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Abstract
In many of the models applied to simulations of turbulent transport and turbulent combustion,
the mixing between particles is used to reflect the influence of the continuous diffusion terms
in the transport equations. Stochastic particles with properties and mixing can be used not only
for simulating turbulent combustion, but also for modeling a large spectrum of physical
phenomena. Traditional mixing, which is commonly used in the modeling of turbulent
reacting flows, is conservative: the total amount of scalar is (or should be) preserved during a
mixing event. It is worthwhile, however, to consider a more general mixing that does not
possess these conservative properties; hence, our consideration lies beyond traditional mixing.
In non-conservative mixing, the particle post-mixing average becomes biased towards one of
the particles participating in mixing. The extreme form of non-conservative mixing can be
called competitive mixing or competition: after a mixing event, the loser particle simply
receives the properties of the winner particle. Particles with non-conservative mixing can be
used to emulate various phenomena involving competition. In particular, we investigate cyclic
behavior that can be attributed to complex competing systems. We show that the localness and
intransitivity of competitive mixing are linked to the cyclic behavior.

PACS numbers: 47.27.−i, 47.10.A−

1. Introduction

Notional or stochastic particles are widely used as
effective modeling tools in Lagrangian simulations of
turbulent reacting flows as repeatedly reviewed in major
publications [1–8]. These particles possess a set of properties
altered by reactions and mixing between particles. The
particles move with a fluid flow and, as introduced in [9],
are also engaged in a random walk. The emergence of
sparse-Lagrangian methods [10, 11] released the particles
from being constrained by Eulerian grid cells. Recent
developments seem to indicate that the stochastic particles,
which were introduced into wide use by Pope’s seminal
work [1]1, represent fundamental blocks that can be used
to construct various types of models. Stochastic particles
possess properties that can be exchanged due to interaction
between particles (i.e. mixing) and their motions involve both
deterministic and stochastic components. The models using
particles correspond to complex systems that can be divided

1 In [12], these particles are suggested to be called Pope particles.

into a large number of semi-autonomous but interacting
units emulated by particles. Stochastic particles represent
prime objects that combine three fundamental processes of
convection, random walk and interaction between particle
properties.

While the particles seem to represent a general
modeling tool, conventional mixing is subject to obvious
restrictions—this mixing is conservative and non-competitive.
This means that the overall amount of each scalar is
preserved and contribution of each particle to the state of
the particles after mixing is guaranteed. The use of this type
of mixing in turbulent combustion modeling is determined
by the properties of turbulent scalar transport [1] and is
justified. At the same time, omitting these restrictions can
result in more general models corresponding to a wider
class of natural phenomena. In the present work, we look
beyond conventional mixing but consider only two-particle
mixing, i.e. interactions between many particles that can
be represented as a superposition of interactions between
selected couples. Investigation of conventional conservative
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mixing in [13] indicates that two-particle interactions are
sufficiently general for adequate modeling.

The mixing considered in the present work is competitive.
This means that particle contributions to the states after
mixing are not guaranteed—there are winners and losers
among the particles. The competitive mixing schemes allow
us to investigate the properties of competition in its most
abstract form and determine most generic features of
competing systems. We stress that analysis or modeling
of realistic competing systems (biological, economical, etc)
is not within the scope of this work and the presented
simulations are not intended to simulate any specific event or
process. These simulations, however, examine (and provide
qualifications for) the hypothesis of commonality of cyclic
behavior in complex competing systems [14].

2. Competitive mixing

In this work, we consider two-particle mixing—only two
particles are allowed to mix at a given moment. During the
mixing process, say of particles 1 and 2, the particle properties
Y (1) and Y (2) are changed according to[

Ý (1)

Ý (2)

]
=

[
M (11) M (12)

M (21) M (22)

] [
Y (1)

Y (2)

]
, (1)

where the properties of mixing are determined by the matrix
M. Each particle p may, of course, possess several properties
Y (p)

1 , Y (p)

2 , . . .; if this is the case, mixing operation (1)
is applied to each of the properties. Different choices of
the matrix M result in mixing with different properties.
Conventional mixing can be described with the use of the
matrices

M1=

[
1 0
0 1

]
, M2=

[
0 1
1 0

]
,

representing identical mixingM1, which does not change the
particle properties, and swap-mixing matrixM2, which swaps
the properties between the particles. With the use of these
matrices, conventional mixing may be represented by

M= (1 − α)M1 + αM2, (2)

where α is the extent of mixing: α = 0 corresponds to no
mixing, α=1/2 corresponds to complete mixing and α=1
corresponds to swapping properties. Mixing specified by (2)
is referred to as Curl’s mixing [15] and its properties
are comprehensively discussed in publications dedicated to
Lagrangian modeling of turbulent reacting flows [1, 3, 7, 8,
13]. Conventional mixing (2) is

1. Non-discriminative M (pq)
= M (qp); mixing treats

particles 1 and 2 in the same way.
2. Conservative

∑
p M (pq)

= 1; mixing preserves the total

values Ý (1) + Ý (2)
= Y (1) + Y (2).

3. Non-segregating
∑

q M (pq)
= 1; mixing preserves the

so-called well-mixed conditions; that is, if Y (1)
= Y (2),

then Ý (1)
= Ý (2).

4. Bounded; mixing preserves boundaries of the values Y (p)

provided 06 α 6 1.

5. Dissipative; mixing reduces differences between Y (p)

provided 0 < α < 1.

Note that not all of these properties are independent—for
example, the non-discriminative and non-segregating
character of mixing ensures its conservativeness.

