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A detailed quantitative analysis of sparse-Lagrangian filtered density
function simulations in constant and variable density reacting jet flows

M. J. Clearya) and A. Y. Klimenko
School of Mechanical and Mining Engineering, The University of Queensland, Queensland 4072, Australia

(Received 30 May 2011; accepted 5 October 2011; published online 9 November 2011)

Sparse-Lagrangian filtered density function (FDF) simulations using a generalized multiple

mapping conditioning mixing model and density coupling via a conditional form of the equivalent

enthalpy method are performed for both constant density and variable density turbulent jet

diffusion flames. The consistency between the sparse-Lagrangian FDF for the reactive species and

the Eulerian large eddy simulation (LES) for velocity along with the accuracy of the reactive

species predictions relative to the exact equilibrium solution are presented in detail. The sensitivity

to the number of particles used in the simulations, the mixing localization structure, chemistry and

numerical time step are all investigated. The analysis shows that consistency between the FDF and

LES fields is relatively insensitive to the sparseness of the particle distributions and other model

parameters but that the reactive species are strongly dependent on the degree of mixing localization

in the LES mixture fraction space. An algorithm is developed to control the localization for any

sparse distribution of particles with inter-particle distances within the inertial range, and it is shown

that reactive species predictions are sensitive to the mixing distance in a reference mixture fraction

space while there is very low sensitivity to the number of particles used in the simulations. VC 2011
American Institute of Physics. [doi:10.1063/1.3657085]

I. INTRODUCTION

The advance of computing power has increasingly made

large eddy simulation (LES) a viable approach for modeling

turbulent reacting flows. In its most common combustion

modeling form, LES involves a spatial filtering operation

whereby the large scale motions are resolved and the small

dissipative scale eddies are modeled. Since chemical reaction

rates in turbulent flows are strongly affected by the

turbulence-chemistry interactions at the unresolved scales, the

filtered chemical source term in the LES reactive scalar trans-

port equation cannot be closed solely from the resolved scale

information. The concept of the filtered density function

(FDF), defined as the probability density function (PDF) of

subfilter fluctuations,1 was developed to permit a probabilistic

treatment of the LES subfilter scale. Gao and O’Brien,2 and

later Colucci et al.,3 derive the joint scalar FDF transport

equation and illustrate the great advantage associated with

such methods—the FDF chemical reaction rate appears in

closed form thus alleviating the primary closure problem iden-

tified above. A series of papers have since systematically

advanced the FDF method to establish the governing equa-

tions and convergence of Monte Carlo numerical schemes for

the joint scalar filtered mass-weighted density function

(FMDF) for variable density flows,4 the velocity FDF,5 the

joint velocity-scalar FDF,6 and the joint velocity-scalar

FMDF.7 For the remainder of this paper, the term FDF is used

generally to describe FDF and FMDF methods. Unless other-

wise noted closure is assumed to be at the joint scalar level

whereby reactive scalars are simulated by the FDF and the

velocity is simulated by conventional Eulerian LES. Valida-

tion of FDF methods against experimental data was first per-

formed by Zhou and Pereira8 for a 2D isothermal mixing

layer. Validation against inhomogeneous jet flame experimen-

tal data using tabulated chemical source closure is found in

Sheikhi et al.9 and Raman et al.10 and the first fully closed

FDF simulation with detailed 16-step chemistry was per-

formed by Raman and Pitsch.11 Drozda et al.12 provide a com-

prehensive review of FDF developments and applications, and

in a general review of PDF methods, Haworth13 includes an

extensive discussion on the FDF subset. FDF methods also

feature in the combustion LES review by Pitsch.14

The FDF transport equations are derived from the Euler-

ian perspective, but to minimize computational cost, the FDF

is conventionally represented by an ensemble of Pope par-

ticles (Lagrangian particles with properties and a mixing oper-

ator over these properties15) observing a set of statistically

equivalent stochastic Ito equations. A survey of published

FDF applications9–11 indicates that between 15 and 50 Pope

particles are typically employed per Eulerian grid-cell used

for the LES of the velocity field. Such intensive-Lagrangian
FDF simulations can involve 10s or 100s of millions of Pope

particles across a laboratory-scale flow domain. Although the

predictions are very good, the computational cost is high.

Therefore, an extension of intensive-Lagrangian FDF methods

to practical, engineering-scale combustion systems with real-

istic chemical kinetics is enormously costly given current

computing power.14 However, the FDF can in fact be modeled

with relatively few Pope particles and therefore at very low

cost using a sparse-Lagrangian FDF implementation. The

term sparse-Lagrangian is used to denote simulations where

there are significantly fewer Pope particles for the reactive

scalar field than there are Eulerian grid-cells in the LES of
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velocity. The feasibility of sparse-Lagrangian simulations

using as few as 10 000 reacting Pope particles has been dem-

onstrated for Sandia Flames D and E.16–18 Due to the very

low cost (up to 3 orders of magnitude lower than intensive

simulations), the sparse computations were possible for

detailed 219-step chemistry and were performed on a single

personal workstation. First and second unconditional and con-

ditional moments of the reactive species are of comparable ac-

curacy to previously published intensive-Lagrangian FDF

simulations.

In addition to the practical demonstration of sparse

methods,16–18 their theory has been developed in a series of

papers establishing convergence to direct numerical simula-

tion (DNS) (Refs. 19 and 20) and LES (Refs. 21 and 15).

Additionally, an intuitive, physical explanation of sparse

methods is found in Ref. 17. Two fundamental modeling

issues have been identified for accurate and consistent FDF

simulation using a sparse distribution of Pope particles. The

first of these is density coupling; the filtered mean density

must be calculated from the relatively few particles and a

value assigned to each of the more numerous LES grid-

cells. A conditional equivalent enthalpy method was devel-

oped recently to address this situation.18 While the original

equivalent enthalpy method, developed by Muradoglu

et al.22 and demonstrated for intensive FDF simulations by

Raman and Pitch,11 ensures full consistency of FDF and

LES treatments of density, the adapted conditional method18

neglects the conditional fluctuations of the density.

The second modeling issue for accurate and consistent

sparse FDF simulations relates to the localness of the mixing

model which emulates the conditional subfilter scalar dissi-

pation. As real fluid mixing takes place locally in physical

space, this should be reflected in the simulations. Enforce-

ment of sufficient physical localness of Pope particles to

accurately mimic real fluid mixing is impractical, especially

for sparse simulations, but mixing models which enforce

localness in composition space have been found to work

very well in the RANS/PDF context.23 The model developed

for sparse-Lagrangian FDF simulations is a generalized ver-

sion17 of the multiple mapping conditioning (MMC) frame-

work for turbulent reactive flows.24,25 In MMC, the mixing

is localized within a reference space which is mathematically

independent of the reactive composition field. This independ-

ence is highly desirable in a mixing model as it ensures that

all chemical species mix equally and linearly.13,23,26 The

MMC reference space concept has much in common with

the concepts developed in the intrinsic low dimensional

manifold (ILDM)27 and reaction-diffusion manifold

(REDIM)28 methods. At the same time, MMC incorporates

conditional averaging and thus unifies joint PDF/FDF and

conditional moment closure (CMC)29 methodologies. For the

sparse simulations of Flames D and E,16,18 the MMC refer-

ence space is selected to be the filtered mixture fraction

simulated by the Eulerian LES. This selection is based on the

well known phenomenon that fluctuations of reactive scalars

in turbulent diffusion flames correlate strongly with fluctua-

tions of the mixture fraction and, as a result, localness in

mixture fraction space implies a strong degree of localness in

the reactive composition space.

There is also a principle numerical requirement of

sparse-Lagrangian FDF simulations. Even though the FDF

can be modelled accurately and consistently with sparse-

Lagrangian methods observation of the instantaneous and

local moments of the FDF such as the filtered mean or subfil-

ter variance requires a large number of Pope particles else

stochastic error is large. It is possible to evaluate stationary

statistics with those relatively few remaining particles by

accumulation in time, or alternatively the observation length

scale can be increased to encompass a greater number of par-

ticles for evaluation of instantaneous but less local statistics.

These two alternative approaches to observing the reactive

scalar statistics correspond to complementary perspectives of

the model. The first is the MMC perspective—the model is a

PDF model based on conditioning in a reference space and

the Eulerian LES is simply an input that provides the simu-

lated reference variables. The second is the LES perspec-

tive—the model is an FDF model for the LES subgrid

although the fine grain statistics are not instantaneously

observable at that scale.

In this paper, we present a detailed quantitative analysis

of sparse-Lagrangian FDF simulations with a generalized

MMC closure. While previous publications have theoreti-

cally developed the model and computationally demon-

strated its potential against laboratory flame data, here we

perform a thorough quantitative assessment of the model and

its numerical implementation for idealized jet flame condi-

tions. The flame is a simple jet and chemical reactions occur

in a thin reaction zone near the stoichiometric contour. Both

constant and variable density flows are investigated. The

structure of the paper is as follows. Section II presents the

transport equations for the LES and the joint-scalar FDF.

