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Abstract

A special version of Conditional Moment Closure – PCMC – is suggested for modeling reacting flows in porous
media. The model involves conditioning on a special tracer scalar, which is introduced to characterize scalar
transport in the gaseous phase. (i.e. for the flow in the interparticle space or in the pores). The model accounts
for interparticle variations of species concentrations and emulates diffusion in the interparticle space. Special
boundary conditions that are consistent with conventional conditions at the phase interface are obtained for the
PCMC model. The model is tested against complete direct simulation of a reacting flow in porous media with
favourable results.
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1. Introduction

Contributions have been made to the study of flow
in porous media for around 200 years [1]. Fundamen-
tal studies of flow have recieved rigorous mathemati-
cal attention (see for example [2]) and flow has been
classified into the following main regimes depending
on pore size and strength of adsorption: continuum
(Poiseuille) flow, rarefied (Knudsen) flow, capillary
force driven diffusion and surface diffusion (see for
example [3]). The effects of pore structure and ran-
domness on diffusion have also been studied (see for
example [4]). Modern methods of treating reacting
flows in porous media are also reviewed in ref. [5].In
this work we focus on continuum flows with nonequi-
librium chemical kinetics through porous media.

Continuum reacting flows in porous media are
characterized by presence of two phases: the gaseous
β-phase and the solid (or liquid) σ-phase [5].Depend-
ing on application, the σ-phase can be represented by
a material with extensive porous structure, rocks, par-
ticles or droplets. Chemical reactions are divided into
two major groups: homogeneous reactions that occur

in the volume occupied by the β-phase and heteroge-
neous reactions that occur on the surface separating
the σ- and β-phases (the σ/β-interface). In this work,
we are not primarily concerned with motion of the σ-
phase and refer to the problem under consideration as
a flow in porous media rather than a heterogeneous
flow. In most conventional approaches, the reac-
tions are treated with the use of averages over β-phase
(i.e. the intrinsic averages [6, 7]). The alternative
treatment [8] involves using solutions obtained for in-
dividual particles or droplets to characterize multi-
particulate flow. Although the latter approach has
an obvious restriction — the distributions of react-
ing species obtained for individual particles should
not strongly interfere with each other — it points to
that there could be significant variations of concen-
trations at smallest scales in the β-phase that makes
the use of intrinsic averages inaccurate (although in-
trinsic averages still characterize the local fractions of
reacting species better than superficial averages [5–
7]). One can imagine a third, alternative treatment of
reacting flows in porous media by resolving all details
of the flow in pores or between the particles. Consid-



ering complexity of a typical porous media structure,
the last approach seems to be more hypothetical than
practical. Here, we call this approach ”direct simula-
tions” and distinguish it from modeling that is based
on the use of various averages.

The goal of the present work is to follow the Condi-
tional Methodology [9] and use conditional averages
that characterize the interparticle scalar field much
better than the intrinsic averages. The suggested
model emulates scalar diffusion in interparticle space
and, essentially, this model is a modification of Con-
ditional Moment Closure (CMC) [9]. Note that in the
present work the conditioning variable Z is not the
mixture fraction used in conventional CMC but a spe-
cially selected tracer scalar that, in β-phase, satisfies
the scalar transport equation with a source term Gen-
erally, there is a certain degree of freedom in selecting
the tracer scalar and its source term but, in the case of
a good selection, the scalar Z is, to a some extent, in-
dicative of the distance from the closest σ/β-interface:
we specify Z = 0 on the interface whileZ > 0 in the
β-phase. Special attention needs to be paid to formu-
lation of the boundary conditions for CMC equations
that should match the conventional conditions on the
σ/β-interface. The suggested model is called PCMC
– ”Porous CMC”.

In the present work, the PCMC model is tested
against direct simulations. The direct simulations are
preferred over experiments to ensure accurate control
of reaction mechanisms that must be identical for the
direct simulations and the model. The reaction mech-
anism and constants are selected in the most simple
manner that can demonstrate the effect of change in
a local concentration near the phase interface due to
heterogeneous (surface) reactions. This effect can
be modeled by PCMC but not by the conventional
approaches based on intrinsic averages. This re-
action mechanism involves two reactions, heteroge-
neous and homogeneous, and resembles one of the
routes for char oxidation.

