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Abstract

This paper reviews the fundamentals of conditional moment closure (CMC) methods for the prediction of turbulent reacting
flows, with particular emphasis on combustion. It also surveys several of the applications that have been made. CMC
methods predict the conditional averages and higher moments of quantities such as species mass fractions and enthalpy,
conditional on the mixture fraction or reaction progress variable having a particular value. A brief introduction is given to
generalized functions and probability density function (pdf) methods. This is followed by an exposition on the various
methods of derivation for the CMC equation and the general characteristics of this equation and its boundary conditions.
Simplifications that can be made in slender layer flows such as jets and plumes are outlined and examples of application of
the technique to such flows are given. The method allows the definition of a new class of simplified reactors related to the
well known perfectly stirred reactor and plug flow reactor: these are outlined. CMC predictions are compared to experiment
and direct numerical simulations for flows with homogeneous turbulence. Derivation and modeling of the equations for
conditional variances and covariances are outlined and their use in second-order CMC illustrated. Brief review is made of
progress on application of the method to problems involving differential diffusion, multiple conditioning, sprays and
premixed combustion.
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NOTATION

Roman Letters

¢ reaction progress variable (or number density in Sec.9.3)
f a function (or interdroplet mixture fraction in Sec.9.3)
h enthalpy

k the reaction rate constant

k. kinetic energy of turbulence

[ a length scale

m mass flow rate

D pressure

r radius or distance from a droplet

t time

v velocity vector

x Cartesian coordinates

z Differential diffusion scalar

D diffusion coefficient
Da Damkohler number
F arbitrary smooth function
G=<K|n> conditional expectation of variance K
H Heaviside function
K = (V") conditional variance
or a correlation function
L integral length scale
N = D(VE)® scalar dissipation
O(¢) indicates a function of the same order as €
P probability density function, pdf
Pe Peclet number
O = <Y|&=n> conditional expectation of a reactive scalar
Re Reynilds number
R radius
Sc Schmidt number
S. reaction term for ¢
isopleth surface (£=m) area
temperature
longitudinal average velocity component
chemical reaction term
normalized x
mole fraction (Fig. 27)
scalar, reactive scalar
species mass fraction
sample space variable for Y

N ~ MNIgNy

P(B) cumulative probability of event B
M mesh size

Greek Letters

Y intermittency

0 Delta-function

€ a small number or parameter
& turbulent dissipation of energy
p density

v kinematic viscosity



o dispersion
T characteristic time scales or a time-like variable
6 = E’-<E> unconditional variance
normalized temperature difference (Fig. 38)
€ conserved scalar or mixture fraction
1 sample space variable for &
y=08(Z-Y) the fine-grained pdf
{ sample space variable for ¢

I' Gamma-function
®(A)=<exp(iLY)> characteristic function of Y

Subscript indices

a an averaged value

¢ related to a centerline or to variable ¢

i,j related to different components of vectors

t related to turbulence or turbulent region

min related to the smallest value of conserved scalar
max related to the largest value of conserved scalar
m  either min or max

in related to the in-flow

out related to the out-flow

b either in or out

e related to chemical equilibrium

s related to the stoichiometric mixture ratio

or related to the surface of a droplet

related to the Kolmogorov viscous scales
related to radius R or is a reference value
related to & and M or conditioned on &=n

e

Superscript indices
’ derivative of a function
or fluctuation with respect to unconditional mean
o indicates alternative or dummy values
” fluctuation with respect to conditional mean
» indicate integration or averaging over certain region

Overbar symbols

~ Favre averaging

— conventional averaging

A normalized function or variable

Underscore symbols
- indicates a vector (for Greek letters)

Other special symbols
< > ensemble averaging
{ }r integration over cross-section limited by |r | <R



1. INTRODUCTION

1.1. Background

Reacting turbulent flows present problems of important economic
consequence in many fields of science. In engineering we are interested in
predicting efficiency, heat transfer and pollutant formation in internal
combustion engines and furnaces, product yield in chemical reactors,
overpressures in  gas explosons, and the rate of spread and toxic
emissons from fires. In environmental science we are concerned with rates
of chemica transformation in chimney plumes, oxidant production in
photochemical smog, and pollutant transformation and biota growth in
lakes, rivers, estuaries and coastal waters. Examples are coming into
focus in oceanography and atmospheric science, for example in the ozone
hole problem™2.

