i�QS�
�i��̄ + Q

�N�
�ij��̄

���j� − N�
�ij��̄

�Q

���j�� = W̄��̄ , �18�

neglecting correlations of the U-Y conditional fluctuations
creates variables Y=Q�� ,x , t� that are compliant with the
FDF Eq. �5� assuming that the rhs of this equation is consis-
tently neglected. In this work, however, we use the stochastic
form of the MMC approach and do not need to employ this
property directly. We imply that Eq. �18� is applicable to any
of the scalars Q���, �=1,2 , . . . ,ns and Y=Q�� ,x , t� means
that Y���=Q����� ,x , t� for any �.

In stochastic MMC, the reference variables are used to
enforce the desired properties on the mixing operator. The
best known reference variable in nonpremixed combustion
is, of course, the mixture fraction. Accurate simulation of the
reference mixture fraction improves simulation of the sca-
lars. Thus, the best possible simulation of mixture fraction is
achieved by DNS, while LES represent the second best op-
tion with Eulerian subgrid fluctuations being filtered out. In
general, these subgrid fluctuations can be emulated by a sto-
chastic process26 but it seems that under sparse conditions
when Lagrangian grid scales are much larger than Eulerian,
these additional Eulerian subgrid stochastic emulations do
not have any significant effect on results.7,8 Eulerian simula-
tion of one additional scalar variable does not impose any
significant computational cost on LES. It must be stressed
that MMC does not reproduce a joint FDF distribution of
scalars Y and reference variables �—the reference variables
are only used to improve simulation of the joint FDF of the
scalars Y. The reference mixture fraction, say ��1�, and the
simulated mixture fraction, say Y�1�, are represented by dif-
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ferent variables. In sparse-Lagrangian formulation, a large
saving of computational cost is achieved by evaluating react-
ing scalars Y only at relatively few Lagrangian particles. It
must be noted that the chemical source terms depend only on
the simulated scalars Y and do not depend on any of the
reference variables �.

We now turn our attention to Lagrangian properties of
the reference variables. These properties are analyzed from
the perspective of moving particles: conventional fluid par-
ticles or diffusing particles that slightly deviate from the fluid
particles due to random walk simulating molecular �or sub-
grid� diffusion. The Lagrangian properties of the reference
variables are closely linked with the equation for expectation
of a selected scalar Y conditioned on the reference

variables.37 The equation for conditional filtered average Ȳ�

is now written in the form35,36

�Ȳ��̄

�t
+ � · ��UY���̄� +

��YS�i� + YJ�i����̄

���i�

= W̄��̄ + �−1 � · ��D � Y���̄ . �19�

These conditional equations can be derived by using tech-
niques of Ref. 11 to obtain equations for fine-grained PDFs
and then applying filtering instead of the ensemble averag-
ing. If D=0 and W=0, Eq. �2� governs trajectories of fluid

particles. We can introduce Lagrangian FDF �̄L= Ȳ��̄ /Y0

where Y0 is a normalization constant and Lagrangian condi-

tional averages �̄L�= �Y��� / Ȳ� for any � and note that in this
case the FDF Eq. �15� is still valid but Eulerian averages
must be replaced by Lagrangian averages for the coefficients
of this equation. This feature was first noted by Pope.1 If,
however, D�0, an additional term—the last term of the Eq.
�19�—appears in the FDF equation. The FDF equation can
be written in alternative, dissipative form

�Ȳ��̄

�t
+ � · ��UY���̄� +

��YS�i����̄

���i� +
�2�YN�ij����̄

���i� � ��j�

−
���D + D�� � Y · ���i����̄

���i�

= W̄��̄ + � · �D� � �Y��−1� + � · ��D − D�� � Y . �20�

Note that, even if D=0, this equation differs form the equa-
tion, which can be formally obtained from Eq. �16� by re-
placing Eulerian averages by Lagrangian averages, due to the
last term on lhs of Eq. �20�. The reference variables are used
in Sec. VI to define the MMC-LES model.

