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Abstract
While the concept of mixing is commonly used in science and engineering, its exact
interpretation may vary between different disciplines. In the present work, we analyse the
concept of mixing in context of mechanical mixing, the ergodic theory, modelling of turbulent
reacting fluid flows and complex competitive systems. Although mixing represents a
dissipative process, which is responsible for irreversible increase of molecular disorder, mixing
nevertheless can be associated with emergence of complexity under certain conditions. This
dual role of mixing is noted and examined here. The appendix discusses three fundamental
hypotheses, which are related to understanding of mixing and were introduced by Boltzmann.

PACS numbers: 47.51.+a, 47.27.wj, 89.75.−k, 05.20.Dd

1. Introduction: mechanical mixing

Mixing is commonly understood as blending of two (or
more) gases or liquids until a uniform mixture is achieved.
Mixing preserves the identity of participating molecules and
is thus different from chemical reactions. If molecules have
little interactions, the resulting mixture is called an ideal
mixture and characterized by maximal possible disorder and
maximal possible entropy. Alternatively, interactions between
molecules can reduce molecular chaos and the entropy of
mixing falls below its maximal value.

The process of mixing of white and black fluids is
schematically presented in figure 1. The ordered state before
mixing figure 1(i) is replaced by blobs of one fluid floating in
the other as shown in figure 1(ii). The following figure 1(iii)
demonstrates maximal randomization of the mixture with
the molecules of the black fluid distributed randomly in the
while fluid. If the mixture is treated as continuum, then a
homogeneous grey colour becomes distributed uniformly in
the domain (figure 1(iv)). Mixing is closely related to the
process of diffusion (i.e. diffusion of the scalar representing
the concentration of the black admixture into while liquid),
although diffusion usually involves spatial transport while
mixing is conventionally referred to the local effect of the
diffusion. The black area (i.e. the number of black pixels) is
exactly the same in figures 1(i)–(iii). In figure 1(iv) the image
is slightly coarsened so that the grey area is larger than the
black area in figure 1(i) but the intensity of the dark colour
is reduced proportionally. If two liquids are immiscible, then
mixing can not proceed beyond the stage shown in figure 1(ii)
since the thermodynamic states with fully mixing liquids

have prohibitively high energy levels when these liquids are
immiscible.

The entropy of complete ideal mixing of two components
can be expressed by the following equation:

1Smix = −kB Nm (X1 ln(X1) + X2 ln(X2)) , (1)

where X1 + X2 = 1 are the molar fractions, kB is the
Boltzmann constant (per molecule) and Nm is the total number
of molecules in the system. The process of mixing increases
entropy by 1Smix and is the most fundamental example
of a thermodynamically irreversible process: mixing of two
fluids might be relatively easy but the mixture can never
spontaneously unmix without external interference. While the
equations of classical mechanics and of quantum mechanics
are reversible in time, mixing is not. The question of the
reasons behind the existence of a preferred direction in
time and consistency of the second law of thermodynamics
with mechanical laws has been discussed from the times of
Ludwig Boltzmann and still awaits its full resolution (see
appendix A.1).

2. Ergodic mixing

The concept of mixing is also used in ergodic theory,
which studies the behaviour of large Hamiltonian systems
(i.e. dynamical systems preserving the total energy). These
systems may have a very large dimension. For example, if
a system involves Nm molecules and each molecule has at
least 6 degrees of freedom (i.e. position and velocity), then the
dimension of this system can be estimated as 6Nm, which is
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Figure 1. Schematic of the mixing process proceeding from
ordered state (i) to disordered states (iii) and (iv). The number of
black pixels is the same in (i), (ii) and (iii). Panel (iv) has the same
average intensity of the black colour as the other figures.

extremely large. Following Gibbs term of extension-in-phase,
we call this combined space as the extended phase space.
Evolutions of Hamiltonian systems are measure-preserving,
i.e. any volume in the extended phase space is not changed
as each point in this volume evolves in time according to the
laws of mechanics.

While each state of a system can be represented by a
single point in the 6Nm-dimensional extended phase space,
the mathematical treatment practiced in statistical physics and
thermodynamics involves ensembles of systems, which are
represented by volumes in the same extended phase space.
The fundamental premise, which states that macroscopic
averages evaluated for the ensembles must correspond to the
averages over a sufficiently long period of time evaluated for
a single system, is called the ergodic hypothesis. This premise
can be written as∫

D
f (y)P(y) dy∫
D

P(y) dy
= lim

τ→∞

1

2τ

∫ +τ

−τ

f (y(t)) dt, (2)

whereD is the accessible domain, f is an arbitrary function of
a stationary random process y(t) and P(y) is the probability
density function (PDF) of this process. This hypothesis was
first introduced by Boltzmann, formulated in the form of
equation (2) by Paul and Tatiana Ehrenfest and proven for
different specific conditions in a number of theorems due to
von Neumann, Birkhoff, Kolmogorov, Sinai and others (see
appendix A.2).