The generalized MMC mixing model closure is developed in

detail in Sec. III and Sec. IV describes the conditional equiv-

alent enthalpy method for density coupling. Section V

presents a description of the simulated test cases and the nu-

merical and modeling parameters that are used. Results

appear in Sec. VI which contains analysis of the localization

parameters, a demonstration of consistency between the LES

and FDF fields for a number of sparse-Lagrangian particle

distributions, and analysis of reactive scalar predictions

including sensitivity to various model and numerical param-

eters. Finally Sec. VII contains discussion and conclusions.

II. LES AND FDF FORMULATIONS

A hybrid Eulerian/Lagrangian method is used, consisting

of an Eulerian LES for the simulation of velocity, pressure,

and reference mixture fraction and a Lagrangian formulation

of the FDF for the simulation of the reactive composition

field. In this section, the two schemes are presented independ-

ently while a description of the density coupling method is

left until Sec. IV. Complete derivations of the LES and FDF

transport equations are found elsewhere3,4,30 and here we

present only the main equations and closures.

A. The large eddy simulation

In its most conventional form LES involves a spatial fil-

tering operation. The filtered or resolved quantity is given by
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�uðx; tÞ ¼
ð1
�1

uðx0; tÞGðx0 � xÞdx0; (1)

where u is the unfiltered quantity and G is a kernel function

of width DE which satisfies the requirement that

�qðx; tÞ ¼
ð1
�1

qðx0; tÞGðx0 � xÞdx0: (2)

In variable density flows, a density-weighted filter is applied

giving the Favre filtered quantity

~u ¼ qu
�q
: (3)

Application of the Favre filter to the conservation equations

for mass, momentum, and reference mixture fraction gives

@�q
@t
þ @�q~ui

@xi
¼ 0; (4)

@�q~uj

@t
þ @�q~ui~uj

@xi
¼ � @

�P

@xj
þ @

@xi
~sij � ssf

ij

� �
; (5)

@�q~f

@t
þ @�q~ui

~f

@xi
¼ � @

@xi

~Jf ;i þ Jsf
f ;i

� �
: (6)

Here, ~sij and ~Jf ;i are the resolved viscous stress tensor and

resolved diffusive flux, respectively,

~sij ¼ �q�
@~ui

@xj
þ @~uj

@xi
� 2

3

@~uk

@xk
dij

� �
¼ �q� 2~Sij �

2

3
~skkdij

� �
;

(7)

~Jf ;i ¼ ��qD
@~f

@xi
: (8)

In the above � is the kinematic viscosity and, in the present

work, the molecular diffusivity is given by D ¼ �=r where

r¼ 0.7 is the Schmidt number.

The filtered equations contain a number of unclosed

terms which are now briefly discussed. Development of clo-

sure models for the subfilter stress ssf
ij ¼ �q guiuj � ~ui ~uj

� �
is

ongoing; some of the major methods are critically evaluated

by Meneveau and Katz.31 In common with other combustion

LES publications,10,11,32,33 we adopt the relatively simple

eddy viscosity model

ssf
ij �

dij

3
ssf

kk ¼ ��q�t 2~Sij �
2

3
~skkdij

� �
; (9)

with a Smagorinsky closure for �t (Ref. 34)

�t ¼ CsD
2
E

ffiffiffiffiffiffiffiffiffiffiffiffi
2~Sij

~Sij

q
; (10)

where the coefficient Cs is determined dynamically.35 The

purpose of the additional term �dij=3ssf
kk on the lhs of Eq. (9)

is to avoid a trace-free subfilter stress tensor and it is

compensated for in the pressure term in the filtered momen-

tum equation. The subfilter mass fluxes Jsf
f ;i ¼ �q fuif � ~ui

~f
� �

in Eq. (6) are determined according to an eddy diffusivity

model

Jsf
f ;i ¼ ��qDt

@~f

@xi
; (11)

where Dt ¼ �t=rt and rt¼ 1 is the turbulent Schmidt

number.

B. The filtered density function

For the composition scalar field, / ¼ /1;…;/a;…;ð
/nsÞ, the subfilter turbulent fluctuations are represented proba-

bilistically by the filtered mass density function, FL, defined

as

FLðw; x; tÞ ¼
ðþ1
�1

qðx0; tÞf½w;/ðx0; tÞ�Gðx0 � xÞdx0; (12)

where w is the sample space for / and the fine-grained den-

sity, f, is given by the ns-dimensional delta function

f½w;/ðx; tÞ� ¼ d½w� /ðx; tÞ� ¼
Yns

a¼1

d½wa � /aðx; tÞ�: (13)

From Eqs. (2) and (12), it is apparent that integration of the

generalized function FL in scalar space yields the filtered

density ðþ1
�1

FLðw; x; tÞdw ¼ �qðx; tÞ: (14)

Furthermore, defining the conditional Favre filtered mean of

some variable / as

uðx; tÞjw ¼
Ðþ1
�1 qðx0; tÞuðx0; tÞf½w;/ðx0; tÞ�Gðx0 � xÞdx0

FLðw; x; tÞ ;

(15)

its (unconditional) filtered mean is therefore given by

~uðx; tÞ ¼ 1

�q

ðþ1
�1

uðx; tÞjwFLðw; x; tÞdw: (16)

The exact transport equation for the temporal and spatial

evolution of FL as derived by Jaberi et al.4 is

@FL

@t
þ @uijwFL

@xi
¼ @

@wa

1

qðwÞ
@Ja;i

@xi
jwFL

� �
� @WaðwÞFL

@wa
:

(17)

Note that the chemical reaction rate, Wa, appears in closed

form whereas the conditional convective flux and conditional

diffusive flux terms are both unclosed and require modeling.

By decomposing the conditional velocity as
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uijwFL ¼ ~uiFL þ uijw� ~ui

� �
FL; (18)

its closure can then be obtained through use of gradient

model for the second term on the rhs of Eq. (18)3

uijw� ~ui

� �
FL ¼ ��qDt

@FL=�q
@xi

: (19)

Similarly, decomposing the conditional diffusive flux term on

the rhs of Eq. (17) into resolved and subfilter parts and substi-

tuting a gradient diffusion flux model similar to Eq. (8) gives

@

@wa

1

qðwÞ
@Ja;i

@xi
jwFL

� �
¼ @

@xi
�qD

@FL=�q
@xi

� �
� @2

@wa@wb

� �qD
@/a

@xi

@/b

@xi
jwFL=�q

" #
;

(20)

where to ensure consistency with the LES filtered scalar

transport equation it has been assumed that4

@

@xi
�qD

@FL=qð/Þ
@xi

� �
¼ @

@xi
�qD

@FL=�q
@xi

� �
: (21)

The first term on the rhs of Eq. (20) accounts for the

resolved-scale diffusive flux and the second term is the still

unclosed subfilter conditional scalar dissipation. Its closure

is discussed below in the context of the stochastic Lagran-

gian formulation of the FDF. With the above closures, the

modeled FDF transport equation is

@FL

@t
þ @

@xi
~uiFL � �q DþDtð Þ @FL=�q

@xi

� �
þ @WaðwÞFL

@wa

¼ � @2

@wa@wb
�qD

@/a

@xi

@/b

@xi
jwFL=�q

 !
: (22)

The terms on the lhs of Eq. (22) are closed but the condi-

tional subfilter scalar dissipation term on the rhs is still

unclosed.

The FDF transport equation is (nsþ 3)-dimensional

where ns � 1 for any realistic treatment of the chemical

kinetics. To avoid the intractable cost of computing the den-

sity function via a finite-difference scheme whose cost

increases exponentially with the number of dimensions, it is

common practice to use a Lagrangian particle scheme for

which cost increases approximately linearly with the num-

ber of dimensions. Therefore, Eq. (22) is replaced by the

following equivalent stochastic differential equations:

dxp
i ¼ Ap

i dtþ bp
ijdxj; (23)

d/p
a ¼ Wp

a þ Sp
a

� �
dt: (24)

Here, the superscript p¼ 1, 2, …, N is a particle index and

indicates a stochastic value evaluated on or assigned to the

Pope particles. We use the shorthand notation (�)p¼ (�)(xp, t).
Ai and bij are the drift and diffusion coefficients and xj is the

independent Weiner process. Models for Ai and bi,j are deter-

mined by comparison of the Fokker-Planck equation corre-

sponding to Eq. (23) with the convection terms in the FDF

transport equation.3,4 Alternatively, they may be determined

by considering the filtered continuous scalar transport as a

Fokker-Planck equation for Lagrangian particle number den-

sity.19 By either approach, we get

Ai ¼ ~ui þ
1

�q
@

@xi
�q DþDtð Þð Þ; (25)

bij ¼ dij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 DþDtð Þ

p
: (26)