VI. THE MMC-LES MODEL

Improvements in simulation of mixing are achieved in
MMC by localizing mixing in the space of the reference
variables. These improvements can be considered from the
perspective of equation for filtered average 	Z
� that is con-
ditioned on given values of the reference variables. The
equation for the value of Z averaged over subgrid fluctua-
tions modeled variable takes the form

�
�	Z

�t

+ �U · �	Z
 − � · ��D � 	Z
� = �W + ��d	Z

dt

�
mix

�21�

and is derived in Ref. 9. The last term in this equation is kept
since this term is responsible for numerical diffusion induced
by mixing. This equation results in the following equation
for the conditional average:

�	Z
��̄

�t
+ � · ��U	Z
���̄� +

��	Z
S�i� + 	Z
J�i����̄

���i�

= W̄��̄ + �−1 � · ��D � 	Z
���̄ + �d	Z

dt

�
mix
���̄ . �22�

Comparing Eqs. �19� and �22� indicates that the last term in
Eq. �22� is spurious. Generally, we would like to have

�d	Z

dt

�
mix

� 0 �23�

but satisfying this condition is not practical or realistic with a
limited number of particles. Numerical diffusion can be
eliminated by introducing a very large number of particles
and approaching the DNS limit. This computationally expen-
sive option is not of prime interest in this paper dealing with
sparse-Lagrangian simulations. There is another possibility
of satisfying condition �23�—reducing or completely elimi-
nating mixing. In terms of the characteristic mixing time, this
option means 	→�. No mixing means no numerical diffu-
sion introduced by mixing and Eqs. �19� and �22� coincide. If
the velocity and reference fields are fully resolved, then La-
grangian particles without mixing would exactly reproduce
the first moment average �conditional or unconditional� of
the corresponding scalar �assuming that the exact value of
the chemical source term is specified�. In fact, 	Z
=Y in this
case—see Ref. 9. In practice, the average 	Z
 may be diffi-
cult or impossible to evaluate due to stochastic scattering and
an insufficient number of particles, but this average is an
objective characteristic that exists irrespective of the practi-
cal accuracy of its evaluation. These mixing-free simula-
tions, however, do not reproduce the joint scalar FDF well
since all variances in these simulations are absolutely inac-
curate and the values of z=Z− 	Z
 are far too large to corre-
spond to any physical case. Introducing mixing to reduce the
scalar variances to an appropriate level also introduces its
side effect of numerical diffusion. If 	 is relatively large, then
	 determines the dissipation rate of the simulated scalars. If 	
becomes small �we also assume that a sufficiently large num-
ber of particles is introduced in this case to avoid excessive
numerical diffusion�, then the scalars deviate very little from
their averages Z→ 	Z
=Y and the dissipation of Z is essen-
tially the same as the dissipation of Y. In this case mixing
time determines only the level of fluctuations 	z2
�	 but
not the dissipation rate . As discussed in previous
publications,38,26,6 the time 	 is selected in MMC to match
the expected level of conditional fluctuations but not to
match the overall dissipation rate since this rate is enforced
by using reference variables.

In general, condition �23� can be replaced by a much
weaker requirement
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�d	Z

dt

�
mix

� 0. �24�

As discussed Secs. I–V, this requirement is satisfied provided
mean characteristics of the scalars do not change signifi-
cantly on the distances comparable with the mixing distance.
This requirement is normally observed in conventional simu-
lations but this does not remove the spurious term from Eq.
�22�: condition �24� removes only the direct effect of mixing
on the averages while numerical diffusion still strongly af-
fects joint characteristics of the scalars. The MMC approach
recognizes that achieving Eq. �23� is difficult and costly
while condition �24� is insufficient for quality modeling and
introduces the following condition:

�d	Z

dt

�
mix
�� � 0 �25�

enforcing localization of the mixing operator in �-space. The
physical and modeling equations for conditional expectations
then coincide. Condition �25� effectively makes mixing com-
pliant with properties of reference variables. Enforcing these
properties improves simulation of mixing.