Ergodic mixing can be understood through analogy
between evolution of volumes in the extended phase space
with mixing of fluids. This analogy was first introduced by
Gibbs in his fundamental work [1], which laid the foundations
of statistical physics. Ergodic mixing can be described by the
same figure 1, which in this case illustrates the extended phase
space. The ensemble of states is initially confined to the black
region in figure 1(i). The evolution of the system changes the
shape of the region but does not alter its volume (figures 1(ii)
and (iii)) but after a sufficiently long period of time, the

trajectories become densely distributed in the domain D
permissible by the equations of motion (figure 1(iii)). Any
averaging or coarsening results in a uniform distribution
(figure 1(iv)). The time averages for a common selected
trajectory become the same as the averages over the whole
domain D. Mixing is thus sufficient for ergodicity.

Although Gibbs analogy provides an excellent illustration
of the concept of ergodic mixing, mechanical mixing and
ergodic mixing are not exactly equivalent. For example,
immiscible liquids cannot be mixed mechanically (as
considered in the previous section), while the dynamic system
represented by the molecules of these liquids may reach the
state of ergodic mixing over the permissible domain in the
extended phase space. This apparent paradox has a simple
explanation: the states of a complete mechanical mixture of
the liquids have prohibitively high energy levels and do not
belong to the permissible domain D.

3. Interactive mixing

The term ‘interactive mixing’ is interpreted here as exchanges
of properties that are often used in computer simulations of
mechanical mixing and diffusion, especially in the context of
modelling of turbulent reacting flows.

3.1. Conservative mixing

The process of mixing can be simulated by a sufficiently
large number of notional particles, randomly walking from the
region of their initial confinement (such as the black region
in figure 1(i)) and diffusing to occupy the whole domain
(as in figure 1(iii)). The fundamental similarity between
diffusion (mixing) and random walks was established first
in physics and then in mathematics. Einstein’s work on
Brownian motion [2], Kolmogorov’s work on forward and
backward equations [3] and many other publications can
be cited in this context. In fluid mechanics, Lagrangian
particles, which follow the fluid flow (with or without random
walk) are conventionally used to evaluate scalar transport.
In this case the scalar is represented by the concentration
of the particles. In principle, this approach can be used to
characterize turbulent reacting flows, which might involve
hundreds of different chemical species, but representing each
scalar by a large number of particles within each small volume
would be prohibitively expensive and impractical. The success
of Lagrangian simulations in turbulent flows is related to
the effective use of another type of particles—Pope particles
(i.e. notional Lagrangian particles possessing a set of scalar
properties and being subject to interactive mixing [4–6]).
Lagrangian particles without properties and interactive mixing
are distinguished here by referring to them as ‘elementary’.

The goal of making Lagrangian simulations of scalar
transport computationally efficient inevitably leads us from
elementary particles to Pope particles. Indeed, the same
set of elementary particles can be economically used to
model different scalars provided the particles carry different
‘marks’ corresponding to different scalars. These marks
become particle properties. It appears then that performing
interactive mixing of these properties can radically improve
the accuracy of the simulations [7]. In the last few decades,
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all Lagrangian simulations of turbulent reacting flows in
Reynolds-averaged Navier–Stokes (RANS)-PDF [4], large
eddy simulations-filtered density function (LES-FDF) [8] or
LES-PDF [9] conditions, have been performed using Pope
particles, while the use of elementary particles was confined to
a very specific problem of evaluating turbulent dispersion of a
single scalar, mostly in atmospheric applications. Interactive
mixing can be conducted by different mixing schemes. Curl’s
mixing 

X́ (p)
= (1 − α)X (p) + α

X (p) + X (q)

2

X́ (q)
= (1 − α)X (q) + α

X (p) + X (q)

2

(3)

and interactions by exchange with the mean (IEM)-type
mixing (mixing by interactions by exchange with the mean)

X́ (p)
= (1 − α)X (p) + α 〈X〉 (4)

represent the oldest and most simple interactive mixing
schemes [4]. The acute symbol is used to denote the scalar
values after mixing and α specifies the extent of mixing. In
Gurl’s mixing, particles interact with each other by forming
groups of two particles (p and q in (3)), while particles
interact only with the mean in (4). Note that conventional IEM
mixing is continuous, while we use a discrete time version
here by analogy with Curl’s mixing. Values y(p)

= (x(p), X(p))

comprising coordinates x and scalar properties X are assigned
to each particle p.