2. Conventional and conditional averaging in
porous media

In the present work, we refer to three types of aver-
aging that can be effectively used for modeling react-
ing flows in porous media: superficial, intrinsic and
conditional [6, 7, 9]. These averages can be repre-
sented by the following equations

〈Y 〉 =

Z
∞
Y (x◦)Φ(x◦ − x)dx◦ (1)

Y β =
〈Y ρβ〉
〈ρβ〉 =

〈Y ρ〉β
〈ρ〉β

, 〈ρ〉β =
〈ρβ〉
〈β〉β

(2)

Y Z =
〈Y ρβ|Z = Z◦〉
〈ρβ|Z = Z◦〉 (3)

where the angular brackets denote spatial averag-
ing by evaluating a convolution integral with a bell-

shaped weighting function Φ(x) that satisfies the nor-
malization conditionsZ

∞
Φ(x)dx = 1

The averaging is effectively performed only over the
gaseous phase (β -phase) and, generally, the variables
Y are not necessarily defined in the solid phase (σ -
phase). The function β(x) is defined so that β = 1
in the β -phase and β = 0 anywhere else. The su-
perficial averages 〈·〉 , the intrinsic averages 〈·〉β ,

the intrinsic Favre (density-weighted) averages (·)β
and the conditional Favre averages (·)Z can be con-
sistently used not only for ρ and Y but also for other
variables specifying conditions in the flow. The aver-
aging 〈·|Z◦〉 = 〈·|Z = Z◦〉 denotes conditioning on
Z = Z◦ where Z is a physical variable and Z◦ is
the corresponding sample space variable. If Z > 0
only in the β -phase (so that Z = 0 at the β/σ phase
interface) than the function β can be omitted in the
conditional averaging for any Z◦ > 0 . In the rest of
the paper Z is presumed to satisfy these conditions

Z > 0 in β-phase and (Z)βσ = 0 (4)

With the use of the fine grained distribution function
ψ = δ(Z − Z◦) the conditional averaging equations
take the form

Y Z =
〈Y ρ|Z◦〉
〈Y ρ|Z◦〉 =

〈Y ρψ〉
〈ρ〉β Pz

(5)

where PZ is Favre (density-weighted) distribution
function

Pz =
〈ρψ〉
〈ρ〉β

,

Z ∞

+0

PZ(Z◦)dZ = 1 (6)

These averaging equations combine the techniques of
using the phase indicator functions β [6], the weight-
ing function Φ(x) [7] and conditional averaging [9].
The convolution integral in Eq.(1) represents a spa-
tial filtering operation rather than an ensemble aver-
age. However, if the characteristic distance between
the particles L∗ is much smaller than the scale Lf ,
which characterizes the rate of change of the aver-
age parameters in the flow, and if the characteristic
length scale LΦ of the function Φ is selected so that
L∗ � LΦ � Lf , then filtering can be treated in the
same way as averaging. In the rest of the paper, we
do not need to distinguish Z and Z◦; both of these
values are denoted by Z.

3. Conditional equations

The definitions of superficial, intrinsic and condi-
tional averages are general and not linked to a par-
ticular type of scalars although the scalars considered
here are deemed to satisfy the continuity equation and



the scalar transport equation (at least within the β-
phase)

∂ρ

∂t
+ ∇·(ρu) =0 (7)

∂ρYi

∂t
+ ∇ · (ρuYi) −∇ · (ρDi∇Yi) =ρWi (8)

where Z ≡ Y0 is a tracer scalar representing the con-
ditioning variable while Y1, Y2, ... are the mass frac-
tion of the reactive scalars. In addition to the volume
reaction rate Wi, the reactive scalars are affected by
the surface reactions (and, may be, adsorption) Si on
the interface between the phases (the β/σ-interface).

With conventional conditional notation of Qi ≡
(Yi)Z , the CMC equation takes the form [9]

∂Qi 〈βρ〉PZ

∂t
+∇ · ( 〈βρuYi|Z◦〉PZ) =

(Wi)Z 〈βρ〉PZ+
∂Ji

∂Z
(9)

where

Ji ≡ −(Wi)Z 〈βρ〉PZ +
Di

D0
NZ 〈βρ〉PZ

∂Qi

dZ◦ −

Qi
∂NZ 〈βρ〉PZ

∂Z◦ + J ′
i +Ei

J ′
i≡
˙
βρ(D0 +Di)∇Y ′

i · ∇Z|Z◦¸PZ−
∂ 〈βρN ′Y ′

i |Z◦〉PZ

∂Z◦

Ei≡ ∇ · (ρD∇(Y iψ))+

∇ · ( 〈βρ(Di −D0)∇Yi|Z◦〉PZ)