The problems are made difficult because of the fact that the rates of
reaction of concern are highly nonlinear functions of temperature and
Species  concentrations. The turbulence in the flow engenders mixing of
nonuniformities in species and temperature, and the rates of this mixing
are usually not fast compared with the rates of reaction. As a
consequence, large spatial and temporal fluctuations occur in  the scalar
guantities  (composition,  temperature, enthalpy, etc), and efforts to
express average rates of reaction in terms of average vaues of the
scalars prove to be inadequate . The nonlinearity of the reaction rates
give rise to terms involving correlations of the fluctuations, and these
are usualy as large as those involving only the average quantities. Often
the correlation terms are of the opposite sign, so that the true mean rate
of reaction can be an order of magnitude or more smaler than that
obtained from wusing just average values in the rate expression. This
problem is an extremely difficult addition to the aready difficult
closure problem of prediction in nonreacting turbulent flows.

The problems of predicting flow and mixing of nonreacting scalars are
difficult enough. Progress has been made using several approaches. One
approach  of considerable interest in  engineering and applied science
involves so-called "moment closure® methods. First moments are means or
averages. Second moments are variances and covariances of the fluctuations
about the averages. Third moments are triple correlations between the
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fluctuations. In  moment methods the Navier-Stokes and scalar conservation
equations are wused to derive equations for these moments. The exact
equations for the first moments have terms involving the second moments.
Exact equations for the second moments have terms involving the third
moments. And so on. The equations for any level of moments have terms
involving higher level moments. The system of equations is thus unclosed.
In moment closure methods, closure is obtained by modelling the higher
level moments in terms of the lower moments. First moment closure (often
called first "order" closure) solves equations for the first moments (the
averages) by expressing the second moments such as the Reynolds stresses
and scalar fluxes in terms of the averages and their gradients. Mixing
length and eddy viscosity methods are such first moment closure methods.
They are dtill commonly wused in environmental science and in the
geophysical sciences. In engineering, much use is made of second moment
(order) closures in which the triple correlation terms are modelled in
teems of the first and second moments and their gradients. While these
models are by no means universally applicable they have proved to be very
useful in predictions for a wide range of flows™'*.

Such success in closure a the second moment level has not been
achieved for chemical reacting systems, however, due to the high
nonlinearity of the reaction rate terms. This difficulty appears not only
for the mean reaction rate term in the first moment equations for the
scalars, but aso in the equations for the turbulent scalar fluxes where
correlations between the reaction rate and the scalar fluctuations are
present. Moment closure methods have met with success for only a limited
range of problems where the chemistry is fast™*
sufficiently simple®.

General reviews of the problems of predicting turbulent reacting
flows may be found in Chen & Kollmann®, Fox®, Libby & Williams® and
Popell4.

or whee it is

1.2. Outline of CMC Methods
In the Conditional Moment Closure (CMC) methods that are the subject
of this review, the underlying hypothesis is that most of the fluctuation

in  the scalar quantities of interest can often be associated with
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the fluctuation of (usually) only one key quantity. Thus in nonpremixed
problems, where there is mixing between two bodies or streams of fluid,
fudd and oxidant, say, the values of concentrations and temperature within
the mixing field depend very strongly on the loca instantaneous value of
some variable, such as the mixture fraction, which  describes the
stoichiometry of the mixture. The mixture fraction is a conserved scalar
and can be defined as the normalised mass fraction of an inert tracer
introduced with the fuel. If turbulent mixing occurs without significant
differential  molecular  diffusion, the mixture fraction gives the mass
fraction of the material in the local mixture that originated in unmixed
body of fluid denoted as fudl. The mass fraction of the local mixture
that originated from the unmixed body of fluid denoted as oxidant, is then
one minus the mixture fraction. (For further clarification of this
important concept see Refs 9, 139). The baance equation for the mixture
fraction has no chemical source term. As such, it is not subject to the
difficulties associated with reactive scalars, and its mean and variance
fields are often predicted with success by moment closure methods.