Elementary particles with y(p)
= (x(p)) move indepen-

dently from each other and, consequently, the joint PDF of
k particles satisfies the disorder condition

Pk(y(1), y(2), . . . , y(k)) = P1(y(1))P1(y(2)) · · · P1(y(k)). (5)

While the particles remain independent from each other in
IEM mixing, this is not necessarily true for Curl’s mixing.
The disorder condition may generally be incorrect for Pope
particles (with y(p)

= (x(p), X(p))) due to interactions between
the particles and a likelihood of stochastic dependences
between X(p) and X(q) for p 6= q. Since both IEM and
Curl’s mixing emulate the same physical process (i.e.
physical mixing), it is unlikely that stochastic dependencies
between the particles may become significant and in most
cases can be neglected [4]. A more rigorous analysis of
particle dependencies given in [7] confirms this statement.
In statistical physics, the hypothesis of molecular disorder,
which is similar to (5) and is discussed in appendix A.3, is one
of the most fundamental properties of molecular dynamics.

3.2. Competitive mixing and complexity

A system, which is in a state of complete disorder (5), cannot
be complex since it is fully characterized by one-particle
PDF P1(y) and has relatively small number of effective
degrees of freedom corresponding to that of a single
particle. (The same statement applies to the opposite case of
deterministically constrained systems—these systems cannot
be complex due to a limited number of degrees of freedom
they posses). Consequently, interactive mixing, which can

introduce dependencies between particles, is a principal factor
that is necessary for the emergence of complexity in these
systems. This necessity, however, does not imply sufficiency.
For example, conservative mixing considered in the previous
subsection, is generally compliant with (5), exactly or
approximately, and does not make the system complex.
A number of recent publications [10–13] indicate that
another version of particle interactions—competitive mixing
combined with random mutations—may bring complexity
into the system under certain conditions discussed below.

If mutations in a system with competitive mixing
belong to the class of mutations called Gibbs mutations,
then this system can be characterized by competitive
thermodynamics [13]. This limits the system complexity as
thermodynamically consistent behaviour is associated with
particle disorder. If mutations are not Gibbs compliant,
the behaviour of the system depends on the transitivity
of the competition rules. The case of transitive rules is
qualitatively similar to the transitive systems with Gibbs
mutations. This, again, restricts the complexity of the system.
The restrictions of competitive thermodynamics, however,
gradually disappear for intransitive competitions. First,
competitive thermodynamics might acquire quite unusual
intransitive features, which in conventional thermodynamics
are banned by its zeroth law. Stronger intransitivity removes
thermodynamic restrictions and the system can become more
complex. Competitive cooperation, formation of structures
and complex cyclic behaviour has been observed in
competitive systems with strongly intransitive competition
localized in physical space [13]. Under these conditions,
interactive mixing is associated with partially ordered,
complex behaviour.

4. Concluding remarks

While exact definition of mixing may vary from one
field of science to another, there is common qualitative
understanding of this term across the disciplines. Mixing is a
fundamentally dissipative process that is characterized by loss
of information, entropy increase and irreversibility. Interactive
mixing (while shearing many common features associated
with general mixing) may also exhibit complex behaviour.
This may seem unexpected but there is no contradiction
here—evolutionary emergence of complexity is accompanied
by dissipative loss of information and increase of entropy.
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Appendix. Three Boltzmann hypotheses

This appendix presents three hypotheses introduced by
Ludwig Boltzmann in his studies of kinetic theory of gases
and can help to understand different aspects of mixing.
Our preference is given to conveying the meaning of the
hypotheses by using modern terminology and understanding,
rather than reproducing Boltzmann’s exact words (which in
many cases were written in German).
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A.1. Thermodynamic time

This hypothesis was formulated by Boltzmann in
response to his critics and in attempt to reconcile the
time-symmetric behaviour of conventional mechanics with
the time asymmetric nature of thermodynamics and kinetic
theory [14–16]. If two gases, say nitrogen and oxygen,
are placed into separated parts of a fixed volume and the
separating membrane is then removed, the gases irreversibly
mix to form a uniform mixture (this example was used by
Boltzmann in his polemics in Nature [14]). Mechanically,
this mixing process can be reversed but, obviously, we
never observe this reversal in the real world. One should
not overlook that the temporal boundary conditions in this
experiment are strongly time-asymmetric: we manage to
set the non-equilibrium initial conditions but cannot do the
same to the final conditions. Why is this the case? We can
set the initial conditions because we can use available
exergy in form of electricity to separate air into N2 and O2

and prepare the experiment. Where does this exergy come
form? Electricity is generated by fossil fuels, whose energy
comes from the sun. The sun’s gravitational thermo-nuclear
factory is possible due to highly ordered non-equilibrium
state of the early Universe. Thus, any question pertaining
to the asymmetry of local temporal boundary conditions
is inevitably related to the temporal boundary conditions
imposed on the Universe.