N = D0(∇Z)2 is the scalar dissipation and the
”prime” superscript denotes the conditional fluctua-
tions Y ′

i = Yi −Qi or the value of J′
i which is linked

to the conditional variations. We follow the CMC ap-
proach [9] and the terms J′

i and Ei are consistently
neglected in the rest of the paper. The trivial case of
Wi = 0 and Yi = 1 substituted into Eq.(9) yields the
pdf equation

∂ 〈βρ〉PZ

∂t
+ ∇ · (uZ 〈βρ〉PZ)+

∂(W0)Z 〈βρ〉PZ

∂Z
+
∂2NZ 〈βρ〉PZ

∂Z2
= 0 (10)

Here 〈βρ〉 ≡ 〈β〉 〈ρ〉β by definition. Using Eqs.(9)
and (10) results and neglecting the transport by con-
ditional velocity fluctuations u′ results in

∂Qi

∂t
+ uZ · ∇Qi + (W0)Z

∂Qi

∂Z
= (Wi)Z+

Di

D0
NZ

∂2Qi

∂Z2
+

„
Di

D0
− 1

«
1

PZ

∂NZPZ

∂Z

∂Qi

∂Z
(11)

4. Boundary conditions

The integrals of the conditional equations must be
consistent with the superficial averages of the conti-
nuity and scalar transport equations that are obtained
by multiplying Eqs.(7) and (8) by β and averaging in
accordance with the spatial averaging theorem [6, 7]
formulated for an arbitrary vector G

∇ · 〈βG〉 = 〈β∇ · G〉 + 〈δβσn · G〉
After neglecting the large-scale (but not the small-
scale) transport by molecular diffusion we obtain

∂ 〈βρ〉
∂t

+ ∇· 〈βρu〉 = M (12)

∂ 〈βρYi〉
∂t

+ ∇ · 〈βρuYi〉 = 〈βρWi〉 + Fi (13)

where M = 〈mδβσ〉 is the average mass flux into the
β-phase, m = ρ(u− s) · n is the local mass flux rel-
ative to the phase interface, δβσn = ∇β is the Delta-
function evaluated at the phase interface (note that the
subscript ”βσ” indicates values evaluated on the β-
side of the surface while the subscript ”σβ” denotes
values evaluated on the σ-side; these values may dif-
fer from each other), ∂β/∂t = −δβσs · n and

Fi ≡ 〈Yimδβσ〉 − 〈ρDi∇Yi · nδβσ〉
= 〈mYiδσβ〉 + 〈Siδσβ〉 (14)

is the average flux of scalar Yi into the β-phase.
Although these equations are formally applicable to
conditions when σ-phase is represented by particles
which are allowed to move (fluidized beds, for exam-
ple), this case would need additional equations spec-
ifying transport of the σ-phase and is not specifically
considered here.

The integral of Eq. (9) and the zeroth and the first
moments of the pdf equation (10) — all these equa-
tions are integrated over the β-phase region (+0 <
Z < ∞) — are consistent with Eqs. (12) and (13)
provided that

〈βρ〉
„
∂NZPZ

∂Z
+ (W0)ZPZ

«
βσ

= M (15)

〈βρ〉 `NZPZ

´
βσ

= −F0 = 〈ρD0∇Z · nδβσ〉
(16)

M
“
(Qi)βσ − (Qi)σβ

”
−
„
Di

D0
NZ 〈βρ〉PZ

∂Qi

∂Z

«
βσ

= A 〈Si〉βσ (17)

where A = 〈δσβ〉 is the average phase interface sur-
face per unit volume. In these equations we consis-
tently replace the local values by the conditional av-
erages. According to the CMC logic, the reaction
source terms are evaluated as

(Wi)Z = Wi(Q1, Q2, ...), (18)



〈Si〉βσ = Si

“
(Q1)βσ , (Q2)βσ , ...