In Eq. (24), Sa is the unclosed mixing operator which emu-

lates the conditional subfilter scalar dissipation on the rhs of

Eq. (22). Various mixing models are available and may

involve various forms of direct exchanges between Pope par-

ticles or interactions with filtered (or mean) values. The mix-

ing models which are commonly used for PDF modeling are

Curls36 and modified Curls37 models, interaction by

exchange with the mean (IEM)38 and the Euclidean mini-

mum spanning tree (EMST) model.23 The individual and rel-

ative performances of these models are extensively reviewed

in the literature.13,26 Other advanced mixing models are also

under investigation.39–42 Published FDF simulations mostly

use the IEM mixing model. While IEM is very simple to

implement, it has two deficiencies. First, the model preserves

the shape of the subfilter distributions so that they are deter-

mined solely by initial and/or boundary conditions. Second,

the IEM model does not ensure localness of mixing. In prac-

tical, intensive-Lagrangian FDF contexts these deficiencies

are somewhat overcome due to the relatively smaller influ-

ence of the subfilter scale mixing on the macroscale features

of the flow and the implicit localness resulting from the use

of a well resolved grid. In sparse-Lagrangian FDF simula-

tions, the inter-particle distance is relatively large and, as is

the case for RANS/PDF modeling, the reactive scalar distri-

butions can be very sensitive to the form of the mixing

model. In the present work, mixing particles interact directly

with each other, similarly to Curl’s model, but the particle

pairs are selected specifically rather than randomly so as to

enforce localness in a reference space. The specific details of

the particle pair selection by generalized MMC are discussed

in Sec. III. Once selected, the pair of mixing particles, p and

q, mix linearly and discretely over a finite time step Dt such

that

/p
a tþ Dtð Þ ¼ /p

a tð Þ þ l �/p;q
a tð Þ � /p

a tð Þ
� �

;

/q
a tþ Dtð Þ ¼ /q

a tð Þ þ l �/p;q
a tð Þ � /q

a tð Þ
� �

;
(27)

where �/p;q
a is the two-particle mean, which may be weighted

if variable mass particles are used, and l ¼ 1

�exp �Dt=sp;q
Lð Þ is the extent of mixing controlled by a mix-

ing time scale, sp;q
L . The mixing timescale is determined

locally and instantaneously for each mixing pair and is related

to the dissipation time. The selection of particle pairs and the

associated model for sL are discussed in Sec. III.
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III. GENERALIZED MMC MIXING FOR
SPARSE-LAGRANGIAN FDF SIMULATIONS

To this point, the model has been presented as a conven-

tional FDF method which could be applied at high cost using

a traditional intensive-Lagrangian particle scheme. Now, we

depart from the conventional approach. In this section, a gen-

eralized MMC mixing model closure is developed which

permits a very low cost sparse-Lagrangian implementation

of the FDF method.

As described elsewhere,25 MMC is a modeling frame-

work based on a mapping to a set of reference variables.

From that framework, specific models are formulated for spe-

cific combustion cases. Therefore, we briefly introduce the

combustion case before describing the model closure. The

flame chemistry is as described by Norris and Pope43 and

later used by Subramaniam and Pope23 to test the localization

ability of the EMST mixing model. The thermochemical state

is represented by two variables: the mixture fraction, Z, and a

single progress variable Y, whose equilibrium concentration,

Yeq, is a unique function of Z. The product is formed by an

infinitely fast, one-step, irreversible reaction in a narrow stoi-

chiometric region R as shown in Fig. 1. Fuel and air mix tur-

bulently towards the thin reaction zone and upon entering it

are instantaneously converted to the equilibrium product

composition.

The thinness of the reaction zone for this idealized

flamesheet represents a particularly difficult test case for a

mixing model. Upon mixing, the Pope particle compositions

will depart from the equilibrium composition unless the as-

mixed particle compositions fall within the thin reaction

zone. To ensure that non-physical departures are avoided

particle mixing pairs in the vicinity of stoichiometry should

be local to each other by ensuring that dp;q
Z < � where

dp;q
�ð Þ ¼ �ð Þp� �ð Þqj j and � is small number determined by the

details of the flame chemistry. In the current example, we

can see that the simulated composition will be uncondition-

ally correct only if dp;q
Z is less than half the width of the reac-

tion zone. The EMST mixing model enforces this localness

condition directly by comparing Zp values of each particle in

the ensemble and as such performs very well for the thin

reaction zone conditions investigated here.23 An alternative

localization is used in MMC where mixing is local in a refer-

ence space which is mathematically independent of the in-

stantaneous values of (Zp, Yp). This ensures that MMC,

unlike EMST, treats all scalars equally and linearly. The

interpretation of independence that we use is that the refer-

ence and reactive composition fields must be modeled by dif-

ferent processes or equations. Of course some quantities

within those independent equations, such as density and ve-

locity, will be the same. Here, the reference space is given

by the Eulerian filtered mixture fraction, ~f . By using the fil-

tered field as the reference variable, the fine scale turbulent

features are, by necessity, ignored in the localization. How-

ever, typically the distance between mixing particles is rela-

tively large compared to the filter width applied to the

reference variable and then use of the filtered quantity, ~f , is a

justifiable and practical approach. The model now contains

two simulated mixture fraction variables: Z and ~f . The for-

mer, modeled stochastically according to Eqs. (23) and (24),

is treated as a real mixture fraction for the purposes of evalu-

ating the reactive scalar field, while the later, modeled

according to Eq. (6), assists the simulation of the FDF by

determining which particles are formed into pairs for mixing.

MMC models can also have additional reference variables

representing velocity, scalar dissipation, sensible enthalpy,

or other useful quantities.44–46 Since Z and ~f are independent

of each other MMC does not strictly enforce localness in

(Z, Y) space. Therefore, it is important that the Z and ~f be

topologically similar else localness in ~f would not reliably

imply localness in Z.

Particle mixing pairs are selected so that their separation

in ~f -space is less than some scale whose characteristic value

is denoted by fm. Once that criterion is satisfied, their separat-

ing distance in physical space should also be as small as pos-

sible. The characteristic physical separation scale is denoted

as rm. The correspondence between the scales fm and rm can

be approximated by considering isoscalar contours in a tur-

bulent field. Fig. 2 shows a segment of an isoscalar sliver

FIG. 1. Sketch of the flamesheet chemistry showing the thin reaction zone R
where the progress variable instantaneously reaches its equilibrium value,

Yeq. Outside R reactions do not occur.

FIG. 2. Schematic of a mixing particle pair, p and q, located on an isoscalar

sliver of thickness lf. The physical length scale between mixing particles is

rm while the length scale to the nearest particle is DL. The scalar surface is

modeled as a fractal of dimension Df ¼ 2.36 and with inner cutoff scale rc.

115102-5 A detailed quantitative analysis Phys. Fluids 23, 115102 (2011)

Downloaded 02 Nov 2012 to 130.102.158.22. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



which has a thickness lf � fm= d~f=dn
� �

, where d~f=dn is the

gradient normal to the isoscalar sliver. A particle mixing

pair, p and q, is selected such that they are the physically

closest particles with the condition that they are both located

within the isoscalar sliver. Assuming that the surface of the

sliver has fractal properties, its area is Af � rc=rmð Þ2�Df r2
m,

where rc is the inner cutoff scale and Df is the fractal dimen-

sion. Fractal properties in turbulence are discussed in a num-

ber of publications.47,48 It seems that the experimentally

observed fractal dimension is 2.36.48 In the LES, the inner

cutoff scale is the filter width: rc¼DE. In Monte Carlo simu-

lations, the number of particles found within a certain vol-

ume is independent of the shape of that volume and so the

particle mixing volume Vm � lfAf is equal to the volume of

fluid that is represented by each particle Vp � D3
L. Here, the

nominal distance between particles, DL, is the mean distance

between nearest particles in physical space without any con-

sideration as to which particles actually form mixing pairs.

Thus, DL is an input parameter determined by the number of

particles used in the simulations. Equating Vm and Vp we get

rm ¼ Cm
d~f

dn

D3
L

r
2�Df
c

1

fm

� �1=Df

; (28)

where Cm is a constant determined by matching rm to the

actual mixing distance, dp;q
x , observed in the simulations; we

find Cm¼ 0.5 works well. In the results, it is shown that two

sparse simulations with different DL can yield the same reac-

tive scalar predictions by keeping fm the same. From the

above scaling, we get rm1=rm2 ¼ DL2=DL1ð Þ3=Df where sub-

scripts 1 and 2 denote two simulations with different sparse

distributions of particles.

Selection of particle pairs to satisfy the above criteria is

achieved by minimizing the effective square distance

between particles defined as16,18

d̂2
p;q ¼

X3

i¼1

dp;q
xi

ri

� �2

þ
dp;q

~f

fm

 !2

; (29)

where ri is the characteristic mixing distance in each spatial

direction. Although selecting different physical scales in dif-

ferent directions could be of benefit, we keep the model sim-

ple and set ri ¼ rm=
ffiffiffi
3
p

for i¼ 1, 2, and 3, where the
ffiffiffi
3
p

denominator is based on the assumption that particle mixing

distance is isotropic. Minimization of d̂2
p;q leads to equality

of the normalized distances dp;q
xi
=ri and dp;q

~f
=fm. In fact, an

approximate minimization method is used which is based on

the k-d tree49 as described in Ref. 16. We select fm as a

global parameter. In general, rm is a local quantity which

varies due to variations in DL and d~f=dn according to Eq.