Conventional mixing is successfully used in modeling
dissipative mixing such as scalar transport and dissipation
in turbulent flows. The non-discriminating character of
conventional mixing ensures that in each mixing couple,
particle 1 affects particle 2 in the same way as particle 2
affects particle 1. In the present work, we consider competitive
mixing that may discriminate between particles but only in
a certain ‘fair’ way. In competitive mixing, particles are not
equal—there is a winner and there is a loser. Competition is
the process of determining the winner and the loser, while
competitive mixing is redistribution of the particle properties
on the basis of the competition outcomes.

We consider competitive mixing represented by the
following mixing matrices:

M3=

[
1 0
1 0

]
, M4=

[
0 1
0 1

]
. (3)

If M3 is used particle 1 is the winner while particle 2 is the
loser, and vice versa for matrix M4. The winner propagates
information represented by its properties to the loser, while
properties of the loser are lost. One can interpret this as the
winner capturing the resource of the loser and using it to
replicate itself. This mixing is not conservative (information
is duplicated), but it is non-segregating and dissipative as
differences between particles are reduced as the result of
mixing. For the matrix M= (1 − α)M3 + αM4 the values
α = 0 and α = 1 correspond to particles 1 and 2 winning
the competition while there is conventional mixing and no
competition for α = 1/2. A softer version of competition can
be introduced by α deviating from 1/2 but not reaching 0 or
1. In the present work we, however, restrict our consideration
to pure competition (α = 0, 1) when the winner completely
dominates the loser. With introduction of the competition
index I = 2α − 1 so that

M=
1 + I

2
M3 +

1 − I

2
M4, (4)

the outcome of the competitive mixing is given by

Ý (1)
= Y (1), Ý (2)

= Y (1), when Y (1)
� Y (2), I = 1,

Ý (1)
= Y (2), Ý (2)

= Y (2), when Y (1)
≺ Y (2), I = −1.

(5)
The symbol ‘A �B’ denotes that A is the winner in
competition with B and this notation is generally different
from the conventional arithmetic comparison A> B.
The competition considered in the present work is
‘merit-based’—the winner and the loser are determined
only on the basis of the particle properties before mixing.
In principle, it is possible to consider more complicated
competitions where the outcome is determined not only
by the properties of the particles but also by other factors
(physical location, for example). Sometimes we may have
to deal with situations when no winner can be determined
(A ∼ B). In this case particles may be left with their initial
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properties or the winner can be determined randomly. In
many cases, when the probability of A ∼ B is zero, the exact
treatment of competitive equivalence does not matter. Another
possible generalization, which may resemble modification
of Curl’s mixing model [16, 17], is random selection of the
winner for all mixing couples with probability determined by
competition. In reacting flows, non-conservative mixing can
be interpreted as the joint influence of physical mixing (which
is conservative) and a premixed source term (which generates
or destroys scalars). The simplest example of competitive
mixing is given by particles of two kinds: the losers with
Y = 0 and the winners with Y = 1. Mixing of a particle
with Y = 0 with a particle with Y = 1 results in two particles
with Y = 1, while any other mixing combination does not
alter particle values.

In the conservative version of competitive mixing, the
matrixM is given by

M5=

[
1 1
0 0

]
, M6=

[
0 0
1 1

]
. (6)

Mixing (6) specifies redistribution of a limited resource
between the particles in a mixing couple favoring the winner
and discriminating the loser—the winner acquires properties
of the loser, while the loser loses everything. This mixing
is segregating and creates inequalities. In the present work,
however, our consideration is restricted to non-conservative
and non-segregating mixing specified by (5) and this mixing
is implied when referred to as competitive mixing.

3. Transitive competition

Each particle p possesses a set of properties particle properties
y(p)

= y(p)

1 , y(p)

2 , . . . , y(p)
nd from a given nd -dimensional

domain G and the outcomes of the competition are decided on
the basis of these properties. Competition between particles
presumes that for any two particles p and q, one of the
following relations is valid: y(p) - y(p) or y(p) % y(p). This
means that the particles are totally pre-ordered either by
selecting the winner and the loser or, in some cases, by
determining that the particles are equivalent: y(p)

≺ y(q) or
y(p)

� y(q) or y(p)
' y(q). The competition considered in this

section is transitive, which means that

y(p) - y(q) and y(q) - y(r)
⇒ y(p) - y(r) (7)

for any three particles p, q and r . As discussed in the
appendix, transitive competition can be equivalently or nearly
equivalently represented by a ranking function R(y):

y(p) - y(q)
⇔ R(y(p))6 R(y(q)). (8)

Using the competition indicator I (pq), this relation can be
written as

I (pq)
= sign

(
R(y(p)) − R(y(q))

)
(9)

so that
y(p)

≺ y(q) if I (pq) < 0,

y(p)
' y(q) if I (pq)

= 0,

y(p)
� y(q) if I (pq) > 0,

(10)

where sign(ζ ) denotes the signum function, which is +1
for ζ > 0, −1 for ζ < 0 and 0 for ζ = 0. Note that the
sign function can be omitted or replaced by another similar
function. By definition, the competition indicator is an
antisymmetric function I (pq)

= −I (qp). Assuming that the
measure µ defining probability P is specified on G, a suitable
ranking can simply be introduced by

Rµ(y◦) = P(y(µ) - y◦), (11)

where y(µ) is distributed according to the measure µ, which
is called the reference measure. In most cases we link
this measure to the probability distribution of mutations
considered in following sections. The superscript ‘µ’ can
be omitted when the uniform reference measure is implied.
Practically, the existence of equivalent or nearly equivalent
ranking for transitive competition means that we do not need
to trace the complete set of particle properties y. Instead,
we assign Y = Rµ(y) to each particle and the competition
outcomes are fully determined by the particle values Y (p).
The value Y is bounded 06 Y 6 1 since µ(G) = 1 for
any probability measure. If Y (y) is randomly generated by
distributing y on G with the probability density determined by
the measure µ, then Y is uniformly distributed on the interval
06 Y 6 1.