”
(19)

5. PCMC model for the test case

In this section we introduce simplified equations
that are suitable for modeling the test case presented
in the following section. The phase interface mass
flow is small and neglected M = 0 (this corre-
sponds to a relatively slow consumption of the σ-
phase). The diffusion coefficients were selected con-
stants and equal to each other and kinematic viscosity
D0 = Di = ν — these values are denoted in the
rest of the paper by D = const. The flow is pre-
sumed stationary ∂/∂t = 0 with the average velocity
directed along axis y. The density ρ and porosity 〈β〉
remain constant. Here and in the rest of the paper,
the values are normalized by characteristic distance
between particles L∗ and by a certain characteristic
time τ∗: x∗ = x/L∗, y∗ = y/L∗, u∗ = uτ∗/L∗,
D∗ = Dτ∗/L2

∗. The scalar value Z is normal-
ized by its mean: Z∗ = Z/Zβ (i.e. Z∗

β = 1).

W ∗
0 = W0/Zβ and N∗ = Nτ∗/Z

2
β . The scale τ∗

is selected so that D∗ = 1, although we still keep
D∗ in the equations for the sake of transparency. The
distribution function is normalized to preserve unity
of its integral over Z∗ (compare to Eq.(6)): P ∗

Z =
PZZβ . The reactive scalars are normalized as Q∗

i =
Qiρμ

−1
i C−1

∗ where μi is the molar mass of compo-
nent i and C∗ is a characteristic molar concentration
specified in the next section. The same normalization
applies to Y ∗. The source terms are normalized as
W ∗

i = Wiτ∗ρμ−1
i C−1

∗ and S∗
i = Siτ∗L−1

∗ μ−1
i C−1

∗
whileA∗ = AL∗ is the normalized surface to volume
ratio and F ∗

0 = −F0/(Zβρ) > 0 is the normalized
sink of the tracer scalar Z.

Special attention needs to be paid to the proper se-
lection of the tracer scalar Z that, effectively, charac-
terizes location in the interparticle space. If W0 = 0
the scalar mean value Zβ = Zβ(y) decreases expo-
nentially with y in the direction of the mean flow due
to absorption of the scalar on the phase interface. The
scalar ξ = Z/Zβ(y) is not conservative and can be
used as a tracer scalar. We found, however, that the
scalar ξ has variations whose scale is noticeably larger
than L∗; hence this scalar is not suitable to charac-
terize the flow in the interparticle space. The scalar
with a constant W0 (W0 = const in the β-phase and
W0 = 0 in σ-phase) appears to be much better suit-
able as a tracer scalar characterizing local distances
from the phase interface. After a short transitional re-
gion, the fieldZ becomes developed and Zβ becomes
constant. The value of the constant W0 is not impor-
tant since the scalar Z can always be normalized by
this constant.

Assuming that the tracer scalar field (Z-field) is
developed, the convective terms in Eq.(10) disappear
and this equation can be integrated using the bound-
ary condition in Eq.(15) for M = 0. The system of

normalized conditional equations takes the form

W ∗
0 P

∗
Z +

∂N
∗
ZP

∗
Z

∂Z∗ = 0 (20)

u∗
Z
∂Q∗

i

∂y∗
+W ∗

0
∂Q∗

i

∂Z∗ =

W ∗
i (Q∗

1, Q
∗
2, ...) +N

∗
Z
∂2Q∗

i

∂(Z∗)2
(21)

while the boundary conditions (17) and (16) are now
written as

−
„
N

∗
ZP

∗
Z
∂Q∗

i

∂Z∗

«
+0

=
A∗

〈β〉S
∗
i

`
(Q∗

1)+0 , ...
´
(22)

〈β〉 `NZPZ

´
+0

= F ∗
0 = 〈β〉W ∗

0 (23)

N
∗
β = W ∗

0Z
∗
β (24)

The subscript ”+0” denotes values taken at the limit
of Z∗ → +0 corresponding to the β-side of the
phase interface; this subscript is essentially the same
as ”βσ” but emphasizes its explicit link to the variable
Z∗. The right-hand side of Eq.(23) is obtained by in-
tegrating Eq.(20) over Z∗ while Eq.(24) is obtained
by evaluating the first moment of Eq.(20). The sur-
face to volume ratio is linked to the conditional char-
acteristics by the equation

A∗

〈β〉 =

 
P ∗

Z

„
N

∗
Z

D∗

«1/2
!

+0

. (25)

while integrating of Eq.(20) yields the following for-
mula for P ∗

Z

P ∗
Z =

W ∗
0

N
∗
Z

exp

 
−
Z Z∗

0

W ∗
0

N
∗
Z

dZ∗
!