(28). Having different rm at different locations in the flow

would impose a large computational cost on the particle mix-

ing pair selection algorithm and so we instead treat rm (like

fm) as a global parameter which is calculated using values of

DL and d~f=dn at a characteristic location in the flow. Here

that location is the shear layer at the nozzle exit where the

scalar gradient is at its largest. Consequently dp;q
~f

and dp;q
x at

all other locations will on average be less than or equal to fm
and rm, respectively. The structure of this localization

scheme is analysed in detail in Sec. VI.

In previous publications,16–18 mixing localness has been

controlled by a parameter k which can be shown to be pro-

portional to ratio rm/fm. The current notation has been

adopted as it gives greater physical transparency to the mix-

ing localization parameters.

We now present the model for the mixing time scale,

sp;q
L , which controls the extent of mixing, l, in Eq. (27) and

thus determines the level of sub-Lagrangian-filter fluctua-

tions (i.e., the fluctuations at the scale dp;q
x ). Unless retained

for emphasis, the particle index superscripts p and q are

dropped here and in the remainder of the paper. It is under-

stood that the parameters in the following expressions are

associated with the particle locations (e.g., dx � dp;q
x is the

physical distance between mixing particles and r~f � r~f
� �p

is the gradient of the reference mixture fraction which is

simulated in the LES and interpolated to the location of the

particle). In sparse simulations dx is not small and mixing

will generate numerical diffusion proportional to d2
x=sL.19

For a given particle spacing sL must be selected to avoid ex-

cessive numerical diffusion. The value of sL can be deter-

mined by scale similarity between the FDF and LES fields in

the inertial range as described in Ref. 18. The characteristic

LES length is the Eulerian filter width, DE, with an associ-

ated characteristic Eulerian time scale, sE. From the defini-

tion of the dissipation time scale as the ratio of subfilter

scalar variance and scalar dissipation, we can write

sE ¼ ff 0 2E =v where ff 0 2E is the subfilter variance of ~f at the scale

DE, and v is the instantaneous scalar dissipation. Similarly,

we define sL ¼ ff 0 2L =v. Assuming DE and dx are within the in-

ertial range for which v is universal, it follows that

sL ¼ C�1
L

ff 0 2Lff 0 2E

sE: (30)

Nominally CL¼ 1. It was demonstrated previously16 that CL

can be tuned to effectively control the conditional variance

of the reactive species. However, since that method involves

scaling of the relation between the Lagrangian and Eulerian

time scales it may also upset the consistency of the FDF and

LES fields. In the present work, we set CL¼ 1 and show that

varying the mixing distance in ~f -space, through the explicit

mixing parameter fm, is an alternative and effective way of

controlling conditional variance while still ensuring consis-

tency between the FDF and LES fields.

Algebraic models are used for ff 02E , v, and ff 02L . For ff 02E and

v, the conventional combustion LES models32 are used,

ff 0 2E ¼ Cf D
2
Er~f � r~f (31)

and
v ¼ 2 DþDtð Þr~f � r~f ; (32)

where Cf¼ 0.1. The quantity ff 02L is particular to our sparse

FDF simulations. Similar to the form of ff 02E in Eq. (31), we

model it as
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ff 0 2L ¼ Cf d
2
xb

d~f

dx

� �2

: (33)

The coefficient b is a number between 1 and 3; the latter

value being for isotropic regions of the flow where the gradi-

ent is equal in all directions. Values of b less than three

imply anisotropy and result in smaller values of sL and thus

may lead to numerical diffusion of the FDF field if applied

universally. Thus, we set b¼ 3 which may lead to a slight

over-prediction of sub-Lagrangian-filter variance at some

locations but will avoid excessive numerical diffusion which

degrades the mean field. Incorporating the above modeling

for v and ff 02L , the mixing time scale becomes

sL ¼ C�1
L

bd2
~f

D2
Er~f � r~f

sE: (34)

If particles p and q are located in different Eulerian grid

cells, then sp
L and sq

L may vary significantly depending on the

differences in DE, r~f , and sE at those locations. Taking the

average of sp
L and sq

L is the logical choice but it can lead to

excessive numerical diffusion in some cases. To avoid this,

sp;q
L is taken as the maximum of sp and sq.

IV. DENSITY COUPLING

Two way coupling occurs between the simulated LES and

FDF fields. The LES, computed on an Eulerian grid, provides

velocity, turbulent diffusivity, and reference mixture fraction

to the Lagrangian FDF scheme which in-turn provides density

feedback to the LES. This feedback uses a conditional form18

of the equivalent enthalpy method which was first developed

by Muradoglu et al.22 and later applied for intensive-

Lagrangian FDF simulations by Raman et al.10,11 An Eulerian

transport equation is solved for a filtered enthalpy-like quantity

(the equivalent enthalpy) from which density is obtained alge-

braically. The influence of the stochastic composition is re-

stricted to the source term in the Eulerian equation. The details

of the conditional equivalent method are as follows.

The equivalent enthalpy is defined as22

hs ¼
c0

c0 � 1
RT; (35)

where c0 is the ratio of the constant specific heats, R is the

composition dependent gas constant, and T is the gas temper-

ature, taken here as being proportional to the progress vari-

able Y. The equivalent enthalpy has dimensions of energy

per mass. For a known pressure, the density is a simple alge-

braic function of hs,

q ¼ c0

c0 � 1

P

hs
: (36)

The Eulerian filtered equivalent enthalpy, denoted as ehE
s ,

observes a conventional LES equation,

@�q ehE
s

@t
þ @�qeui

ehE
s

@xi
¼ � @

@xi

eJhs;i þ Jsf
hs;i

� �
þ eWhs

; (37)

where the closures of the molecular and subfilter turbulent

fluxes are in the form of Eqs. (8) and (11). There is also a

stochastic equivalent enthalpy calculated on the Pope par-

ticles, hp
s , which is a function of the stochastic composition.

The influence of hs on the ehE
s field is through the source term

~Whs
. Generally, eWhs

can be modeled directly from the parti-

cle properties,22 but in sparse simulations, where most of the

LES grid-cells do not contain any Pope particles, direct eval-

uation of ~Whs
is not possible. Instead eWhs

is modeled as a

relaxation term which dynamically matches ehE
s with an

approximation of the FDF filtered equivalent enthalpy, ehs, at

the same location. This approximation involves the evalua-

tion of conditional means determined from particle data

according to FðZ; x; tÞ ¼ hsjZ ¼ g and used in the LES in the

form Fð~f ; x; tÞ. The overbar is used to denote that this condi-

tional average is an instantaneous quantity calculated from

an ensemble of particles in the near-neighborhood of the

location in question, and g represents the mixture fraction

sample space. Although the use of conditional averages is

approximate (conditional fluctuations are neglected), condi-

tioning on the mixture fraction is in line with MMC and

CMC philosophies and can be expected to produce reason-

ably good results for non-premixed combustion. The source

term in Eq. (37) is given by

~Whs
¼ �q

ĥs � ehE
s

srel

: (38)

Here, ĥs ¼ Fð~f Þ and srel is a relaxation time determined by

numerical conditions: excessively small values can cause

instabilities, while ehE
s would deviate from the target value

ĥs for excessively large srel. In this work, srel is set to

approximately ten times the characteristic numerical time

step.

V. CASE CONFIGURATION

A. The simulated test case

The sparse-Lagrangian FDF model with a generalized

MMC closure is quantitatively tested in simulations of a stat-

istically stationary, spatially evolving, turbulent reacting jet.

The flow is similar to the conditions used in Colucci et al.3

The flame chemistry is the same as that used by Norris and

Pope43 and Subramaniam and Pope.23 Section III previously

described the chemistry in general terms while the specific

details are discussed below.

A central circular jet with a diameter of D¼ 5 mm issues

a fuel stream (mixture fraction equal to 1) with a velocity of

U¼ 100 m/s. The co-flowing annulus of air (mixture fraction

equal to 0) extends radially to 3.5D and has a velocity of

0.5U. The flow domain extends 14D in the axial direction.

Turbulence is initiated by a low amplitude signal in the inlet

boundary velocity. Unless otherwise noted, the reactive

region R (see Fig. 1) encompasses all of Z-space for x/D< 5

(to avoid heavy extinction near the nozzle) but is limited to

0.03<Z< 0.07 and Y> 0.6 for x/D> 5. The stoichiometric

mixture fraction is 0.05 which is similar to that of methane.
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Both constant density and variable density flows are

simulated. The constant density simulations permit an analy-

sis of the model with different parameter settings without

altering the velocity field. The density and molecular viscos-

ity are uniform throughout the flow and are adjusted to give

a reference Reynolds number, based on D and U, of

Re¼ 5000. Although this is a moderate value of Re, the rela-

tive magnitude of the subfilter variance is of greater interest

as it represents the level of fluctuations which must be mod-

eled. In the shear layer, the maximum ratio of the Eulerian

subfilter variance to total variance of mixture fraction is

about 12%.