Competition between particles possessing a single
property 06 Y (p) 6 1 is now considered. There is no
localization in physical space and at every time step, n p

particles form n p/2 mixing couples at random. The particle
distribution is characterized by the cumulative probability
F(Y ) and the pdf f (Y )

F(Y ◦) = P(Y (∗) 6 Y ◦), f (Y ◦) =
dF

dY ◦
. (12)

The superscript ‘(*)’ indicates the current distribution of the
particles that may be different from the reference measure. In
general, the function F(Y ) can be discontinuous; in this case,
the left-hand side limit F(Y )− may not be the same as the
right-hand side limit F(Y )+ of the same function and the pdf
f (Y ) has generalized components.

3.1. Competition without mutations

The probability that particle p is a winner in competition
with any other particle selected at random is given by the
fraction of particles with Y < Y (p), that is, F(Y (p))− plus
(F(Y (p))+

− F(Y (p))−)/2—half of the fraction of particles of
equivalent rank Y ' Y (p), assuming that the winner is chosen
at random in competition of equivalent particles. If F(Y ) is
continuous, then the distributions after mixing become

f́ (Y ) = 2 f (Y )F(Y ) H⇒ F́(Y ) = F2(Y ). (13)

Here the winners distributed according to the pdf of
f (Y )F(Y ) retain their distribution, while the losers
distributed according to f (Y )(1 − F(Y )) change their
distribution to that of the winners. The function F́(Y ) is
determined by integrating f́ (Y ). At each time step the
cumulative function experiences the following change:

1F ≡ F́(Y ) − F(Y ) = −F(1 − F). (14)

3
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Assuming that the initial distribution of the particles is
continuous, the cumulative function evolves towards its steady
state. If 1F = 0, then only two steady values are possible
for F : 0 and 1. The values of the cumulative function at the
consecutive time steps are given by equation (13): F, F2, F4,

F8, . . .. At this point we stress the importance of the leading
particle, which, among other particles, has the maximal value
of Y∗. The subscript ‘∗’ is used here and further in the paper
to denote values linked to the leading point. It is clear that no
other particle can gain a value above Y∗ and that Y∗ cannot be
reduced since at least one particle that has Y (p)

= Y∗ always
remains as a winner. The maximal value

Y∗ = max
p

(Y (p)) (15)

remains constant during the form of competitive mixing
considered here. The final distribution for this competition is
given by

F(Y ) =

{
1, Y > Y∗

0, Y < Y∗

}
. (16)

3.2. Competition with mutations

The competition process becomes more sophisticated when
mutations are introduced into consideration. The properties
of the winner remain without change but these properties
can experience some variations while being copied from the
winner to the loser. These variations can be small but their
presence is most important for the evolution of the system.
Assuming that Y (p)

≺ Y (q) we put after the mixing

Ý (p)
= (1 − m)Y (q) + mζ, Y (p)

≺ Y (q)
; (17)

here m is the mutation level and ζ is a random value
uniformly distributed in the interval 06 ζ 6 1 and generated
independently for each mixing couple. Note that these
mutations preserve the boundness 06 Y 6 1. If m = 0, there
are no mutations. If m = 1, the properties of the losers
are randomly regenerated. This mutation can be considered
as mixing of the property Y with the randomly generated
property ζ according to (2) with α = m, and an mth fraction
of Y is replaced by ζ . Practically, the cases when mutations
are present but their level m is relatively small are of most
interest.

One can consider a random walk that is generated by

Yt+1t = (1 − m)Yt + mζ = Yt − m
(
Yt −

1
2

)
+ mζ ′, (18)

where ζ ′
= ζ − 〈ζ 〉 = ζ − 1/2 and 〈(ζ ′)2

〉 = 1/12. The
long-time asymptotics of this random walk is represented
by a diffusional process with drift u = −m(Y − 1/2)/1t
and diffusion coefficient D = m2/(241t). The steady-state
asymptote of the diffusion process is Gaussian, with moments
given by 〈Yt 〉 = 1/2, 〈y2

t 〉 = m/24, yt = Yt − 〈Yt 〉. The
dispersion of the steady-state distribution is small when
m → 0. Note that the diffusional approximation of this
process is not bounded while the boundness of the random
walk (18) is preserved: 06 Yt 6 1. This seems to be of
little importance as the pdf of the process is very small at
the boundaries when m is small. The case of competitive
mixing is, however, highly dependent on the position of the

leading particle and this particle may approach the boundary
Y = 1 where the diffusion approximation is incorrect and
an alternative treatment of the problem is needed. We note
significant differences between conventional and competitive
mixing. If the number of particles is large, conventional
mixing is not strongly affected by a single particle. However,
a small group of particles or even a single particle, which is
called ‘leading’ here, can exercise a disproportionately strong
influence on the rest of the particles and alter or constrain
the behavior of the whole system of particles in the case
of competitive mixing. It seems that competitive mixing
shares similarities more with premixed combustion than
with non-premixed combustion—leading points can play an
important role in turbulent premixed combustion [2].

Equation (17) can be rewritten in the form

Ý (p)
= −m(1 − ζ − (1 − Y (q))) + Y (q), Y (p)

≺ Y (q). (19)

If Y∗ is the leading (i.e. maximal) value at a fixed moment, we
can define Z (q) by Y (q)

= Y∗ + m Z (q) (i.e. Z (q) 6 0), take into
account that 1 − ζ is stochastically equivalent to ζ and rewrite

Ź (p)
≈ −ζ + y∗ + Z (q), Z (p)

≺ Z (q), (20)

where y∗ = 1 − Y∗ is introduced and the term m Z is neglected,
assuming that m is small. The variable Z is introduced to
analyze the vicinity of the leading point.