(26)

We note that the equation for intrinsic averages can
be obtained by integrating PCMC equation (21) mul-
tiplied by P ∗

Z and taking into account Eqs.(20) and
(22)

∂(u∗Y ∗
i )β

∂y∗
= (W ∗

i )β +
A∗

〈β〉 (S
∗
i )β (27)

The conventional models operate with intrinsic aver-
ages; hence decoupling the u-Y correlation and ap-
proximating the reaction source terms in terms of
(Y ∗

i )β results in

u∗
β

∂(Y ∗
i )β

∂y∗
= (W ∗

i )β +
A∗

〈β〉 (S
∗
i )β (28)

(W ∗
i )β = W ∗

i ((Y ∗
1 )β , (Y

∗
2 )β , ...) (29)

(S∗
i )β = S∗

i ((Y ∗
1 )β , (Y

∗
2 )β , ...) (30)



Note that the major difference between the conven-
tional and conditional models is mainly due to dif-
ferences in approximating the reaction source terms
– only the intrinsic averages (but not the conditional
averages) of the reacting species are available to the
conventional model.

6. Test case and grid generation

In order to test the PCMC model, we conducted di-
rect simulations for a generic kinetic mechanism with
four scalars, one surface reaction and one volume re-
action. The reaction rates are selected to examine a
wide range of the Damkoehler numbers. The reac-
tions resemble one of the routes for carbon oxidation
and, for the sake of transparency and without loss of
generality, we use this interpretation of the reaction
mechanism:

R1: C + O → CO (31)

R2: CO + O → CO2 (32)

The surface reaction R1 interacts with the volume re-
action R2 and, depending on the reaction rates and
conditions in the flow, may produce different percent-
age of CO and CO2. The porous section of the com-
putational domain is shown in Fig. 1. Although this
domain is two-dimensional, it is quite complex and
simulation of the reacting flow within this domain re-
quires extensive calculations. A special Matlab code
involving random generators was written for particle
allocation. Python script was used to generate curves
for particles at the locations, and with the dimensions
specified by the random code generator. The remain-
ing commands were completed manually to generate
the domain with unstructured grids for this 2-D geom-
etry using the commercial package CFD-GEOM (ESI
Software) typically used in conjunction with the com-
mercially available finite volume flow solver CFD-
ACE.

Grids were controlled in GEOM using curvature
resolution (in number of nodes per revolution), tran-
sition factor and maximum and minimum cell sizes.
For a typical domain, these values were 30 de-
grees,1.1,3.7 and 0.000371 respectively for a domain
size of 20 x 30 and resulting in approximately 20000
nodes and 35000 cells for the shown domain. The
left and right sides of the domain were prescribed as
periodic, the bottom boundary condition prescribed
as a fixed velocity inlet while the top boundary con-
dition prescribed as a fixed pressure outlet. The nu-
merical accuracy of simulations was tested by control
runs on a coarse grid with 5000 nodes and on a re-
fined grid with extensive 40000 nodes that produced
consistent results. A smaller domain or fewer parti-
cles in the domain would not allow for a reasonable
evaluation of the conditional averages while having
a smaller number of grid points would cause severe
problems in resolving the interparticle space. The do-
main is periodic in horizontal direction and the aver-
age direction of the flow is upwards. Simulation con-
vergence of a single run took up to several days. Al-

though the domain seems quite complex, its complex-
ity is limited compared to the extent and complexity
of a real porous media. The particles are distributed
randomly within the domain and the case shown in
the figure has the porosity 〈β〉 = 0.75. Atomic oxy-
gen is present at the inlet (the bottom boundary of the
domain) and reacts on the surfaces of the char parti-
cles forming CO followed by a fraction of CO being
oxidized further into CO2. The reactions persist un-
til oxygen disappears from the flow. The normalizing
value C∗ = 0.004 mol/m3 is selected to represent
the inlet value of the inlet value of CO. (This con-
centration is small so that, practically, the density and
temperature remain constant and the flowing gas is
dominated by N2). The products CO and CO2 are not
present at the flow inlet.

The rates for the reactions are conventionaly repre-
sented by

R1: S∗
CO = k∗1Q

∗
O (33)

R2: W ∗
CO2 = k∗2Q

∗
OQ

∗
CO (34)

The normalized reaction coefficients are related to the
conventional reaction coefficients k1 and k2 whose
definition is based on molar concentrations of the re-
acting species by k1 = k∗1/τ∗ and k2 = k∗2/(C∗τ∗).