In MMC models, we distinguish major and minor
fluctuations.10 Major fluctuations are driven by the fluctua-

tions of the reference variables in Ȳ��� ,x , t� while minor
fluctuations represent fluctuations of Y with respect to the

conditional averages Ȳ�. If the conditional averages Ȳ� are
accurately evaluated and the reference variables ��i� are simu-
lated well then this automatically ensures correct modeling
of the major fluctuations �here we are concerned with direct
influence of mixing on major fluctuations and do not con-
sider secondary influence of minor fluctuations on major
fluctuation through chemical source terms and other nonlin-
ear mechanisms present in turbulent reacting flows�. The
MMC approach, however, does not guarantee that the minor
fluctuations, which are controlled by surrogate mixing, are
correctly simulated. The parameters of mixing have to be
selected to make minor fluctuations simulated as adequately
as permitted by surrogate mixing. Improvements in MMC
simulations of mixing are related to the fact that the influ-
ence of surrogate mixing operator is limited in MMC to mi-
nor fluctuations, while in conventional mixing models surro-
gate mixing directly influences all fluctuations. MMC is not
intended to reproduce joint distributions of the simulated
scalars Y and reference variables ��i�. Nevertheless, enforcing

correct values of Ȳ� improves simulation of the joint PDF/
FDF of the scalars Y.

It should be stressed that, since in sparse-Lagrangian
methods the concentrations of reacting species are evaluated
at relatively few particles, it is difficult to determine the val-
ues of density at numerous Eulerian grid locations. The nu-
merical problem of determining stable values of density ex-
ists even in intensive LES-FDF simulations5 but for sparse
simulations, this is a principal difficulty, which cannot be
resolved by improving numerical accuracy and needs a mod-
eling approach. Intensive simulations with sufficiently large
number of particles per Eulerian cell can stably reproduce
the filtered density in each cell5 but sparse methods do not

have this capability. Sparse methods are weak simulators and
intended to reproduce only joint FDFs of reactive scalars but
not complete turbulent fields of these scalars and, conse-
quently, not the complete density field. The MMC-style so-
lution of this problem is in using the conditional average of
density �̄Y�1� = f��Y�1� ,x , t� conditioned on a fixed value of the
simulated mixture fraction which is denoted here by Y�1�.
The method used in the simulations should provide for
smooth and stable function f�. The determined function is
then used to evaluate density �LES at every Eulerian grid
location according to �LES= f����1� ,x , t� where ��1� is the ref-
erence mixture fraction evaluated by Eulerian LES.

Enforcement of condition �25� is performed by redefin-
ing the distance between particles.6 Let xp�t� be the position
of particle p in physical space at moment t. We also intro-
duce the position of particle p in the reference space �p

=��xp�t� , t� and particle p’s position in the combined space
Xp�t�= �xp�t� ,�p�t��. The distance in combined space be-
tween particles p and q is defined by

dpq
2 = gIJ�Xq

I − Xp
I ��Xq

J − Xp
J� , �26�

where gIJ is the metric tensor that determines the metrics of
particle locality and the indices J and I run over all compo-
nents of the vector X. The metric tensor determines which
particles are considered to be close to each other and are
allowed to be mixed. It should be noted that improved local-
ization in some directions, which are determined by the use
of reference variables, inevitably worsens localization in the
other directions if the number of particles used in simulations
remains fixed. The components of the metric tensor are se-
lected to minimize the effect of numerical diffusion as dis-
cussed in Sec. VII. In practice, it is probably sufficient to
restrict gIJ to a diagonal matrix. The elements of the metric
tensor can be normalized in any way since only the relative
values of these elements matter. The most simple choice is in
selecting the same scaling for all physical coordinates and a
different scaling for the mixture fraction-like reference
variable—this scaling was used in Refs. 39, 8, 7, and 31. If
physical directions are not equivalent, the definition of local-
ity can be relaxed in more homogeneous directions and
tighten in less homogeneous directions. From an MMC per-
spective, the whole DNS/LES programming block with La-
grangian particle tracking is used only to evaluate the com-
bined reference variables Xp�t�. These variables determine
which particles are allowed to mix so that the mixing opera-
tion is localized in the combine reference space. This effec-
tively acts as an enforcer of the “correct” values of condi-

tional averages ȲX while the variations with respect to these
averages are controlled by adjusting the mixing rate 	.