The solution for competitive transitive mixing with
mutations is obtained below by considering problems of
progressively increasing complexity. This solution cannot and
does not use the diffusion approximation for the random walk
induced by mutations.

We consider first the case when y∗ = 0 in (20). This
means that either Y∗ = 1 or y∗ is small and can be neglected.
The effect of mutations on particle p that has lost competition
to particle q is given by

Ź (p)
= Z (q)

− ζ, Z (p)
≺ Z (q). (21)

Note that with this type of mutation no particle can overtake
the leading particle and Y∗ remains constant. The equation for
the steady distribution F(Z) = F́(Z) is given by

T̂0 F2(Z)

2
+

F2(Z)

2
= F(Z), (22a)

where operator T̂0 introduces a random shift directed towards
Z = −∞:

T̂0(ϕ(Z)) =

∫ Z+1

Z
ϕ(Z◦) dZ◦. (23)

By differentiating this equation, one can easily obtain

dF(Z)

dZ
(1 − F(Z)) =

F2(Z + 1) − F2(Z)

2
; (24)

considering that Z = 0 is the leading point with no particles
beyond it, F = 1 for Z > 0. The equation can be integrated for
−16 Z 6 0 resulting in F = 2 exp (Z/2) − 1. The solution
for Z < −1 is determined numerically by solving differential
equation (24). The moments for this distribution are Z̄ ≡

〈Z (p)
〉 ≈ −0.64, 〈(Z (p))2

〉 ≈ 0.6. The evaluated curve is
shown by circles in figure 1, while the solid line represents
a stochastic simulation involving 100 000 particles.
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Figure 1. Cumulative distribution F(Z): ◦, analytical/numerical
solution; —, simulation using 100 000 particles.

The obtained solution demonstrates that in spite of the
mutational drift towards Y = 1/2, the competing system of
particles is located close to the leading point:

〈Y (p)
〉 = Y∗ + m Z̄ = Y∗ + 2Z̄ 〈mζ 〉 .

Note that Z̄ < 0. Smaller mutation rates result in smaller
deviations from the leading point.

3.3. Competitive escalation

The question whether the system of particles can move
towards Y = 1 still needs to be investigated. The fact
that y∗ > 0 when Y∗ < 1 needs to be taken into account.
Equation (22a) should be modified for this case and takes the
form

T̂F2(Z)

2
+

F2(Z)

2
= F(Z − U ), (25)

where

T̂(ϕ(Z)) =

∫ Z+1−y∗

Z−y∗

ϕ(Z◦)dZ◦
= T̂0(ϕ(Z − y∗)) (26)

and U is the normalized rate of competitive escalation (i.e.
increase in ranking per time step). This velocity is related to
the physical velocity in Y -space by u = Um/1t .

We can treat y∗ as a small parameter. The solution
obtained in the previous subsection is denoted by F0(Z). We
note that substitution of F = F0 + y∗F1 + · · · into (25) with
subsequent linearization (retaining only terms linear in y∗

and U ) does not yield a solution due to singularity at the
leading point. This indicates the need for analysis of the
vicinity of the leading point and, as we will see below, that
U, which can be represented by the expansion U = y∗U1 +
y2
∗
U2 + · · ·, has zero leading order term U1 = 0 and U ∼

y2
∗

that cannot be determined from the first-order analysis.
Finding U requires consideration of the leading group of
particles at a higher order.

We consider the vicinity of the leading point where φ =

1 − F is small and equation (25) can be written as

T̂φ(Z) + φ(Z) = φ(Z − U ), (27)

where the terms φ2 are neglected. Assuming that the solution
can be represented by an exponent φ(Z) = a exp (−Z/b)

Figure 2. Rate of competitive escalation for transitive competition:
∗, simulation using 100 000 particles; —, equation (31); - - -,
equation (31) without exponent expansion.

where α and b are small (of the order of y∗), we obtain the
equation, which after dividing by φ(Z) becomes

b exp
( y∗

b

)
− b exp

(
y∗ − 1

b

)
+ 1 = exp

(
U

b

)
. (28)

This equation can be transformed into

b exp
( y∗

b

)
= exp

(
U

b

)
− 1, (29)

where the term exp(−1/b) is exponentially small and is
neglected. Since U ∼ y2

∗
, the right-hand side exponent can be

expanded into a series exp(U/b) = 1 + U/b + · · ·, resulting in

y∗

b
+ 2 ln(b) − log(U ) = 0. (30)

If U is excessively small, no b can be found to satisfy this
equation. We are looking for the smallest possible value
of U that allows for a stationary solution. Differentiating
this equation results in y∗/b2

= 2/b; hence b = y∗/2. The
corresponding value of U is given by

U∗ = exp(2)
y2
∗

4
, u∗ ≡

〈
dY∗

dt

〉
=

m

1t
U∗. (31)

Figure 2 demonstrates that the rate of competitive escalation
given by (31) is in good agreement with the results of
stochastic simulations.

3.4. Estimations for localized competition

Assume that mutation for a mixing couple with loser p and
winner q is given by

Ý (p)
= Y (q)

− ξ, Y (p)
≺ Y (q), (32)

where ξ is a random value. Assuming that ξ is a positive
or mostly positive value, we can write by analogy with the
previous consideration

〈Y (p)
〉 = Y∗ − C1 〈ξ |ξ > 0〉 .

For uniformly distributed ξ , the constant C1 was evaluated as
C1 = 2Z̄ but its value can be different for other distributions.