Figure 1 shows scatter plots of temperature and mass fraction of
hydroxyl radical, measured by advanced laser diagnostic methods, as a
function of the simultaneously made measurement of the mixture fraction.
The measurements were made® in a piloted nonpremixed jet flame of
methanol in air. It is seen that the temperature and OH are very strong
nonlinear functions of mixture fraction. At a given postion in the flame
there are very strong fluctuations in the mixture fraction about its mean
vaue. There are aso very strong fluctuations of temperature and OH mass
fraction about their mean values. But if we draw a curve through the
middle of this scatter plot data, the departures from this curve are much
less than the overal fluctuations. The curve is the function derived from
conditional averaging.

Conditional moments are averages, covariances, etc, made subject to a
certain condition being satisfied. In Fig. 1 the right hand side (RHS) of
the figure shows conditional average vaues of temperature, T, and
hydroxyl radical mass fraction, Yoy, conditional on the mixture fraction,
& having a prescribed value, m. We write these as <T|n> and <You|n>. A
more formal definition of conditional averages will be found in Section
2.13. In reducing the experimenta data, the range of mixture fraction is
divided into something like 30 ’'bins. The data set is then sorted into
these 30 bins. Statistics are then made for each bin: the average
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temperature in the bin is taken as the conditional average for the mixture
fraction value a the centre of the range of mixture fraction for that
bin. A conditional variance of the fluctuations is taken as the variance
for the fluctuations about the conditional average for the data in that
bin. The close association that is mentioned above between reactive
scalars and the mixture fraction can be more precisely expressed in terms
of the conditiona variances being small compared with the sguare of the
conditional mean. This roundabout way of expressing the close -correlations
that are apparent in Fig. 1 is necessary since the correlations are
strongly nonlinear.

In premixed systems, it is thought that fluctuations in species mass
fractions  and in  temperature  are  often  closely  associated  with
fluctuations in the reaction progress variable. This reaction  progress
variable is best defined in terms of the HZO mass fraction in the mixture
such that it has a value of zero in the unburnt fluid and a value of unity
in the fully reacted mixture. Methods for premixed systems are not well
advanced as yet, and in most of what follows we will confine ourselves to
nonpremixed systems.

In earlier work, conditional averaging was done subject to the
condition of whether the flow was turbulent or nonturbulent. This is
sometimes termed zone conditional averaging. Chen & Kollmann®’ outline
this approach in comparison with the conditional averaging used here.

In CMC methods, equations are derived and modelled for the
conditional moments of the reactive scalars. With the  modelling
assumptions  usualy made  for  simpler problems  in nonpremixed
combustion, the CMC equation for the conditional average <Yj|n> of the
mass fraction of species i is

2
m + <v[n>V<Yi|n> - <N|n>a;Yi2|£ = <W|n> (1.1
ot on

In this equation t is time, v is velocity, W, is the rate of formation of
species i per unit mass of the mixture and N is the scalar dissipation

N = DVE-VE

where D is the molecular diffusivity, assumed equal for al species. In
deriving this equation, important modelling assumptions are made and these
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are discussed in some detail later. A similar equation is derived for the
conditional average enthalpy. These equations have unclosed source terms
involving the conditional average of the species reaction rate and of the
net radiant transfer. CMC methods wusually make the assumption that
closure for these terms can be made at the first conditional moment level.
This is often possble for the conditional reaction rates since the
fluctuations about the conditional averages are smal and the conditional
covariances can be neglected; but for some cases the closure is best done
a the second moment level. It should be noted that the CMC equation,
itself, is valid for large fluctuations about the conditiona  mean
(conditional variance). Relatively  small values  of the  conditiona
variances shown on Figure 1 indicate that the conditiona expectations
represent a good choice for the model variables. This property, however,
iIs not assumed in CMC derivations. The physical basis of CMC lies on
different grounds which are discussed in Section 3. The modelling of the
conditional  average  velocity, <v|n> ~ and conditional  average  scalar

dissipation, <N|n>, is usualy accomplished from information already
existing on the velocity and mixing fields. In  homogeneous flows and
turbulent shear layers, specia simplifications are  possible. It is

important  that the conditiona  average scalar  dissipation used is
consistent with that appearing in the transport equation for the pdf of
the mixture fraction. These modelling issues are discussed later.