VII. WHY MMC-LES IS EFFICIENT

The MMC-LES approach has been implemented for two
major flames: Sandia flames D and E.7,8,31,39 The MMC-LES
model used a single reference variable which was repre-
sented by the mixture fraction emulated by LES. The main
purpose of these simulations was in demonstrating the pos-
sibility of high quality FDF simulations using a relatively
small number of particles. While combustion in flame D does
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deviate �but not very far� from the flamelet regime, flame E
has significant extinctions and is a difficult case to model.
Generally, it could be expected that a more difficult case
needs more particles but it was found that 10 000 reacting
particles are sufficient to have very good scatter plots of
reactive species for both flames in a jet region stretching for
75 nozzle diameters. We refer to particles that are located
within a jet region and have ongoing reactions as reacting
particles—these particles impose the main computer cost.
The rest of the particles, which are outside the jet region, do
not have reactions switched on and do not impose any sig-
nificant computational cost. Computations of realistic chemi-
cal kinetics with more than 30 species and more than 200
reactions were performed on a personal workstation. In both
simulations, the LES density was evaluated with assistance
of the flamelet model. Although it is obviously premature to
discuss universality of MMC parameters, the same set of
parameters was shown to fit well flames E and D. It is worth-
while to note that the high quality and efficiency of the
MMC-LES model was understood and predicted even before
the first MMC-LES simulations were performed. The reasons
behind this high efficiency of MMC-LES approach are now
considered.

First we stress that the numerical efficiency of Curl’s
mixing under sparse conditions9 plays a role in MMC per-
formance, although the issue of model quality is a modeling
issue, which is not limited to pure numerics. Note that effec-
tive diffusion Deff of Ref. 9, which is responsible for chaotic
stirring of the particles, may have four components in a tur-
bulent flow: molecular diffusion and Eulerian subgrid diffu-
sion �which both are simulated by random walk�, as well as
numerical diffusion associated with mixing and turbulent dif-
fusion induced by vortices whose size is compatible to the
distance between particles. In conditions of having one or
more particle per Eulerian cell, the last component is not
needed.

The ability of the MMC approach to combine advan-
tages of all of the major combustion models, which was
noted in Introduction, plays its role in achieving high quality
of MMC mixing and high efficiency of MMC-LES simula-
tions. In general, as discussed in Ref. 26, MMC-LES does
not have to be sparse but, in this case, the space for improve-
ments determined by the high quality of MMC mixing would
be limited due to reduced influence of particulars of the mix-
ing model under these conditions.6 Under sparse conditions,
quality of the mixing model is the principal issue. MMC
mixing is compliant with all major requirements that are de-
sirable for good simulation of mixing.1 MMC mixing is

• conservative �i.e., preserving the amount of scalars�,
• localized �i.e., mixing is limited to the particles that

are close to each other according to a selected defini-
tion of distance between particles�,

• linear with respect to scalar values,
• independent for different scalars and
• preserving boundedness of the scalars.

As discussed in Sec. V, the MMC approach enforces
desired conditional properties on mixing. The simulated sca-

lars fluctuate jointly with reference variables �major fluctua-
tions in MMC terminology� and also fluctuate with respect to
averages conditioned on the reference variable �minor fluc-
tuations�. Thus, a good selection of reference variables and
adequate emulation of these variables is beneficial for MMC
modeling. In the original MMC model, the reference vari-
ables were simulated by a Markov stochastic process. The
best emulation of any process is the process itself, hence
using DNS or LES to generate reference variables is a logical
step toward improving MMC simulations. However, using
DNS/LES has some additional advantages. The MMC-DNS/
LES simulations are performed for a given large-scale real-
ization of the DNS/LES turbulent velocity field and this is a
significant factor that reduces the number of Lagrangian par-
ticles needed for this simulation. Representing scalars for
one realization needs fewer particles than that for the com-
plete ensemble of realizations. In MMC terms, a complete
localization of mixing in physical space under DNS condi-
tions means localization in any possible physical reference
space while partial localization in physical space involves at
least some implicit localization in a selected reference space.
An increase in computational cost induced by using DNS/
LES �instead of Reynolds average models of turbulence� for
evaluation of three velocity components, pressure, and mix-
ture fraction is heavily compensated by savings of computa-
tional time due to evaluating hundreds of reacting species at
relatively few particles.

As discussed in Ref. 7, the sparse-Lagrangian approach
is designed to produce equivalent statistics but not the com-
plete realizations of the turbulent fields. The small-scale de-
tails of the scalar fields are replaced by a surrogate mixing
process. The MMC-LES approach is not intended to repro-
duce Eulerian subgrid quantities for every Eulerian cell—the
task which imposes the heaviest computational cost on con-
ventional simulations. MMC-LES simulations are performed
at the level above Eulerian cells and this saves the largest
fraction of the computational cost. Conventional FDF meth-
ods are more expensive while sparse MMC-LES is less ex-
pensive than direct LES of all reactive species neglecting the
subgrid variance. Computational savings of MMC-LES are
especially important for cases involving realistic chemical
kinetics and dealing with hundreds of reactive species.