5
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We now fix our attention to the leading point. In a competition,
the leading point is always a winner but its mixing loser may
overtake the leading point provided ξ can be negative. The
probability of overtaking is determined by 〈H(−ξ)〉, where
H(ξ) is the Heaviside step function: H(ξ) = 0 for ξ < 0 and
H(ξ) = 1 for ξ > 0. This results in an increase of the leading
point value Y∗ by 〈−ξ |ξ < 0〉. These considerations can be
expressed by the following relation:

u∗ =
C2

1t
〈−ξ H(−ξ)〉 , (33)

where C2 accounts for the possibility of launching particles
into the region Y > Y∗ by other particles from the leading
group. We derived that C2 = exp(2)/2 for a uniformly
distributed ξ (in this case 〈−ξ H(−ξ)〉 = my2

∗
/2).

We now consider competition with localization in
physical space. In this competition, particles move in physical
space according to the Ito equation

dx i
p = Ai (xp, t)dt + bi j (xp, t)dω j

p (34)

and mixing is localized in the physical space. Here ω
j
p

represents the Wiener stochastic process, while the choice
of the coefficients is clarified when needed. In this case
competitive mixing is allowed only between particles that
are close to each other. The degree of localization can
be characterized by parameter 3 that specifies an average
probability for a particle to be repeatedly mixed with the same
particle. If 3 is small (≈1/np), then mixing is not localized.
The strongest localization corresponds to 3 = 1: under these
conditions particles always mix with the same partners over
and over again. The limit of 3 → 1 is quite transparent: all
particles are divided into nearly permanent couples and the
probability that a loser moves to a stronger position than a
winner is given by 〈H(−ξ)〉. Hence, each couple would move
in the direction of positive Y with the speed given by (33) and
C2 = 1. One can see that in the case of transitive competition
the effect of localization in physical space is not dramatic and
results in adjustment of the constant C2 = C2(3).

4. Intransitive competition

Intransitive competition presumes the situation when

y(p)
≺ y(q)

≺ y(r)
≺ y(p) (35)

is possible, i.e. there is at least one set of particles p, q and
r that satisfy (35). An example of intransitive competition
is given by the well-known game of paper–scissors–rock.
This game is illustrated in figure 3, where arrows point in
the direction from the losers to the winners. The domain
G in this figure is represented by a ring with three points
selected to notionally represent paper, scissors and rock.
The competition in this case remains locally transitive (see
the appendix) and particle systems would locally behave
as discussed in the previous section. The case of strong
intransitivity, when intransitive triplets can be found in
any locality, is more interesting since this intransitivity can
strongly affect the outcomes of the competition. The example
given below demonstrates the possibility of competition with

Figure 3. Example of globally intransitive and locally transitive
competition. Arrows point from losers to winners and points
notionally representing sissors, paper and rock are shown for
illustrative purposes.

even stronger intransitive property when for any local couple
y(p)

≺ y(q) from G another particle y(r) that satisfies (35) can
be found from the same locality. Intransitivity is related to
multiplicity of ranking criteria R1, . . . , Rk with the overall
winner determined by the competition index function

I (pq)
=

k∑
i=1

wi sign
(
Ri (y(p)) − Ri (y(q))

)
, (36)

where wi are weights assigned to different criteria. The overall
ranking Rµ can be introduced for a given reference measure
µ by

Rµ(y◦) = P(y(µ) - y◦) (37)

although this ranking does not determine the outcome of
competition since I (pq) can be −1 even if Rµ(y(p)) >

Rµ(y(q)). The overall ranking can be introduced on the basis
of a fixed probability measure or with the use of a current
distribution of particles as a measure. Unless specified to the
contrary, we use a uniform probability measure. Practically,
intransitiveness should be ubiquitously found in complex
competing systems where it is difficult to establish a single
ranking criterion for the winners.

An example of strongly intransitive competition (which
is probably the simplest possible) is given by the following
partial ranking functions: Ri = yi = 1 − Yi where i = 1, 2, 3
and wi = 1. The set of particle properties Y1, Y2 and Y3 is
assumed to satisfy the inequality 06 Yi 6 1 and the resource
constraint

Y1 + Y2 + Y3 = 1. (38)

The competition index function simplifies to

I (pq)
=

3∑
i=1

sign
(

Y (q)

i − Y (p)

i

)
. (39)

This essentially means that Y(p) is a winner over Y(q) when
Y (p)

i < Y (q)

i for a majority of the indices i = 1, 2, 3. The
competition outcomes for this case are shown in figure 4. The
domain G is represented by the large triangle with parameters
Y1, Y2 and Y3 indicated for the particle p whose location is
shown by the black dot. The darkened areas are dominated by
particle p in competition, while the white areas are dominated
by particle p. One can easily see that the particles p, q and r
shown in the figure form an intransitive triplet (35). Properties
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Figure 4. Intransitive competition in a two-dimensional property
domain.

Figure 5. Mutation triangle generated from a point shown as a
black dot.

of competition specified by (38) and (39) are considered in the
rest of this section.

For any mixing couple, p and q, where q is a winner, the
mutations for this case are given by

Ý(p)
= (1 − m)Y(q) + mζ, Y(p)

≺ Y(q), (40)

where ζ is a random vector uniformly distributed on the
triangle domain G. The triangle encompassing mutations
from the particle near the top vertex is shown in figure 5.
For uniform distribution, the overall ranking R (we omit the
subscript when µ is uniform) is determined by white areas
within the triangle domain G in the figure and can be easily
evaluated as

R = Y 2
1 + Y 2

2 + Y 2
3 . (41)

The function R is shown in figure 6. The strongest locations,
with R → 1, are at the vertices of the triangle, while the
weakest point, with R = 1/3 is at the center. This overall
ranking influences but does not determine the outcomes of
competition for the index function given by (39).