Solution of the CMC equations wusually proceeds in paralel with
appropriate  modelling for the velocity and mixture fraction fields. CMC
can be used with any type of approach to the modelling of the flow and
mixing, from simple entranment models to large eddy simulation. Even
experimental data can be wused. If second order closure methods are used,
the mixing is expressed in teems of the mean and variance (usualy
density-weighted, i.e. Fawre averaged®®) of the mixture fraction. To
obtain the mean density, which is needed for the flow/mixing calculation,
the conditiona mean density obtained from the CMC solution is weighted by
the mixture fraction pdf. A presumed form for the pdf is assumed and this
iIs scaled to fit the required mean and variance. In  computing
unconditionally averaged results for the species and temperature, the
conditional averaged vaues obtaned from the CMC cadculation are aso
weighted by this pdf. For simplicity, the theoretical development
presented here  works in terms of conventional pdfs rather than Favre pdfs
which are usualy more convenient®”®* in  flows with heat release.
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Where appropriate, indications are given for transcription of formulae in
terms of Favre pdfs.

Bilger® outlines experimental data on the shapes of mixture fraction
pdfs in various types of flows. In modeling, two different presumed forms
are commonly used for the mixture fraction pdf: the clipped Gaussian form
shown in Fig. 2 and the beta function form shown in Fig. 3 Of particular
note is the behaviour near n= 0 and 1, the unmixed fluid states. In many
two-stream mixing problems there are places in the flow where patches of
essentially  unmixed fuel and/or oxidiser are intermittently present. If
these are treated as completely uncontaminated by the other stream fluid
then the mixture fraction pdf will have delta functions a m = 0 and 1
Alternatively, it can be argued on the basis of the form of the convection
diffusion equation, that these patches must be everywhere contaminated by
the other stream, even if the levels will be insignificantly small. This
viewpoint leads to pdfs which are continuous near n = 0 and 1. We shal
refer to these as smooth pdfs and the others as intermittent pdfs.

It is noted here that in classica turbulent flows, such as jets
wakes and boundary layers, these 'unmixed’ patches of fluid are assumed to
be non-vortical and hence non-turbulent. It has become usua to treat the
interface between turbulent and non-turbulent fluid to be the same as that
between unmixed or uncontaminated fluid and fluid that is partidly mixed
with 0 < n < 1, even though this question has not been satisfactorily
investigated. In most practica systems the unmixed streams will be
turbulent to some extent and the analogy between turbulence and mixing
does not apply. We will not labour ths issue here and will often refer to
the partidly mixed fluid as the turbulent flud a has been the
convention.

The formulae describing the clipped Gaussian form are as follows.

P() = 18(0) + (1~ % - 2] Pn) + v2d(LM) (12)
P(M) = GM)/l 0<n<1 (1.3)
where )
G) = %éﬁ oxp|- (‘;—GE@)L ] (L4)
and



1
Iy = [Gmdn (1.5)
0

Here O6(x) represents the Dirac delta function centered a x = 0, and v
and vy, ae the strengths of these delta functions in the wunmixed fluids
corresponding to § = 0 and & = 1, respectively. Py(n) is the pdf of the
turbulent fluid which has a Gaussian form as shown with free parameters &g
and o4 which are the mean and standard deviation of the unclipped Gaussian
but are not simple moments of the clipped Gaussan Py(n). They can be
related to the mean and variance of the mixture fraction by taking
appropriate moments of P(n), with y; and vy, being regarded as free
parameters, or, as is often assumed, having vaues corresponding to the
clipped tails of the distribution

0 oo

n= [Gmdn: = [Gmdn (16)
1

-0

For jets far downstream from the potentia core, vy, = 0 and an adternative
proceedure™ is to use an empirical correlation for 7;.
The beta function distribution is given by

I'b
where
1
b = [ naTan = HOLS) (18)