If the number of Lagrangian particles is small, this
stimulates numerical diffusion due to mixing between par-
ticles when the distance between them is not as small as is
needed to abate numerical diffusion. The definition of par-
ticle vicinity according to Eq. �26� creates a region around
particle 1 where mixing with this particle is allowed. This
region is shown in Fig. 2 for the case of using only one
reference variable �=��1� that represents the mixture fraction
�another illustration of selecting particles for mixing in
MMC-LES can be found in Ref. 7�. Mixing is allowed with
particles 2 and 3 that are located within the mixing volume
Vm but is not allowed with particles 4 and 5 that are located
outside this volume. A spherical mixing volume that is
shown at the background would allow mixing with particles
2 and 4 but not with particles 3 and 5. Note that enforcing
closer proximity in the mixture fraction space comes at the
cost of localization in the physical space along the surfaces
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of constant mixture fraction. The ellipsoid of inertia Iij of the
mixing volume Vm is schematically shown in the figure. This
ellipsoid illustrates the strength of numerical diffusion in dif-
ferent directions �weak across the surface of constant mixture
fraction and strong along this surface—see Sec. III B in Ref.
9�. We now demonstrate that only diffusional flux across the
surface of constant � has a significant effect on the condi-

tional expectation Ȳ�. The equation for Ȳ� involves the term
���D�Y���—the last term in Eq. �19� representing the con-
ditional average of diffusion of scalar Y. The following iden-
tities can be obtained by standard techniques for PDF
derivations11,40 for the case of constant density

�27�

�28�

These equations are identities and valid for any scalar Y.
Terms I in both equations represent a conditional filtered
average applied to the conventional molecular diffusion term
in Eq. �27� and to a similar diffusion term in Eq. �28� that
involves only component of the diffusion flux which is nor-
mal to the surface of �=const. Terms III are different in these
equations but these terms are small in high-Reynolds flows.
Terms II are identical in both equations and are linked to the
last term on lhs of Eq. �20�. Hence, to the leading order of
our analysis, terms I are effectively the same. Thus, only one
component of the diffusion fluxes of scalar Y—the compo-
nent directed across the surfaces of �=const—has a signifi-
cant effect on the term ���D�Y��� in Eq. �19� and on the

average Ȳ� conditioned on a fixed value of the mixture frac-
tion �. Our strategy of minimizing numerical diffusion in the
direction across the isoscalar surfaces enforces a reasonable
value of the diffusion coefficient in this direction and this

preserves the correct values of conditional averages Ȳ�,

which play an important role in MMC simulations of com-
bustion.

In MMC-LES, the mixing volume Vm has two different
characteristic scales and this creates more possibilities for
selecting constant Cm in Eq. �13�. In general, the mixture
fraction-related scales of Vm can be expected to play a more
prominent role in nonpremixed combustion due to strong
dependence of the reaction process on the mixture fraction.
As we increase the number of particles, two different con-
vergence strategies discussed in Ref. 9 can be applied: con-
vergence with localization and convergence with intensifica-
tion.

In the first type of convergence, the increased number of
particles is used to increase resolution and improve simula-
tions so that the size of mixing volume Vm and time 	 de-
crease as the distance between particles becomes smaller.
This approach is most effective from the perspective of the
efficiency criterion �quality per computational cost� and it
converges to DNS when the number of particles tends to
infinity. This convergence approach can preserve sparse con-
ditions by having very few particles per Eulerian cell as the
overall number of particles increases and the size of Eulerian
cells decreases. It seems that simulations with well-localized
Curl’s mixing would allow to approach DNS at a reasonable
computational cost. Whenever the true DNS regime is not
reached, the stochastic variations 	z2
 can play a positive role
of simulating fluctuations that are still not resolved. Under
these conditions, sparse-Lagrangian methods remain a FDF
method up until all turbulent fluctuations are resolved and
	z2
 becomes negligible.