4.1. Competitive degradation

The effect of localization in physical space becomes crucial
for intransitive competition. The example of development
from the same initial conditions for different types of

Figure 6. Overal ranking R based on uniform distribution for
intransitive competition.

Figure 7. Simulation of 200 steps with 214 particles for different
types of competitive mixing: (a) initial conditions, (b) transitive,
(c) intransitive global and (d) intransitive and localized in
physical space.

competitive mixing is shown in figure 7. In the present work,
the coefficients of equation (34) are selected to represent the
two-dimensional Ornstein–Uhlenbeck process. Figure 7(a)
corresponds to initial conditions, while figures (b)–(d) show
particle distributions after 200 steps. Calculations use 214

particles with m = 0.015. The competition in figure 7(b) is
transitive with I (pq)

= sign(R(Y(p)) − R(Y(q))), where the
function R(Y) is given by (41). In this case, localized and
global competitions produce very similar results and only
the case with global competition (3 ≈ 0) is shown. Note the
increase in the leading point position over its initial value
of 0.6. Further calculations would move particles further up
towards the top strongest point at the top vertex.

Figures 7(c) and (d) show the result for intransitive
competition with I (pq) given by (39). In figure 7(c), compe-
tition is global (3 ≈ 0), while in figure 7(d) competition
is localized in physical space (3 ≈ 0.3). The outcomes are
very different. In the case of global competition, particles
move in all directions of increasing strength towards the
vertices of the triangle and continue to fiercely compete
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with each other. Localized competition results in pyramid-like
structures where competition is moderated and mainly occurs
between particles occupying similar ranking levels, but the
strength of the structure decreases due to gradual loss of the
leading positions. In localized competition the properties of
particles competing with their neighbors undertake relatively
small adjustments, while in global competition particles with
radically different properties have to struggle for the survival
of their location in the Y -space. Intransitive competition opens
up the occasional possibility when a particle with higher
overall rank R loses competition to a particle with a lower
overall rank R—this situation can be called a competitive
error. Competitive degradation is an accumulation of a large
number of competitive errors: each of the errors does not
have any dramatic or even noticeable effect but, over a longer
period of time, these errors accumulate into a decrease in
competitiveness. Localized intransitive competition allows for
the appearance of hierarchal structures, which, as shown in
the next subsection, can exercise control over large domains
with a reduced level of intra-structural competition, but have
to inevitably face the effect of competitive degradation.

As in the previous section, the position of a structure
is controlled by its leading group. The rank leader of the
structure eventually loses to someone who has a lower rank
but is still strong enough to find an occasional dominant
position with respect to the leader. Competitive degradation is
gradual weakening of the structures observed under localized
intransitive competition. We now consider the leading particle
(i.e. particle having the largest value of R) located close
to one of the vertices, say vertex 2 (the top vertex of the
triangle). In figure 5, this particle is shown as a black dot.
The distance from the vertex is described by y∗ = 1 − Y2∗.
Maximal localization 3 → 1 is assumed. The small triangle
represents the area produced by mutations originating from
the dot position according to (40). The probability of
competitive escalation is determined by the probability of
finding a particle losing competition to the leading particle
in the area represented by the small triangle above the dot.
This probability can be estimated as ∼y2

∗
, while the increase

in Y2 is proportional to my∗. Hence, the rate of competitive
escalation is determined by

u+ = C3(3)
m

1t
y3
∗
, (42)

where C3 represents a 3-dependent constant. The probability
of competitive degradation is determined by the probability of
the losing particle landing in gray zones in the small triangle
(∼y∗) and following mixing with this particle resulting in
reduction of Y2 by a value proportional to m. Hence, the rate
of competitive degradation is given by

u− = −C4(3)
m

1t
y∗. (43)

One can see that, for small y∗, the rate of degradation is
dominant. If 3 becomes small the coefficient C4 decreases
significantly to a very small value due to the low probability
of repeated mixing, while C3 somewhat increases due to the
contribution to escalation from other particles in the leading
group (similar to C2 in the transitive competition case).
As a result, escalation becomes dominant over degradation

for global competition 3 → 0. Note that the probability of
successfully challenging the leader is very low for a randomly
selected particle due to a significant difference in rank, while
challenging the leader is much easier for the members of the
leading group.

Competitive degradation is characterized by reduction of
the average overall ranking defined by

R̄µ(µ∗) = P(y(µ) - y(µ∗)), (44)

where measure µ∗ refers to the current distribution of all
particles or their leading group. The degradation affects the
properties of many particles, while specific particles may
increase or decrease their ranking during this process. The
reference measure µ considered in this subsection is uniform
within the domain and so is the mutation generator. The
uniform reference measure gives realistic estimations for
the overall competitive strength of particle properties. It
should be mentioned, however, that definitions of competitive
degradation and escalation are relativistic in intransitive
systems (i.e. depend on the selected point of view represented
by the reference measure). Even for obvious degradation,
considered above, a ‘strange’ reference measure µ can be
selected in a way that R̄µ of the leading group may increase in
time. Degradation may look like escalation to some observers
using ‘wrong’ measure µ while selecting the ‘right’ reference
measure in complex systems may be very difficult. In complex
spaces of large dimensions, escalation with respect to some
parameters may be accompanied by degradation with respect
to other parameters. The measure µ should be related to likely
distribution of expected competitors but these expectations
may change rapidly as considered in the next subsection. For
example, an investment strategy that seems correct at the time
of a financial boom may look quite misguided after the share
market collapses. We also note that a simple measure based
on the current distribution of particles R̄µ∗ is not particularly
useful since R̄µ∗(µ∗) = 1/2 —the numbers of winners and
losers are always the same in two-particle competitions.