0

and TI'(x) is the Gamma function. The parameters r and s are directly
related to the mixture fraction mean, <&>, and variance, <€’>>, by

r = <§>[<§> 1-<C> | 1]; S = r%z; (1.9)

<¢’ %>

They are positive quantities, since

0 < [<§’2>] < [<§>(1 - <§>)] (1.10)



except for when P(n) is composed entirely of delta functions a&¢ n = 0 and
1. This positive nature of r and s ensures that P(n) is integrable even
though P(m) may have "spikes', i.e. PM) » « asn - 0if 0 < r < 1 andor
n > 11if 0 < s < 1 Such spikes are physicaly and mathematically
different to the delta functions of strength y; and vy, associated with
intermittent pdfs such as the clipped Gaussian just described.

Of some importance to the theoreticd development in the early
Sections of this review is the fundamentally different character of these
pdf forms at their upper and lower bounds. As detailed above, the clipped
Gaussian form assumes that statistics in  scalar space are intermittent in
character a the upper and lower bounds and the pdf has delta function
components at these bounds. The beta function pdf, on the other hand, has
no such description of the intermittent nature of the outer edges of
turbulent flows. In such regions the pdf asymptotes to infinity at the
corresponding bound.  These and other characteristics of the bounds of the
pdf are examined with some care in the development that follows.

CMC methods were developed independently by each of us®®*. As
such, they are still quite new, and their potentiadl and limitations have
not yet been fully established. They have been applied to predictions of
experimental reacting  flows™?®"1B31241®  ith  considerable  success.
They have aso been examined using data bases generated by direct
numerical  simulation™***  aso  with considerable success. They  appear
to have dgnificant advantages over other advanced methods of prediction
of turbulent reacting flows such as the dSationary laminar flamelet
methods (SLFM)™'®  Monte Carlo simulation of the joint probability
density function (MCljpdf) ™2 and linear eddy modelling™.
Direct comparisons with CMC are only now becoming available ' The
advantages are in the more rigorous basis for the modelling and in reduced
computational cost (except for SLFM). CMC methods are, however,
only vaidated a this time for flows without significant local extinction
or reignition phenomena present. Second-order conditional moment closure
methods and double conditional averaging methods are being developed to
address these types of problems.

1.3 Outline of This Review
In this review we seek to set out in a tutorial way the fundamentals
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of CMC methods, present some of the practical matters involved in
computing solutions and show some of the results that have been obtained.
We dart from the premise that the reader has a basic familiarity with
turbulence theory, such as is avalable in the books by Tennekes &
Lumley’® or Pope ™ and with the theory of combustion and turbulent
combustion such as is available in the book by Turns®. Readers concerned
primarily with applications of CMC may wish to skim Sections 2 and 3 and
begin close study at Section 4 where the main features of the CMC equation
and its application are discussed.

The development of CMC theory requires mathematical tools not often
available to graduate students. Accordingly, in Section 2 we outline the
fundamentals of probability density function (pdf) methods and their basis
in the theory of generalized functions. We show how these ae used
to derive the transport equation for the joint pdf of two scalars which is
one basis for the derivation of the CMC equation. We consider aso the
transport equation for the pdf of the mixture fraction, which is an
adjoint equation to the CMC equation, and which may be used to determine
the conditional average scaar dissipation, an important quantity in the
CMC equation. The boundary conditions to be wused in integrating this
mixture fraction pdf eguation are considered in some detail for various
pdf shapes. For those readers not wishing to follow the derivations in
detail, a summary of the main results is given at the end of the Section.

The various methods of deriving the first-order CMC equation (for the
conditional averages) are presented in Section 3 including an outline of
the primary closure hypotheses used in closing the unclosed convection and
diffuson terms in the equation. The CMC equation for enthalpy is
presented separately. Closure for the conditional average reaction rate
and the source terms that appear in the enthalpy equation is discussed.
The role of Favre averaging in CMC is outlined. A more detailed discussion
of the closure hypotheses from the point of view of Markov process theory
and local similarity follows. The Section concludes with a summary of the
main results obtained.