For the variable density flow, the fluid is treated as an

ideal gas with gas constant R ¼ 0:287 kJ=kgK and dynamic

viscosity of 2.0� 10�5 Ns/m2. Since density coupling has

the greatest potential to destabilize the flow solver, choosing

constant values of the other gas parameters is a convenient

simplification. The progress variable now represents the nor-

malized temperature with Y¼ 0 and Y¼ 1 corresponding to

20 	C and 2000 	C, respectively. The atmospheric pressure is

100 kPa. The reference Reynolds number based on fluid

properties at the jet nozzle is 30 000 although the kinematic

viscosity increases six-fold at stoichiometric mixtures sug-

gesting a representative Reynolds number closer to 5000. In

the shear layer of the variable density jet, the maximum ratio

of the Eulerian subfilter variance to total variance of mixture

fraction is about 15%.

B. Modeling and numerical details

The LES equations are solved in the cylindrical coordi-

nate system using the Flowsi code described by Kempf

et al.50 For the constant density flow, the equally spaced

LES grid has 140 cells in the axial direction, 35 cells in the

radial direction, and 32 cells azimuthally. For the variable

density flow, the jet decays more slowly in the axial direction

and consequently the numerical diffusion relative error is

higher than in the much faster decaying constant density

case, thus requiring a doubling of the grid resolution in the

axial and radial directions. The LES is a numerical scheme51

in that the filter width is given by the grid size; specifically

we set DE as the cubed root of the grid-cell volume. A

second-order central differencing scheme is used for the mo-

mentum transport while a nearly second-order total variation

diminishing (TVD) scheme is used for the reference mixture

fraction equation. All filtered equations are advanced in time

using a third-order Runga-Kutta method. Although the den-

sity is variable, the Mach number of the flow is relatively

low and a predictor-corrector approach is used to advance

pressure consistent with continuity.

The FDF spatial transport is governed by Eq. (23) which

is integrated using a first-order Euler-Maruyamma approxi-

mation52 with LES quantities estimated at the particle loca-

tions by tri-linear interpolation. The number of Pope particles

is set proportionally to the number of LES grid-cells. Results

are presented for 20 particles per grid-cell (the intensive case)

denoted as 20L/1E, 1 particle per 8 grid-cells denoted as

1L/8E and 1 particle per 27 grid-cells denoted as 1L/27E. For

the intensive case, unless otherwise noted, modified Curl’s

mixing is used; particle mixing pairs are selected randomly

from within each LES grid-cell and compositional localness

is not otherwise controlled. The mixing time scale for the in-

tensive simulation is given by sL¼ sE. For the sparse simula-

tions, 1L/8E and 1L/27E, generalized MMC mixing is used

with three different values of fm, namely fm¼ 0.06, 0.04, and

0.02. The nominal particle spacing, DL, is a local parameter

which, like the Eulerian grid size, increases with the radius.

In the shear layer it is approximately 1 mm and 1.4 mm for

the 1L/8E and 1L/27E simulations, respectively. The corre-

sponding Eulerian filter size in the shear layer is

DE ’ 0:5 mm.

The time increment is determined by the Courant-Frie-

drichs-Levy stability criterion that max (uDt/DE) 
 nCFL.

The same time increment is applied to both the Eulerian and

Lagrangian systems. For most simulations in the present

work nCFL¼ 0.7. An additional simulation is performed with

nCFL¼ 0.35 to test the sensitivity to the numerical time step.

Density coupling requires the evaluation of conditional

means hsjZ ¼ g which are determined from the ensemble of

particles in the near-neighborhood of the location being con-

sidered. Calculation of hsjZ directly from instantaneous par-

ticle data will have a large stochastic error unless the

ensemble volume is unrealistically large. Conditional mean

profiles of ĥs are instead selected from a pre-computed table

of approximate conditional average curves as shown sche-

matically in Fig. 3. ĥs is the ordinate of the curve when the

abscissa is ~f . The conditional curve which best matches the

local particle field is the one with minimal variance relative

to the particles. The profile shapes of the pre-computed

curves should be similar to the conditional average profiles

predicted by the particles and could be determined in a vari-

ety of ways including from experimental or previous simula-

tion data.

Weighted particles are used to ensure the desired resolu-

tion at all locations regardless of cell mass. The domain is

divided into particle-number control cells which contain

multiples of the LES grid-cells in the axial, radial,

FIG. 3. Schematic showing how ĥs in Eq. (38) is calculated. The conditional

average profile through the ensemble of particle compositions (Zp, hp
s ) is

approximated by a smooth curve selected from a pre-computed table.
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and azimuthal directions. The control cells sizes are for case

20L/1E—(1 axial LES cell, 1 radial LES cell, 1 azimuthal

LES cell); case 1L/8E—(1,1,32); and case 1L/27E—

(5,5,32). The control cells are used only for maintaining the

desired particle number and for defining the extent of the

particle ensemble for calculating ĥs (see previous paragraph).

Results are analyzed using both instantaneous and Reyn-

olds averaged quantities; the latter are equivalent to time-

averages in this statistically stationary flow and are evaluated

from a discrete time-series of approximately 2000 instantane-

ous images of the field collected over a time of approximately

15 domain flow-throughs. Although the time-averaging of

more sparse simulations is based on fewer instantaneous data

points our tests confirm that, apart from some additional

smoothness, results do not change with a doubling of the

simulated time. Unless otherwise noted, an ensemble domain

of width DE is used for evaluation of the moments of the

FDF.

VI. RESULTS

The analysis examines the structure of the mixing model

localization, consistency between the LES and FDF passive

scalar fields, and comparison to the known exact solution for

the single reactive scalar. The sensitivities of FDF predic-

tions to different particle spacing and mixing localization pa-

rameters (i.e., fm and rm) and to some numerical parameters

are explored in detail.

A. Localization structure

The model has one localization parameter which must

be defined explicitly, namely fm. This quantity is a character-

istic distance in ~f -space between mixing particles and is used

to define the quantity d̂2
p;q in Eq. (29). We will see in the fol-

lowing subsections that the value assigned to fm does not sig-

nificantly affect the consistency between the FDF and LES

mixture fraction fields but that reactive scalar predictions are

strongly sensitive to fm. The other localization parameter, rm,

is a characteristic distance between mixing particles in physi-

cal space. It is a global parameter calculated according to

Eq. (28) based on the flow properties in the shear layer at the

nozzle exit. Therefore, we should observe that the mean mix-

ing distances at the shear layer at the nozzle exit are

hd~f i ¼ fm and dxh i ¼ rm. (The averaging symbol �h i denotes

averaging over time and around the azimuthal direction.)

Table I indicates that the degree of correspondence between

hd~f iSL (SL¼ shear layer) and fm is generally quite good.

While the correspondence between dxh iSL and rm is less

satisfactory (the actual distance tends to be greater by

approximately 0.5 mm), the correct trend is observed. This

small discrepancy between dxh iSL and rm may be explained

by the likely incorrect assumption that the distance between

mixing particles is isotropic (i.e., ri ¼ rm=
ffiffiffi
3
p

in Eq. (29)).

Table I also contains data for the intensive simulation 20L/

1E. Since modified Curl’s model is used for that case fm is

not a free parameter but the distances between mixing par-

ticles are never-the-less important to the outcome of the sim-

ulation. It can be seen that hd~f iSL for 20L/1E is quite large

relative to the sparse simulations despite the much smaller

value of dxh iSL.

Figures 4 and 5 show 2D planar images of hd~f i and dxh i,
respectively. The obvious effect of reducing fm (right to left

in the figures) is to yield lower particle mixing distances in
~f -space while increasing the mixing distances in x-space.

Comparing the results for 1L/8E and 1L/27E, it can be seen

that for a given value of fm the value of dxh i increases when

fewer particles are used. Thus of all the simulation cases the

greatest values of dxh i (of the order of 3.5 mm) occur in the

shear layer for 1L/27E with fm¼ 0.02. Further downstream,

where scalar gradients are smaller, lower values of hd~f i and

dxh i are observed in all the simulations. Fig. 6 shows the

shear layer axial profile of dxh i. In order to gauge the magni-

tude of the particle mixing distance, and mindful that the

sparse-Lagrangian scheme should resolve the large scale

eddies while modeling their dissipation, we should consider

its value in relation to the nozzle radius (2.5 mm) which is

the upper limit of the integral length scale. Figs. 5 and 6 indi-

cate that dxh i is larger than 2.5 mm over most of the shear

layer region for simulation 1L/27E with fm¼ 0.02 and for at

least the first few jet diameters downstream of the nozzle for

1L/27E with fm¼ 0.04 and 1L/8E with fm¼ 0.02. We note,

however, that the nominal shear layer particle spacing, DL,

which is the distance between particles without considering

which particles mix, is only 1 mm and 1.4 mm for 1L/8E and

1L/27E, respectively. Therefore, while there are sufficient

FDF particle numbers to resolve the large-scale eddies, the

assumption that the particle mixing time, sL, can be based on

inertial range scaling may not be completely accurate. We

will see in Sec. VI B that, despite this deficiency, the FDF

predicts a scalar mixing field which is largely consistent with

the LES mixing field.