In the second type of convergence, the size of mixing
volume Vm and time 	 remain the same as the number of
particles increases. The increasing number of particles in the
mixing volume ensures that particles are fully stochastically
independent from each other and, once independence is
reached, additional particles do not change particle distribu-
tions that are controlled by the distribution of a single par-
ticle. An excessively large number of particles present in
these simulations can be considered a waste of computa-
tional resources, although convergence to this limit has a
methodological significance and allows for accurate evalua-
tion of scalar averages. This limit does not approach DNS
and represents a LES-type model where the scales smaller
than the mixing scale are simulated and not resolved.

VIII. DISCUSSION AND CONCLUSIONS

Sparse-Lagrangian methods give an option of high qual-
ity simulations at relatively low computational cost due to a
relatively small number of particles �as compared to the
number of Eulerian grid cells� used in these simulations. The
MMC version of the model involves conditioning on a ref-
erence variable �or variables� simulated by LES or DNS. The
present article outlines the major principles of MMC-LES/
DNS modeling and analyzes equations for the relevant scalar
FDF. MMC conditioning is performed by localizing the mix-
ing operation in the space of the reference variable. The best
choice of the reference variable for nonpremixed combustion
is represented by the mixture fraction. The reference mixture

FIG. 2. Schematic of MMC mixing.
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fraction is obtained from Eulerian LES �or DNS�. This LES-
generated mixture fraction should not be confused with the
mixture fraction that is evaluated with �or obtained from�
reactive scalars. Conditioning on the reference variable�s�
mitigates the influence of numerical diffusion and improves
agreement between surrogate and physical mixing. The high
quality of MMC mixing allows us to use a reduced number
of particles in practical simulations.

The number of particles used in sparse-Lagrangian simu-
lations is an important parameter, which affects quality of the
simulations. Since increasing the number of particles creates
possibilities for approaching DNS �as discussed in Refs. 6
and 9�, the quality of simulations improves and the simula-
tions become less dependent on particular features of the
mixing model used in simulations when the number of par-
ticles is increased; although achieving a complete resolution
of all small-scale details of the scalar fields would probably
never be needed in practical simulations using MMC-LES.
Comparison of different mixing models should be performed
under conditions of using similar numbers of particles. It
seems that the number of reacting particles �i.e., particles in
the reacting region of the flow� per similar domains can rep-
resent a good criterion for comparison of the model efficien-
cies.

At these early stages of using sparse-Lagrangian MMC-
LES models, it is difficult to give a general recommendation
about the number of particles required for quality simula-
tions. The answer depends on the complexity of the flow and
the reaction mechanism, quality requirements imposed on
the simulations and the ability to select optimal parameters
for the mixing model. Generally, one can expect more com-
plex combustion cases that are closer to extinction to need
more particles �although we did not observe this trend in
MMC-LES simulations of flame E �Ref. 31��.

If a small number of particles is used in MMC-LES
simulations, then the spectrum of resolved scales becomes
narrow and a large fraction of scalar fluctuations is con-
trolled by the mixing operation. In this case, selecting ad-
equate values of the model parameters �practically 	 and
g44 /g11� is of principal importance. However, under condi-
tions with a very large number of particles the fraction of
Lagrangian subgrid fluctuations is small and the method be-
comes less sensitive toward selection of these parameters
while the role of numerical efficiency and good spatial local-
ization of mixing increases. A common choice of the MMC
parameters was possible for flames D and E �Ref. 31� but, at
present, the available experience with using MMC-LES is
insufficient to discuss the universality of these parameters.
One can recall that multiple attempts to find universal values
of parameters related to various types of models of turbu-
lence proved to be futile in most cases and universal values
of the MMC model parameters may never be found for
highly sparse simulations. This, of course, does not prevent
from finding practical values of model parameters for a se-
lected class of the combustion problems.

We can expect rapid development of sparse-Lagrangian
MMC-LES models in the near future. These models are rela-
tively simple and should work well when a sufficient number
of particles is used in simulations. The main challenge that

MMC model developers will have to face in the near future
is determining optimal values or models for MMC param-
eters that would allow us to perform high quality simulations
with a minimal number of particles. Knowledge of these op-
timal values for a given class of combustion problems would
bring dramatic savings of computational cost required to
solve these problems.
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