4.2. Leaping cycle

In this subsection, we consider a more complicated simulation
that introduces large but rare mutations, since it can be
expected that from time to time a complex competing
system is affected by larger than usual disturbances.
Equation (40) still applies but m becomes a random
value, small in most cases and occasionally larger than
usual (note the conceptual similarity with modification of
Curl’s model [16, 17]). It is important to stress that the
vector ζ is absolutely random and, as in the previous
consideration, is generated with uniform distribution on
the property triangle. In the presented simulations n p =

216 particles were used with localization 3 = 0.3. The
mutation parameter was m = 0.002 (background mutations),
m = 0.8 with probability 0.1/n p (reformation) and m = 0.98
with probability 0.03/n p (revolution). While reformatory
mutations tend to modify and sometimes strengthen existing
structures, revolutionary mutations represent a wild card with
unpredictable consequences.

A wide spectrum of different events can be observed
in these simulations. Structures that have a pyramidal form
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Figure 8. Selected frames of the long-time simulation for property
space (left column) and physical space (right column) at 85 400
steps (top row) and 176 020 steps (bottom row).

in the property space and a spot-like look in the physical
space appear, compete with other structures and inevitably
disappear. Sometimes the whole field is dominated by a single
pyramidal structure; sometimes several structures compete
for the space with different levels of success and sometimes
the situation becomes highly chaotic and rapidly changing.
Structures can also appear under chaotic conditions but they
do not achieve dominance and disintegrate quickly. The full
details of distribution of particle properties in physical space
can be seen only in color, but black and white figure 8 gives
an illustration of observed images. The physical space, which
has a Gaussian distribution of particles, is mapped into a
2 × 2 rectangle using the ‘erf’ functions. The case (a) and (b)
shows two structures, large and small, taking over the rest of
the area immersed in chaos. The case (c) and (d) shows a
bright structure in the center taking over the area previously
occupied by a darker structure. In the property space
(figures 8(a) and (c)), several pyramid-like structures can be
easily detected.

The hypothesis of commonality of cyclic behavior in
different competitive systems was introduced in [14] citing
known technological, economic, biological and historical
cycles. The term ‘leaping cycle’ was used there to characterize
generic features of this cyclic behavior [18]. If the cyclic
behavior is common for competitive systems, the leaping
cycle should also be observed in abstract simulations of
competition. The leaping cycle is indeed clearly visible in the
simulations presented here. These simulations also provide a
qualification for the commonality hypothesis indicating that
the cyclic behavior and increase in complexity are associated
with localized intransitive competition.

The time series presented in figure 9 indicates the
existence of a leaping cycle. Large structures tend to
appear and quickly leap into dominance after several
particularly successful mutations. The following stable period
is characterized by a dominance of the successful structure,
but this dominance does not last forever. The process of
competitive degradation takes its toll and the dominant
structure gradually weakens. Initially, this can hardly be
noticed by any significant changes in the physical domain and

Figure 9. Property changes during the long-time simulation: —,
〈Yi 〉; - - -, Yi∗. The vertical line shows 85 400 steps. Horizontal lines
show intervals used in the next figure.

the position of the dominant structure seems unshakable. In
figure 9, weakening of the leading position Yi∗ is not initially
accompanied by any loss of its territory and reduction of 〈Yi 〉.
However, as the leading structure weakens further, a greater
number of short-lived structures challenging the leader’s
domination appear but usually are successfully fended off
by the leader. The process of competitive degradation can
sometimes be reversed by a successful mutation reforming
and invigorating the dominant structure, but competitive
degradation always resumes. When the dominant structure
becomes obviously weak, two outcomes are possible: (i) the
domain slowly slides into chaos until/or (ii) another strong
structure is born and leaps into dominance. The leaping cycle
is then repeated. The characteristic duration of the leaping
cycle is several thousands of steps in this example. Three
extra long intervals (and many shorter ones) can be identified
in figure 9. The first period is characterized by pre-eminent
dominance of Y2, the second is characterized by dominance
of Y1, and Y3 becomes more dominant in the last period.

Equation (43) results in the following expression for the
rate of competitive degradation

y∗ = exp (β(S − S0)), (45)

where S is the number of steps, S0 is a constant and β = C4m.
Equation (45) is compared in figure 10 with the simulated
rate of competitive degradation from six intervals shown in
figure 9.

5. Conclusions

Stochastic simulations involving particles and mixing are
conventionally used to model the properties of turbulent
reacting flows. Conservative and non-competitive mixing
is conventionally used in these simulations. This work
introduces non-conservative and competitive mixing that, in
principle, can be used to model a wide range of physical
phenomena and represents a generic tool for the investigation
of the properties of competing systems.

Analysis of competing systems can be complicated
and using average quantities or conventional diffusional
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Figure 10. Rate of comperative degradation: —, results of
simulation, data from six intervals shown in figure 9; - - -,
equation (45) with β = 3.3 × 10−4.

approximations may be inaccurate. The suggested approach
is based on analysis of the vicinity of the leading point—this
point is a dominant factor that strongly affects the behavior
of a competing system. The rates of competitive escalation
and degradation determined by this analysis are in very good
agreement with the computer simulation results.