A quantitative comparison of mixing distances in ~f -

space is found in Fig. 7 which shows radial profiles of hd~f i
at three different axial stations. The results demonstrate the

ability of the localization scheme to match the mixing dis-

tance in ~f -space for 1L/8E and 1L/27E despite the different

numbers of particles used. The usefulness of this is

demonstrated below when presenting the reactive scalar

predictions.

B. Consistency of the sparse-Lagrangian FDF
and the LES in the constant density flow

The consistency between the FDF with an intensive-

Lagrangian numerical scheme and the LES equations for

TABLE I. Mean mixing distance between mixing particles in the shear

layer at the nozzle exit in ~f and x-spaces as a function of fm and rm.

Case fm hd~f iSL rm (mm) hdxiSL (mm)

20L/1E — 0.14 — 0.30

1L/8E 0.020 0.015 2.0 2.5

0.040 0.038 1.4 2.1

0.060 0.064 1.2 1.7

1L/27E 0.020 0.017 3.6 3.9

0.040 0.034 2.5 3.1

0.060 0.076 2.1 2.5
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filtered scalar transport has been demonstrated, by others, in

both constant density3 and variable density4 reacting flows.

The purpose of this section is to demonstrate that the con-

sistency can also be maintained using a sparse-Lagrangian

model for the joint-scalar FDF. Here, we analyze consis-

tency of the mixture fraction fields in the constant density

flow and in Sec. VI D, the same is done for the variable

density flow.

FIG. 4. (Color online) 2D planar images of the mean distance in ~f -space

between mixing particles. The right-hand edge of each figure is the jet axis.

Axial and radial dimensions are in metres.

FIG. 5. (Color online) 2D planar images of the mean distance in x-space

between mixing particles. The right-hand edge of each figure is the jet axis.

Mixing distance and axial and radial dimensions are in metres.
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First, we analyze the instantaneous mixture fraction

fields. Figure 8 shows planar images of the instantaneous fil-

tered mixture fraction for both the LES and the two sparse

FDF schemes with fm¼ 0.06. The observation scale for cal-

culating the filtered quantity is equal to DE, 5DE, and 7DE in

the top, middle, and bottom figures, respectively. Obviously,

FIG. 6. (Color online) Mean mixing distance in x-space along the shear

layer at r/D¼ 0.5.

FIG. 7. (Color online) Radial profiles of mean distance in ~f -space between

mixing particles. Legend as per Fig. 6.

FIG. 8. (Color online) 2D planar images of the filtered mixture fraction

obtained from LES, 1L/8E FDF with fm¼ 0.06 and 1L/27E FDF with

fm¼ 0.06. The observation scale for evaluating the filtered quantity is DE

(top), 5DE (middle), and 7DE (bottom). The right-hand edge of each figure is

the jet axis. Axial and radial dimensions are in metres.
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when a sparse distribution of particles is used, it is not possi-

ble to calculate the filtered value observed at the DE scale at

very many locations, and at the locations where a finite value

is calculated, there is a large stochastic error. When the ob-

servation scale is increased to include more particles in the

ensemble, the FDF filtered mixture fraction fields begin to

more closely resemble the LES field (filtered over the same

observation scale), although even for the 7DE observation

scale notable differences remain, especially for the very

sparse 1L/27E case. These differences are attributed to sto-

chastic error which is linked to the number of particles in the

ensemble. For an observation scale of 5DE, there are on-

average about 16 particles in the ensemble for the 1L/8E

simulation and 5 particles in the ensemble for the 1L/27E

simulation. When the observation scale is increased to 7DE

those particle numbers increase to 43 and 13.

A comparison of the Reynolds averaged LES and FDF

mixture fraction fields is presented in Fig. 9 which shows ra-

dial profiles of the mean and rms at three axial locations.

Generally the FDF mean fields are in good agreement with

the LES mean field and, furthermore, there is only a rela-

tively small level of sensitivity to the number of particles

used. There is stochastic noise apparent near the jet axis

which increases with the sparseness of the simulations. There

is also a small amount of bias error in the FDF simulations,

which appears as an over-prediction of the mixture fraction

near the centerline for x/D> 10, for both 1L/8E and 1L/27E

with fm¼ 0.04 and 0.02. This bias error is caused by enforc-

ing localization in ~f -space (small d~f ) while permitting dx to

increase beyond the integral length scale (see discussion in

Sec. VI A). This results in particles downstream being

preferentially influenced by particles from upstream eddies.

Importantly, the bias error does not appear for the intensive

case, 20L/8E, nor either of the sparse FDF simulations with

fm¼ 0.06 when localization is ~f -space is less strictly

enforced and dx remains smaller than the integral length

scale. Numerical diffusion is also evident in the mean result

obtained for 1L/8E with sL¼ sE (shown as a red line in Fig.

9 in the online version of the paper). For sparse simulations,

sL is normally scaled relative to sE according to Eq. (34). For

dx>DE, the scaling factor, C�1
L bd2

~f
=D2

Er~f � r~f , is typically

greater than one and so the subsequent increase in sL relative

to sE compensates for the increase in numerical diffusion

which occurs if the scaling is not applied.

Radial profiles of the total rms are also shown in Fig. 9.

The LES value is given by the square root of the sum of the

resolved and subfilter variances, h f 02E i
1
2 ¼ ðhefE

02i þ hff 02E iÞ
1
2,

where ff 02E is modelled according to Eq. (31). We have chosen

to present total rather than subfilter rms since the former is a

physical quantity whose consistency between the FDF and

LES is of greatest interest and furthermore it can be eval-

uated locally at an observation scale of DE, even for sparse

particle distributions. It is, of course, possible to observe sub-

filter variance over scales that correspond to the inter-

particle distance but that does not change the magnitude of

the total rms; as the subfilter variance increases with length,

the resolved variance decreases such that the total variance

remains unchanged. The mixture fraction total rms results in

Fig. 9 reveal a very low sensitivity to the number of particles

used in the simulations and also very low sensitivity to the

value of fm with only very minor differences apparent

FIG. 9. (Color online) Radial (left) and axial (right) profiles of the average and rms of mixture fraction. Symbols, LES; lines, FDF results denoted as per Fig.

6. An additional FDF result is included for 1L/8E with sL¼ sE.
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between the various results. While there is good qualitative

agreement between the FDF and LES fields, there is also a

systematic relative over-prediction of the FDF rms at all

locations and particularly near the centreline at locations far

downstream of the nozzle. The presence of this quantitative

inconsistency is not unexpected; similar discrepancies are

reported in previous FDF publications.9,10 Inspection of the

LES subfilter variance, ff 02E , reveals that even at its peak rela-

tive magnitude, it accounts for only 2% or 3% of the total

rms. Therefore, we believe that the inconsistency occurs due

to differences in the resolved scale fluctuations of the LES

and FDF fields. Note that the intensive case also gives a

higher FDF mixture fraction rms. The transport equation

terms most responsible for the generation of resolved scale

variance, the resolved convective fluxes, are modeled differ-

ently in the LES and FDF schemes. In the FDF, the convec-

tive flux is conditionally averaged (viz. Eq. (18)) and closed

via a gradient diffusion model (viz. Eq. (19)) which does not

appear in the LES mixture fraction equation. It is noted,

however, that the unconditional convective flux is the same

in both the FDF and LES.3 It is beyond the scope of the cur-

rent work to quantify and remove these inconsistencies

which are not specific to sparse-Lagrangian FDF simula-

tions. Moreover, comparison with experimental data18 indi-

cates that the LES total rms is often significantly affected by

numerical diffusion and therefore the FDF prediction may be

more accurate.

An alternative view of the correlation between the

FDF and LES simulated mixture fraction fields is given in

Figs. 10 and 11 which show scatter plots of instantaneous

Zp versus ~f p at x/D¼ 9 for the intensive simulation with

modified Curl’s mixing and two sparse simulations cases

with fm¼ 0.02, 0.04, and 0.06. The bias error caused by

preferential axial diffusion, discussed above in the context

of the mean mixture fraction fields, is evident for sparse

simulations with fm¼ 0.02 in the form of the non-linear

shape of the scatter plots near the ends. Overall, however,

there is a clear correlation between the Z and ~f fields, and

this correlation improves when fm is reduced so that mixing

is more local in ~f -space. In MMC terminology, the quan-

tity Z � hZj~f ¼ gi is called a minor fluctuation (i.e., the

fluctuation with respect to the average conditioned on the

reference variable). Minor fluctuations are the quantities

directly controlled by the MMC mixing model and their

magnitude cannot be controlled at length scales smaller

than the distance between mixing particles. Therefore, the

minor fluctuations are not as locally controlled when a

more sparse distribution of Pope particles is used. This

explains the increasing level of minor fluctuations from top

to bottom of Fig. 11. The scatter plot for the intensive sim-

ulation with modified Curl’s mixing shown in Fig. 10 indi-

cates that even when the distance between mixing particles

is very small, there can still be quite large fluctuations of Z
with respect to ~f if the mixing model is not local. In sparse

simulations, the loss of control at the small scales can how-

ever be offset by decreasing fm; effectively using the well

resolved LES reference mixture fraction, ~f , to localize

mixing thus providing a level of control of the fluctuations

that is not possible with non-local mixing models.