The main features of the CMC equation are elucidated in Section 4,
including modeling of conditional velocity and conditiona  dissipation,
and of its relaion to the fast chemistry Ilimit and to SLFM.
Simplifications that appear in homogeneous problems are outlined. The
specification of boundary conditions is aso elucidated.

Special simplifications are available in turbulent shear layers and
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other turbulent dender layer flows. Asymptotic anaysis indicates that
the structure of the CMC equations in shear layers is quite different from
traditional boundary layer equations for conventional means. In  Section 5,
it is shown that the crossstream variation of conditional averages of
reactive scalars is smal and can be neglected in the first order.
Integration of the CMC and pdf transport equations across the layer
eliminates terms involving the cross-stream component of the conditional
velocity. The conditional dissipation, averaged across the flow, can be
obtained from the pdf transport equation of the mixture fraction; and the
boundary conditions needed for this are considered in some detail for both
intermittent and smooth pdfs. Solutions obtainable in self-similar  flows
are presented. For flows which are only quasi-self-similar, agorithms are
presented  which ease the computation of the  conditional scalar
dissipation. Results for CMC computations in jet flames, reacting scalar
mixing layers, and plumes are shown in comparison with experimental data.

The use of CMC in defining novel simple reactor concepts is reviewed
in  Section 6. The Incompletely Stirred Reactor (ISR) is a generalisation
of the waell-known Perfectly Stirred Reactor (PSR) and the Dilution Fow
Reactor (DFR) is a generdisation of the  well-known Plug Flow Reactor
(PFR). For definitions of the PSR and PFR see Ref. 139 In the PSR Al
scalars are uniform within the reactor and equal to the exit values. In
our generalisation of this, the ISR, the inlet is not fully premixed and
mixture fraction may be non-uniform within the reactor; but the condition
of uniformity is assumed for the conditional averages of the reactive
scaars. The ISR may prove to be a useful model for nonpremixed reactors
such as gas turbine primary zones in which there is strong recirculation
and for which the chemica time scaes are of the same order as the mixing
time scales. In the Plug FHow Reactor (PFR) composition is assumed
uniform across the flow: in its DFR counterpart this uniformity is not
required for the mixture fraction but is assumed for the conditional
averages of reactive scaars. The DFR may prove to be a useful model for
nonpremixed reactors such as gas turbine dilution zones and NOx reburn
zones in furnaces. These concepts are introduced in Section 6 even though
their regimes of validity are as yet not well defined.

A number of studies have been made of the validity of CMC methods
using Direct Numerica Simulations (DNS) as the data base. These have
been made in flows with decaying homogeneous turbulent flow fields,
usually, but not aways with homogeneously distributed scalar fields.
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Results are shown in Section 7 from a number of studies with simple and
complex chemistry. The Section opens with presentation of CMC predictions
of experimental results in chemica reactors with  quasi-homogeneous
turbulence.

Derivation of the egquations for the conditiona  variances and
covariances in  nonpremixed systems is presented in Section 8. The
consequences of large  fluctuation or  intermittency in  the  scalar
dissipation are discussed. Results of predictions for the reacting scalar
mixing layer are shown against the experimental data The use of these
predictions in second order conditional moment closure is outlined.

In Section 9, progress on the use of conditiona moment methods in a
number of problems, which require more intricate choice of conditioning
variables, are discussed. These include the use of averaging with multiple
conditions for multi-stream mixing problems, CMC for premixed combustion
and for sprays, the incorporation of differentia diffusion effects into
the CMC method and a brief discussion on the applications of conditional
methods to Lagrangian modelling.

Conclusions and recommendations are summarised in Section 10.

1-11



2. PDF METHODS IN TURBULENT FLOWS

A feature of CMC modeling is the rigorous basis for the formulation
of the CMC equations and the transparency of the modeling that is done.
For this to be demonstrated it is necessary to use mathematical tools that
are often not avalable to workers in this field. Accordingly, in this
Section, we review some basic facts related to pdfs and conditional
expectations. We consider aso the formalism of generaized functions
(such as the deta function) which provides a very effective and
relatively simple technique for deriving the governing equations for pdfs
and conditional moments in turbulent flows. We introduce formulae and
methods which will be wused Ilater in the derivation of the conditiona
moment  equations. The transport equation for the pdf of the conserved
scalar or mixture fraction is important as it is essentialy an adjoint
equation to the CMC equation and can be used to obtain the conditiona
scalar dissipation. This is done by integrating it in mixture fraction
gpace. Questions arise as to the nature of the boundary conditions to be
applied a&t n = 0 and 1, and how these depend on the structure assumed for
the pdf at these bounds - whether smooth or intermittent.