In science of the late 19th century, the Universe
was deemed to be infinite in size and eternal while the
modern cosmology believes that the Universe was born
around 14 billion years ago and might be limited in size.
The arguments of Boltzmann, which were directed at his
contemporaries, thus need to be translated into context of
modern science.

Boltzmann time hypothesis. The perceived direction of time
is linked to the direction of entropy increase and determined
by the temporal boundary conditions imposed on the Universe
(or the observable part of it).

On the face of the problem, this hypothesis seems to deal
with definitions more than with the physics declaring that
the second law of thermodynamics determines the direction
of time rather than the direction of time determines how
the second law should be applied (one may recall the
famous chicken and egg question). The thermodynamic time
hypothesis is nevertheless a physical hypothesis that leads
to quite astonishing corollary (which was also noticed by
Boltzmann)—if different temporal boundary conditions are
set over different parts of the material world, the perceived
time can run in these parts in the opposite directions.

The exact mechanism of enacting the direction of time
remains unknown. The laws of both classical mechanics and
quantum mechanics are time-symmetric. Boltzmann’s time
hypothesis can act solely through the temporal boundary
conditions in otherwise time-symmetric mechanics of the
Universe, or the hypothesis can be enacted by the temporal
boundary conditions causing a slight temporal bias in the
behaviour of the matter filling the Universe. The bias is so
small that we do not detect it in conventional mechanical
laws. If exists, this bias is likely to be related to the

process of quantum decoherence, theoretically hidden at
the interface of classical and quantum mechanics. Roger
Penrose [17] suggested another fundamental hypothesis that
weak interactions of gravitational fields and quantum coherent
states are slightly time-asymmetric causing decoherence. The
direction of time still awaits its full physical explanation.

A.2. Ergodic theory

The conventional description of thermodynamic systems
is based on averages, which in mathematics are most
conveniently evaluated over ensembles (i.e. over a large
set of conceptually identical systems) while a specific
thermodynamic system is in its single specific micro-state at
every specific moment. How then the averages are related
to the realistic system in its specific state? The answer
to this question is given by the ergodic hypothesis in
physics and, more broadly, by ergodic theory in mathematics.
The ‘ergodic’ terminology was introduced by Boltzmann
following the assumption that the dynamic system under
consideration is Hamiltonian and its total energy is preserved.
Time evolution of these systems is confined to finite domains
and preserves volumes in the extended phase space. The
properties established by the ergodic theory are generally
expected to be valid almost everywhere (i.e. possibly with
exception of subdomains of zero volumes). A good review of
the ergodic theory written for physicists can be found in [18];
see also remark on p. 207 of [15].

Boltzmann ergodic hypothesis. If a dynamic system is
confined to a finite domain and observed over a sufficiently
long period of time, then almost every selected trajectory of
the system fills the domain with a uniform density.

This hypothesis, which presumes that the mixing
conditions are complied with on average over a large period
of time, can be called weak mixing. The ergodic hypothesis
strengthens the formulation of Poincare recurrence theorem
by suggesting mixing instead of recurrence. Ergodic mixing,
which is illustrated in figure 1 and requires that the mixing
conditions are satisfied at a fixed time moment rather than
on average, is also called strong mixing (to distinguish
it from weak mixing). Weak mixing follows from strong
mixing but not vice versa. For example, pendulum oscillations
comply with the conditions of weak mixing but not with the
conditions of strong mixing. Weak mixing is equivalent to the
conventional ergodic conditions (2), which were first given in
this form by Paul and Tatiana Ehrenfest [20].