C. Reactive scalar predictions in the constant density
flow

We now analyze the FDF predictions of the reactive sca-

lar, Y, in comparison to the equilibrium (exact) flamesheet

composition. Figs. 12 and 13 show scatter plots of Y versus Z
at x/D¼ 9 for the constant density flow. The intensive simu-

lation using modified Curl’s model (Fig. 12) indicates that

for FDF models with non-local mixing, even those with

many closely-spaced particles, there can be significant depar-

tures from the equilibrium solution. A result is also shown

for 20L/1E with MMC mixing with fm¼ 0.02. The clear

effect of the localization in ~f -space is a significant reduction

in the number of departures from the equilibrium flamesheet.

FIG. 10. Scatter plots of instantaneous Zp versus ~f p at x/D¼ 9 for the inten-

sive simulation 20L/1E with modified Curl’s mixing. Approximately 10 000

particle sample points are displayed.

FIG. 11. Scatter plots of instantaneous Zp versus ~f p at x/D¼ 9 for the sparse

simulations with varying fm. Approximately 10 000 particle sample points

are displayed in each scatter plot.
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We note that the use of the filtered ~f field for localization of

intensive FDF simulations is not fully justifiable since the

particle spacing is much smaller than the filter width applied

to the LES mixture fraction. It is possible to include some

subfilter fluctuations to the reference mixture fraction field to

overcome this issue but that is a new model that is beyond

the scope of the current work. The level of conditional fluc-

tuations shown in Fig. 12 for fm¼ 0.02 is small but some

fluctuations still exist. Although the mixing distance in
~f -space for this case is thinner than the width of the stoichio-

metric reaction zone, the distance in Z-space may not always

be so; this is because of the independence of the reference

mixture fraction, ~f , and the composition mixture fraction, Z.

We now concentrate on the main focus which is the

application of MMC to sparse FDF simulations. The results

for the sparse simulations with MMC mixing show that the

level of conditional fluctuations is strongly dependent on fm,

with smaller fm (from bottom to top in Fig. 13) leading to

fewer departures from the equilibrium composition and thus

a more accurate prediction. Even when fm is set to as large as

0.06, the level of fluctuations in the sparse simulations is still

smaller than for the intensive simulation with modified

Curl’s mixing. Although not exactly the same, the level of

conditional fluctuations is similar between simulation cases

1L/8E and 1L/27E when the same value of fm is used, sug-

gesting a strong correlation between conditional variance

and the distance between mixing particles in the reference

mixture fraction space.

Figure 14 shows conditional average and conditional

rms profiles corresponding the sparse simulation scatter plots

discussed in the previous paragraph. Conditional profiles are

also shown further downstream at x/D¼ 13. The black lines

in the figures indicate the equilibrium solution. It is seen that

the FDF results approach the equilibrium composition with

decreasing fm and for fm¼ 0.02 the conditional mean for both

1L/8E and 1L/27E is quite accurate although it is slightly

less accurate at x/D¼ 13 than at x/D¼ 9 since the fluctua-

tions have had more time to accumulate. The equilibrium

conditional rms is, of course, zero but the FDF is unable to

achieve this low value. While still smaller values of fm would

reduce the conditional rms below what is shown in Fig. 14,

the FDF conditional variance will always remain finite due

to the independence of the ~f and Z fields and thus imperfect

localization in Z-space. The similarity between the condi-

tional profiles for 1L/8E and 1L/27E for a given value of fm
is clearly evident in the figures and this impressive outcome

demonstrates the possibility of achieving equivalent reactive

scalar statistics even when the number of particles (and

hence computational cost) is significantly reduced.

FIG. 12. Scatter plots of instantaneous Yp versus Zp at x/D¼ 9 for the inten-

sive simulation 20L/1E with modified Curl’s mixing (left) and MMC mixing

with fm¼ 0.02 (right). Approximately 8000 particle sample points are dis-

played in each scatter plot.

FIG. 13. Scatter plots of instantaneous Yp versus Zp at x/D¼ 9 for the sparse

simulations with varying fm. Approximately 8000 particle sample points are

displayed in each scatter plot.

FIG. 14. (Color online) Profiles of conditional average (solid lines) and con-

ditional rms (dashed lines) of Y with varying fm.
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The trends in the reactive scalar predictions for varying

fm are presented in Fig. 15 showing the burning index (BI)

of Y which is the mean of the conditional averages normal-

ized by the equilibrium solution. Here, we average the BI

over the whole mixture fraction range whereas others53

define the BI as the mean within the upper and lower reac-

tion limits. The discontinuity in the reaction rate for the

present test case results in significant numerical noise in the

near-stoichiometric conditional means (see Fig. 14) and thus

a more illustrative comparison is made by averaging over

the entire mixture fraction range. This also allows us to

compare results for flames with different chemistry (see

below). The BI results in Fig. 15 once again demonstrate the

strong dependence of the reactive scalar results on fm and

the close similarity between different sparse FDF reactive

scalar predictions for a given value of fm. As a point of com-

parison, the BI for the intensive simulation with modified

Curl’s mixing is 0.71 and 0.47 at x/D¼ 9 and 13, respec-

tively. As discussed above (see Fig. 12), an additional inten-

sive simulation was run using MMC mixing with fm¼ 0.02.

The BI results for that case are indistinguishable from the

sparse simulation BI results shown in Fig. 15. Intensive FDF

results of a partially premixed methane/air flame with a

broad reaction zone, presented by Bisetti and coworkers at

the Turbulent Nonpremixed Flame Workshop (TNF8, Hei-

delberg, 2006), have demonstrated little sensitivity to the

mixing model and good agreement with experimental data

for such flames is possible even when the non-local IEM

mixing model is used.11 The present results demonstrate

that for very thin reaction zone chemistry intensive FDF

predictions can be inaccurate when a non-local mixing

model is used and that MMC is a good model for both

sparse and intensive simulations.

Figure 15 also shows the sensitivity of the simulations to

variations in the reaction zone width and the numerical time

step. A series of results are shown for 1L/8E when the stoichi-

ometric mixture fraction has been increased from Zs¼ 0.05 to

Zs¼ 0.10 and the reaction zone width in Z-space has been

doubled to be Zu�Zl¼ 0.08. Although it is expected that

there is a lower probability of particles mixing across the

wider reaction zone, thus leading to fewer departures from the

flamesheet and a BI closer to unity, the results show that the

sensitivity to a doubling of the reaction zone width is actually

quite small and certainly much smaller than the sensitivity to

variations in fm. The greatest sensitivity occurs at x/D¼ 13 for

fm¼ 0.04 where there is a slight but noticeable increase in BI

(as expected) for the wider reaction zone case.

Unfortunately the BI results reveal a small sensitivity to

the size of the numerical time step although, for the present

case at least, it is much less than the sensitivity to the model

parameter fm. The time step tests are performed for 1L/8E

only. When the time step is halved by reducing the CFL

number from 0.7 to 0.35, the BI increases most obviously at

x/D¼ 9 when fm¼ 0.04. Results for fm¼ 0.02 and 0.06 and

generally at x/D¼ 13, the sensitivity to the time step is quite

small. Note that only the reactive species is dependent on the

numerical time step. The FDF mixture fraction fields are

almost indistinguishable whether nCFL¼ 0.35 or 0.70. Such

dependence of reactive species conditional variances on the

numerical time step is a common feature among the most

commonly used PDF mixing models44 and the present results

show that the same is true for MMC.

The analysis has shown the strong dependence of the re-

active species predictions on the input parameter fm, increas-

ing fm results in greater conditional fluctuations. It is not

possible from the current work to determine the optimal

value of fm in general. For the present test case, the correct

result is BI¼ 1 and this is achieved reasonably well,

although not perfectly, by setting fm¼ 0.02. In turbulent

flames of practical interest, there is always some level of

conditional variance. Sparse-Lagrangian FDF simulations of

Sandia Flame E (Ref. 18) have demonstrated that it is possi-

ble, in principle, to select the degree of localization in ~f -

space to match experimental data. This method of control-

ling conditional variance is quite intuitive; increased levels

of conditional fluctuations result when the composition space

is not fully confined to the mixture fraction manifold, and so,

de-localization of the mixing model by increasing the value

of fm is physically realistic.

D. Consistency of the sparse-Lagrangian FDF
and the LES in the variable density flow

Until this point results have been presented for the con-

stant density flow. We now consider the case where the pro-

gress variable represents a normalized temperature and

density varies according to the ideal gas equation of state.