The scalar Z was introduced into direct simula-
tions as a passive scalar that does not affect the reac-
tions. The initial conditions were selected to make the
transition to the developed field as short as possible.
The PCMC model coefficients can be approximated
by the following equations

N
∗
Z = N∗

0 exp

„
− Z∗

Z∗
N

«
, u∗

Z =
u∗

β

Z
∗
β

Z∗ (35)

so that P ∗
Z is determined from Eq.(26) as

P ∗
Z =

1

Z∗
N

P ◦
z (z, zN ), z ≡ Z∗

Z∗
N

, zN ≡ Z∗
N
W ∗

0

N∗
0

(36)
where

P ◦
z (z, zN ) = zN exp (z + zN(1 − exp (z))) (37)

The intrinsic mean value of Z∗ is linked to the param-
eter zN by the equation

Z
∗
β = Z∗

N Ei1(zN) exp(zN) (38)

These approximations ofN
∗
Z , u∗

Z and P ∗
Z are consis-

tent with each other and produce a reasonable match
to the corresponding conditional parameters deter-
mined from the direct simulations as shown in Fig.2.
The parameter Z∗

N was set to 0.59 to match the shape
of N

∗
Z determined from the simulations. The first

point falls below the curve due to limited resolution
of the gradients in the simulations. The parameter
N∗

0 is selected to match N
∗
β = 15 which, accord-

ing to (24), is the same as W ∗
0 due to Z

∗
β = 1. The

value of zN = 0.15 is found form Eq.(38) determines
that N∗

0 = 59 corresponds to W∗
0 = 15 in Eq.(36).



The matching curve for N
∗
Z passes a bit below the

simulated points to compensate the average for the
difference in matching the first point. The intrinsic
mean value of the velocity is u∗β = 5.8. For large
values of Z∗ that have a low probability, u∗Z become
more close to a constant but this effect is neglected
here and, as it can be seen in Fig.2, the linear ap-
proximation provides a good overall approximation
for the conditional velocity. Note that the conditional
velocity satisfies the boundary condition u∗Z → 0 as
Z∗ → +0. The calculated function P∗

Z determined
form Eqs.(26)-(37) is shown in Fig.2 to produce a rea-
sonable match to the simulated P∗

Z . The area per the
β-phase volume isA∗/ 〈β〉 ≈ 2 in the domain shown
in Fig.1. This value is matched well by the right-hand
side of Eq.(25) with N

∗
Z and P ∗

Z taken from both
simulated and approximating curves in Fig.2.

The grid has a regular structure and calculating the
conditional averages and the distribution function us-
ing the grid points would produce a biased statistics.
The conditional averages evaluated by distributing the
sampling points in the domain (uniformly and ran-
domly) and interpolating the values from grid point
into the sampling points. To avoid any problems with
sampling, 1 000 000 sampling points were used in the
evaluation of conditional averages so that the domain
resolution and size but not the number of sampling
points are the factors limiting the accuracy.

7. The results

In all of the calculations presented here, oxygen is
fully consumed at the upper boundary of the porous
domain. The fractions are normalized so that the
value of Y ∗

O + Y ∗
CO + Y ∗

CO2/2 = 1 in the domain.
If oxygen is fully consumed then Y ∗

CO + Y ∗
CO2/2 = 1.

The value of Y ∗
CO specifies the fraction of oxygen con-

version into CO so that Y ∗
CO = 1 corresponds to the

full conversion of oxygen into CO and Y ∗
CO = 0 cor-

responds to full conversion of oxygen into CO2. The
reaction rate constants are selected in terms of the
Damkoehler number Da

k∗1 =
〈β〉
A∗ N

∗
β Da, k∗1 = N

∗
β Da (39)

Figure 3 presents the final (outlet) value of

〈Y ∗
CO〉β = (Y ∗

CO)
β

=

Z ∞

+0

Q∗
COP

∗
ZdZ (40)

obtained by simulations and modeling as a function
of Da. The range of Da used in simulations is lim-
ited by resolution requirements for large Da and by
incompleteness of the reactions within the calculation
domain when Da is small. As expected, the conven-
tional method (28)-(30) does not demonstrate any de-
pendence on Da since, for this method (Y ∗

CO)
β

de-
pends only on the ratio k∗1/k

∗
2 that remains constant in

Eq.(39). If Da is small, the reactive concentrations do
not change significantly in the space between particles

and, as expected, the conventional and conditional
model yield the same results. As Da increases, the
concentration of oxygen near the phase interface be-
comes smaller compared to its intrinsic average and,
since CO is produced only near the phase interface,
this decreases production of CO compared to produc-
tion of CO2. This effect is clear in the simulation and
is well-reproduced by PCMC but not by the conven-
tional model based on the intrinsic averages.