While the physical explanation of the ergodicity of
thermodynamic systems was given by Boltzmann, it took
a few decades to prove the corresponding mathematical
theorems. The ergodic property requires an additional
ergodicity condition imposed on dynamic transformations in
a Hamiltonian system: no subdomain in the extended phase
space can evolve to be mapped on itself; the whole domain
and, possibly, small domains of measure zero are exempted
from this requirement. The volume in the extended phase
space is commonly referred to as the measure. Evolutions
of dynamic systems complying with this condition are called
ergodic transformations and ergodicity of the transformations
is necessary for ergodicity of the system. Indeed, imagine

4
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that the whole domain is divided into two (or more)
subdomains that are mapped onto themselves. Then any
dynamic trajectory starting in one of the subdomains will be
forever confined to this subdomain violating ergodicity (2).
For ergodic transformations, any function f (y), which is
not changed by this transformation, must be constant almost
everywhere (otherwise the domains bounded by the lines
of constant f are mapped onto themselves, which is not
permitted). The famous Birkhoff theorem [19] proves that this
condition of ergodic transformations is sufficient for Ehrenfest
ergodicity (2). As many mathematical theories, the ergodic
theory applies almost everywhere, i.e. while neglecting any
properties confined do domains of zero measure.

A.3. Molecular disorder

The famous H-theorem proved by Boltzmann is based on
molecular mechanics and on an additional hypothesis—the
hypothesis of molecular disorder or the Stosszahlansatz [15].
Without this hypothesis, the Boltzmann kinetic equation
formulated for one-particle PDF P1(y) remains unclosed
as a part of the Bogolubov–Born–Green–Kirkwood–Yvon
chain linking P1(y(1)) to P2(y(1), y(2)), P2(y(1), y(2)) to
P3(y(1), y(2), y(2)) and so on. Although the hypothesis of
molecular disorder is confirmed for gases by reasonable
accuracy of the resulting Boltzmann kinetic equation, proving
this hypothesis from first principles is a complex problem,
which is not resolved in a general case.

Boltzmann hypothesis of molecular disorder. Molecules are
statistically independent from each other (or can be treated as
being statistically independent from each other).

Equation (5) is an important mathematical consequence
of the hypothesis, which is used in the derivation of
the Boltzmann kinetic equation and proof of Boltzmann’s
H-theorem. It is easy to see that this hypothesis cannot
be exact, at least because the properties of two molecules
become correlated after their collision. It may be the case
that the hypothesis can be proven solely from the laws of
mechanics as an approximate or asymptotic property but
this would have a clearly unwanted consequence. Since the
laws of mechanics are time-symmetric, our prediction of an
equilibrium future, given the non-equilibrium present can
be extended to predicting an equilibrium past given the
non-equilibrium present. This should not be a surprise: if
the only information we have about surrounding world is its
present, we should be predicting equilibrium states as both its
future and its past. Equilibrium states are the most probable
states after all. Even our memories of more non-equilibrium
Universe in the past are then interpreted as an illusion due to
an odd fluctuation (the so-called Boltzmann brain).

The answer for mounting paradoxes is, of course, to
adjust the theory to our experience. Since we do not know
the exact physical working of the unidirectional time flow,
we might use a fix—the causality principle. In physics,
causality is time-asymmetric: the future depends on the past
but not vice versa. Applying causality to the hypothesis of
molecular disorder is also time-asymmetric: two molecules
are stochastically independent before but not after their
collision. According to causality, independence of molecules

before collision is very probable but after collision it is not.
Hence, although trajectories of molecules can be inverted so
that two gases O2 and N2 might unmix in the example of
appendix A.1, we would judge the probability of this event as
most unlikely, since a much more likely behaviour is predicted
by the H-theorem: moving towards the equilibrium of the
uniform mixture of these gases. We cannot, however, apply
the H-theorem backward in time, since this would contradict
the causality principle (post-collisional states of molecules are
not independent!).

We must conclude that the hypothesis of molecular
disorder, although not exact, is a reasonable physical
assumption (although not a mathematical theorem) which
is confirmed by the validity of the Boltzmann kinetic
equation and is most likely to be supported by measurements
of molecular statistics in gases if we could perform
them. Finding rigorous mathematical justifications for this
assumption might indeed be useful but perhaps not as
important as explaining the physical reasons responsible for
the direction of time. It might be noted that a thermodynamical
system has a temperature at a given moment of time and not
while being averaged over a large or infinite time period,
as required by the ergodic theorems. Why might this be the
case? The explanation is in validity of the hypothesis of
molecular disorder: since molecules are independent we can
average over the ensemble of molecules (Boltzmann statistics)
rather than over the ensemble of systems (Gibbs statistics).
Our everyday use of conventional thermodynamics gives the
strongest support in favour of the hypothesis of molecular
disorder.

While the hypothesis of molecular disorder is a
reasonable approximation for conventional thermodynamic
systems, we argue that this hypothesis breaks down when
complexity emerges. A complex system has a sophisticated
hierarchy of structures, and the elements within these
structures are no longer stochastically independent.
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