The most stringent test of the density coupling scheme

described in Sec. IV is a simulation which has a distribution

of particles much sparser than the LES grid and which also

exhibits large density fluctuations which could lead to numer-

ical instability if not properly handled. Therefore, the density

coupling is demonstrated for simulation 1L/27E with

fm¼ 0.06, since this case has the greatest number of LES cellsFIG. 15. (Color online) Burning index of Y as a function of fm.
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per particle (i.e., 27) and conditional fluctuations of tempera-

ture and hence density are large. In the constant density flow,

this simulation case yields a BI of 0.79 and 0.58 at x/D¼ 9

and 13, respectively. In the variable density case, the jet

develops differently due to low density along the axis and the

BI values are instead 0.62 and 0.45 at those two locations.

Figure 16 shows scatter plots of equivalent enthalpy and

density versus the mixture fraction at x/D¼ 9. The left scat-

ter plots are the FDF simulated quantities, hs and q versus Z.

The middle plots show the target conditional field, ĥs and its

corresponding density q̂ ¼ c0

c0�1
P
ĥs

versus ~f , towards which

the LES equivalent enthalpy, ehE
s , is relaxed according to Eq.

(38). The conditionally averaged nature of ĥs and q̂ is clearly

evident in the plots. The right hand side plots show ehE
s and

the LES filtered density, �q, versus ~f . The data points are the

instantaneous values at the center of the LES grid-cells. We

can assess the consistency of the FDF and LES density fields

(and hence the quality of the coupling scheme) by a compari-

son of the left and right scatter plots in Fig. 16. There is

clearly a similarity between the fields although differences

are apparent near stoichiometry, which are due to the discon-

tinuity in the FDF reaction rate. The corresponding condi-

tional mean densities for the FDF, qjZh i, and LES, h�qj~f i, are

shown in Fig. 17, which additionally shows results at

x/D¼ 5 and x/D¼ 13. Clearly, there is a very good level of

consistency between the conditional mean density fields.

Radial profiles of the LES and FDF predicted Reynolds

average and rms of mixture fraction are shown in Fig. 18. As

for the constant density flow, the agreement between the

mean quantities is very good, although the LES field exhibits

some numerical diffusivity while the FDF does not. It is well

known that numerical diffusion diminishes with grid size.

When the variable density flow is simulated with the coarser

grid used for the constant density flow, numerical diffusion

is quite excessive and there is very poor consistency between

the LES and FDF scalar fields. As for the constant density

flow reported above and in other published variable density

FDF simulations,9,10 the FDF predicts higher total scalar rms

in the shear layer than does the LES. Possible explanations

are already given in Sec. VI B. Despite these relatively

minor quantitative inconsistencies, qualitative agreement is

very good.

FIG. 16. Scatter plots of instantaneous

equivalent enthalpy (top) and density

(bottom) versus mixture fraction at

x/D¼ 9 in the variable density flow.

Approximately 10 000 particle sample

points are displayed in each scatter plot.

FIG. 17. (Color online) Conditional average profiles of density versus mix-

ture fraction in the variable density flow. Symbols, LES; lines, 1L/8E with

fm¼ 0.06.
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Finally the Reynolds averaged density fields by both the

LES and FDF simulations are presented in Fig. 19. There are

significant differences between the fields especially in the

outer part of the shear layer. These discrepancies are due to

the differences between the LES and FDF mixture fraction

fields evident in Fig. 18. Our density coupling method is con-

sistent at the level of conditional mean density but due to the

large density gradient in mixture fraction space on the lean

side of stoichiometry, small differences between the LES

and FDF filtered mixture fraction fields can lead to large

mean density differences.

VII. CONCLUSION

A detailed quantitative analysis is presented of sparse-

Lagrangian FDF simulations in constant density and variable

density reacting jets. Sparse-Lagrangian simulations, theoret-

ically developed and tested against a number of experimental

jet flames over the past few years, have the advantage of

very low computational cost compared to more traditional

intensive-Lagrangian FDF simulations. Accurate and con-

sistent simulation using a sparse-Lagrangian scheme requires

a model that, in the absence of close physical space proxim-

ity between particles, enforces mixing localness in composi-

tion space while preserving the principles of good mixing.

Additionally the model should treat density coupling

between the FDF evaluated at relatively few discrete particle

locations and the more highly resolved LES in a way that is

both accurate and numerically stable. The MMC model

enforces mixing to be local in an independent reference

space. Here, as in other sparse-Lagrangian publications deal-

ing with non-premixed combustion, we use a generalized

MMC model whereby the reference space is given by the

LES filtered mixture fraction. Thus, the model enforces a

CMC-type closure on an FDF model, unifying the two meth-

ods. Density coupling between the FDF and LES fields is

achieved through an adaptation of the equivalent enthalpy

method which is consistent at the level of the conditional

mean densities. The LES density is evaluated directly from a

filtered equivalent enthalpy which is related to the FDF

through a source term which relaxes the LES field to the

FDF conditional mean.

The simulated flows consist of a circular fuel jet within

an air coflow and the combustion chemistry is modeled as an

idealized flamesheet such that the single reactive species is a

piecewise linear function of the mixture fraction. Reactions

which instantaneously convert the reactive species to its

equilibrium value occur only within a very thin reaction

zone near stoichiometry. This is a particularly difficult test

case for a mixing model since, unless the as-mixed particle

compositions fall within the thin reaction zone, non-physical

conditional fluctuations will appear. In the constant density

flow, the composition field does not affect the flow field,

whereas in the variable density flow the reactive species rep-

resents temperature and density is modeled through an ideal

gas equation of state. Two different sparse particle distribu-

tions are used in the simulations; the first uses one Pope par-

ticle for every eight LES grid-cells (1L/8E) and the other

significantly more sparse simulation uses one Pope particle

for every 27 grid-cells (1L/27E). Detailed results are also

presented for an intensive-Lagrangian FDF simulation

employing 20 particles per LES grid-cell (20L/1E) and using

the non-local modified Curl’s mixing model. One additional

simulation is performed for 20L/1E with MMC mixing to

FIG. 18. (Color online) Radial profiles of the average mixture fraction in

the variable density flow. Symbols, LES; lines, 1L/8E with fm¼ 0.06.

FIG. 19. (Color online) Radial profiles of the average density in the variable

density flow. Symbols, LES; lines, 1L/8E with fm¼ 0.06.
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demonstrate the need for a localized mixing model such as

MMC for thin reaction zone chemistry even when many par-

ticles are used.

The localization structure of the generalized MMC mix-

ing model is examined in detail. A new parameter fm has

been introduced which is a characteristic distance in LES fil-

tered mixture fraction space between mixing particles. We

relate fm to a characteristic physical distance scale between

mixing particles, rm, by considering isoscalar surfaces as

fractals. With this model, the particle mixing pair selection

algorithm controls the distance in LES mixture fraction

space while allowing the physical distance between mixing

particles to vary with the sparseness of the particle distribu-

tion and the details of the flow field. In regions of the flow

with large scalar gradients enforcement of close mixing

proximity in mixture fraction space leads to greater mixing

distances in physical space.

Consistency between the sparse-Lagrangian FDF and

LES mixture fraction fields is presented using instantaneous

and Reynold averaged results. Since the FDF is evaluated

using only very few particles, the instantaneous filtered

mixture fraction is evaluated over an observation scale

encompassing a number of LES grid-cells. Through time-

averaging, the Reynolds averaged statistics of even very

sparse simulation cases can be evaluated locally. It is shown

that there is generally very good agreement between the

FDF and LES mean mixture fraction fields although for

sparse simulations with small values of fm the large physical

distance between mixing particles can lead to bias error

caused by preferential axial diffusion. In common with other

FDF publications, the mixture fraction rms in the shear layer

is relatively over-predicted by the FDF but there is very

good qualitative agreement at all locations. The results

show that, provided care is taken to avoid bias error, there is

very little sensitivity of the FDF mixture fraction fields to

variations in the number of particles used in the simulations

or to the value of the localization parameter, fm. For the vari-

able density flow, the consistency of the mixture fraction

fields is similarly good to the constant density flow. Density

coupling is consistent at the level of the conditional mean

density and results indicate close similarity between FDF

and LES conditional densities.

The reactive scalar predictions are strongly dependent

on fm with larger values yielding more departures from the

flamesheet composition and greater conditional variance.

The analysis shows that the distance in the LES reference

mixture fraction space is the primary parameter affecting the

conditional variance. The same reactive composition can be

predicted with different sparse particle distributions when fm
is kept constant. The burning index (evaluated over all mix-

ture fraction space) shows only minor sensitivity to a dou-

bling of the reaction zone width but, in common with other

common mixing models, there is some dependence on the

size of the numerical time step. The optimal value of fm will

likely be chemistry dependent with different fuels exhibiting

different reaction zone thickness in mixture fraction space.

Although the low sensitivity to this reaction zone width

observed for the present case gives some hope that the chem-

istry dependence is not a dominant factor, the matter will

only be clarified by testing of the method for a wide range of

fuels and flame conditions.
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