The outcomes of the competition depend upon
the properties of competition—its transitiveness and
localization. Transitive and global competitions tend to
increase competitiveness but not complexity. Localized
intransitive competition allows particles to build complicated
hierarchal structures, dominate collectively and reduce
the overall competition effort (this can be referred to as
competitive cooperation). There is, however, a downside to
this process—the strength of these structures tends to slowly
decrease with time due to the process of competitive
degradation. The presented simulations confirm that
cyclic behavior can be expected in systems with localized
intransitive competition.
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Appendix

A.1. Ranking for transitive competition

A theorem proved more than 50 years ago by Debreu [19]
states that, if subsets of G specified by {y(p)

|y(p) - y◦
} and

{y(p)
|y(p) % y◦

} are closed for any y◦, where ‘-’ denotes
a total and transitive pre-order, then a continuous ranking
function RD = RD(y) preserving the ordering (i.e. y(p) -
y(q)

⇔ RD(y(p))6 RD(y(q))) can be introduced. This function
is obviously not unique as, for example, R3

D(y) introduces
the same ordering. The necessity of this condition can be
illustrated by the fact that RD(y(p))6 RD(y◦) and RD(y(p))>
RD(y◦) define closed sets when RD(y) is continuous.

Here, we use a somewhat different ranking linked to
probability. Assuming that a measure µ defining probability

P is introduced on G we specify the ranking function by
Rµ(y◦) = P(y(µ) - y◦) (where the reference measure µ is
linked to the probability of particle distributions determined
by mutations). It is clear that Rµ(y(p)) < Rµ(y(p)) ⇒ y(p)

≺

y(q) and y(p)
' y(q)

⇒ Rµ(y(p)) = Rµy(q)). It should be noted
that this ranking can alter the ordering since it is possible that
Rµ(y(p)) = Rµ(y(q)) but y(p)

≺ y(q). These changes, however,
are not significant and occur in areas whose measure µ is zero.
The ranking function Rµ(y◦) is, effectively, the cumulative
probability P(y(µ) - y◦) of the random vector y(µ), and
Rµ(y(p)) = Rµ(y(q)) means that the probability of particle r
located at y(p)

≺ y(r) - y(q) is zero.
Even if the conditions of the Debreu theorem are

not satisfied and the exact equivalent ranking cannot be
introduced, the ranking given by Rµ(y◦) = P(y(µ) - y◦) is
practically equivalent to the original ordering from the
perspective of the competition outcomes. In the opposite case
when the Debreu ranking function RD(y◦) exists, the value RD

can be treated as random. The ranking R(y◦) = FD(RD(y◦))
specified by the cumulative probability FD(R◦) = P(RD 6
R◦) is the same as given by (11) and fully equivalent to Debreu
ranking when FD(R◦) is strictly monotonic and continuous.

A.2. Types of intransitivity

Intransitivity may appear at large scales while competition
remains locally transitive. This means that there is such ε

that no intransitive triplets can be found in the ε-vicinity of
every point in the domain G. If G is compact, then a finite
ε-grid can cover G and, within each cell, competition remains
transitive and can be represented by a ranking function.
Although ranking functions can be different in different cells,
they represent the same ranking at the cell boundaries and
the ranking functions in any two neighborhood cells can be
made consistent. The consistent representation of ranking
functions can propagate from one cell to another and as
the number of cells is finite, this procedure will eventually
cover the whole domain. Whether this procedure results in
an overall transitive ranking depends on the topology of the
domain. For example, the competition illustrated by figure 3
is locally transitive and globally intransitive. The intransitive
loop shown by the arrows can exist in this case as the loop
cannot be continuously shrunk within this domain to a size
smaller than ε. If particle competition (and distribution) is
localized, then the overall behavior of the particle system
would be predominantly transitive and the influence of global
intransitivity would be limited.

It is also possible to have competition with locally
intransitive and globally transitive properties. Indeed, let us
assume that the ordering y(p) - y(p) is strongly intransitive
(i.e. intransitive triplets (35) can be found in a small vicinity
of every point). We say that particle p is transitively equivalent
to particle q and denote this equivalence by y(p)

∼t y(q) when
particle sets r1, . . . , rnr and s1, . . . , sns exist so that

y(p) - y(r1) - · · ·- y(rnr ) - y(q) (46)

and
y(p) % y(s1) % · · ·% y(sns ) % y(q). (47)

When y(p)
∼ y(q), obviously y(p)

∼t y(q) since equations (46)
and (47) are satisfied with nr = ns = 0. However, y(p)

∼t y(q)
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does not necessarily mean that y(p)
∼ y(q). It is easy to see

that transitive equivalence is indeed transitive: y(p)
∼t y(q) and

y(q)
∼t y(r) result in y(p)

∼t y(r).
We also define the binary relationship y(p)

≺t y(q), which
means that y(p)

≺ y(q) and at the same time y(p) �t y(q) It
is possible to demonstrate that this relationship is transitive:
y(p)

≺t y(q) and y(p)
≺t y(r) obviously result in y(p)

≺t y(r).
Indeed, among all possibilities y(p)

� y(r), y(p)
∼ y(r) and

y(p)
≺ y(r), only the last one is compliant with relationships

y(p)
≺t y(q) and y(q)

≺t y(r), while the case of y(p)
≺ y(r) and

y(p)
∼t y(r) should be eliminated for the same reason. The

only remaining possibility is y(p)
≺t y(r).

The new binary relation splits all property states into
classes of equivalence with transitive ordering between these
classes, which is consistent with the original definition of
the winners and losers (i.e. y(p)

≺t y(r) requires that y(p)
≺

y(r)). Thus, competition within each class can be omitted
from consideration while each class can receive its equivalent
rank determining the outcomes of the global competition
between the classes. Once the winning class is determined, the
competition will continue locally within this class according
to intransitive rules.

The examples of this section illustrate that in complex
competition, transitive and intransitive competition rules can
be combined hierarchically (like Russian dolls).
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