The comparison demonstrated in Fig.3 is indirect:
simulations and modeling are compared in terms of
the results they produce. Since the tracer passive
scalar Z is introduced in simulations, it is possible
to evaluate the conditional expectations of the reac-
tive scalars in simulations and make a direct compar-
ison with Q∗

i modeled by PCMC . We should note
that the tracer scalar field becomes developed only at
y∗ � 2 and, thus, the direct comparison is possible
only for y∗ � 2. If Da is moderate, oxygen is not
consumed and reactions still persist at y∗ ∼ 2. Fig-
ure 4 demonstrates the conditional expectations eval-
uated for y∗ = 2 and Da = 0.4. The PCMC model
correctly predicts the tendencies observed in simula-
tions.

8. Discussion

The PCMC model is a relatively computationally
inexpensive model that, nevertheless, can character-
ize interparticle variations of the concentrations of re-
acting species. This model can be recommended to
be used any time that the Da number is large enough
(i.e. the reactions are fast enough) to cause notice-
able variations of the concentration of species within
the interparticle space (or in pores). If the Da number
is sufficiently small, PCMC results would be similar
to that of the conventional methods based on intrinsic
averages. The tracer scalar Z with W0 that remains
constant in the interparticle space seems to be a very
good choice for the conditioning variable. The PCMC
model (21) requires reasonable approximations for its
coefficients, u∗

Z and N
∗
Z . While the linear approxi-

mation of u∗
Z in Eq.(35) (or, may be a linear approx-

imation with a restricted maximal value) is likely to
be applicable to a wide range of flows in porous me-
dia, the same is not assured for N

∗
Z . Approximation

of N
∗
Z and the corresponding approximation for P∗

Z

that is linked to N
∗
Z by Eq.(20) may be dependent

on structure of the pores. Ideally, passive simulations
for the tracer scalar field Z in a relatively small vol-
ume sampling the porous media under consideration
should be performed first to find u∗Z and N

∗
Z – this

task, although not trivial, is much easier than com-
plete direct simulation of the whole reacting flow in a
large volume of porous media. As information about
the coefficients u∗Z and N

∗
Z is accumulated, the sam-

pling simulations of the tracer field will not be needed
for porous media with known properties.

The scaling of the dissipation with the pores size
is another question of practical importance. In the



present simulations, normalization is based on dis-
tance between particles L∗ resulted in relatively high
value of N

∗
β ∼ 15. If the average radius of the par-

ticles R ∼ 0.3L∗ is selected for normalization then
Nβ ∼ 15DZ

2
β/L

2
∗ ∼ 1.5DZ

2
β/R

2. Hence, with
the characteristic diffusion time τd ∼ cR2/D and
the characteristic chemical time τc ∼ 〈β〉A−1k−1

1 ,
we can estimate the Damkoehler number as Da ∼
τd/τc ∼ cR2/(Dτc) where the exact value of the
constant c ∼ 1 depends on exact choice of R and
structure of the pores.

9. Conclusions

A new version of the CMC model – PCMC –
, which is formulated for modeling of reactions in
porous media, has been suggested. The PCMC model
operates with mass fractions of reactive species con-
ditioned on a given value of a tracer scalar and can be
suitable for various kinetic mechanisms. The tracer
scalar Z is selected to characterize the local distance
from the phase interface so that Z = 0 corresponds
to the location at the phase interface. The bound-
ary conditions that are consistent with the conditions
on the phase interface are obtained for the PCMC
model. Unlike the conventional models, the PCMC
model can deal with closely packed or interacting par-
ticles (small pores) and at the same time emulate dif-
fusion in the interparticle space. Comparison of the
model against direct simulations demonstrate that, as
expected, PCMC is capable of adequately simulat-
ing variations of concentrations of species that are
neglected in conventional models based on intrinsic
averages. Practically, the PCMC model is needed
when the Damkoehler number representing the ratio
of characteristic interparticle diffusion time and char-
acteristic chemical time is not small.
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lines.
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