For those readers not wishing to read this Section in detal, a
summary of the man results needed in ensuing sections is given at the
end. For those readers wishing to explore this materia further, Pope™
gives a more comprehensive review of pdf methods in turbulent combustion,
while Lighthill® and Bracewell® give more information on generalized
functions.

2.1. Pdfs and Conditional Expectations
2.1.1. Pdfs and generalized functions

In turbulent flows, values of the velocity components and scalars
such as  concentrations and  temperature are  stochastic,  fluctuating
variables. Important properties of stochastic variables can be
characterized by their probabilities. We prefer the term "stochastic
variable" to the more commonly used “random variable’, since in
turbulence the variables of interest are continuous in space and time and
do not have the characteristics of white noise. The cumulative
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probability P(Y<Z) of a stochastic variable Y is the probability of an
event occurring which has Y<Z, where Z is the sample space variable for Y,
that is, a paticular value in the range of Y. The cumulative probability
P(Y<Z) is a monotonic function of Z The cumulative probability P(Y<2)
tends to 0 as Zs and P(Y<Z) tends to 1 as Zs+w. The probability density
function (pdf) P is the derivative of the corresponding cumulative
probability

dP (Y<2)
dz

P(2) = (2.1)

The probability of Z;<Y<Z, is given by P(Y<Zy)-P(Y<Z;)) and, if the
derivative in EQ.(21) exists as a wusua derivative, the product PAZ
specifies the probability of the event Z<Y<Z+AZ for any smal AZ.  The
relationship of the functions #(Y<Z) and P(Z) is shown in Fig. 4 and
Fig. 5 This figures illustrate the case of finite Z-7; (Fig. 4) and
the case of AZ=27,-Z; - 0 (Fig. 5).

Another basic concept for a stochastic variable is its expectation.
Expectations are aso caled mean values and are the Ilimit of average
values for large number redlizations of the flow. An expectation is the
result of averaging which is usually denoted by angular brackets.
Probability density functions and expectations are closely related to each
other. The mean or expected value of Y, <Y> is given by

+oo +oco
<Y> = Iz P(2)dz = Jz dP(Y<2) (2.2)

The expectation of any deterministic function, F(Y), which depends on the
stochastic variable Y is given by

+oo +oo
<F(Y)> = JF(Z) P(2)dZ = JF(Z) dr(Y<2) (2.3)

Here averaging is understood as so-caled ensemble averaging. Let us
imagine that an experiment is duplicated in n, many different places under
identical conditions and values Y =Y(x,t) (k=1,2,..n;) ae measured in
these experiments for given x and t Yy represents the value of the
stochastic value Y in the kth redization. The ensemble mean value is
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determined by <Y> = n;kaYk. The vaue of n, must be very large. In
practice other ways of determining average values may be more convenient.
Under certain conditions time averaging can be used. In this paper,
however, we imply that averaging means ensemble averaging.

Equation (2.1) can be transformed so that the cumulative probability
Is expressed in terms of expectations

Z +oco
P(Y<Z) = JP(ZO) dz° = IH(Z—ZO) Pz dz® = <H(Z-V)> (2.4)

where H is the Heaviside function: H(Z)=0 for Z<0 and H(2)=1 for Z>O0.
Differentiating Eq.(24) with respect to Z and taking into account that
P(ZO) does not depend on Z we obtain the identity

+oco
P(2) = Js<z-z°) PZ)dz’ = <§(Z-Y)> (2.5)
which is very convenient representation of the pdf. Here & is Dirac's

delta function which has been introduced as the derivative of the
Heaviside function 6=dH/dZ (8(Z) is zero everywhere except a Z=0 where
the delta function is infinite). This derivative does not exist as a
usual derivative since H is a discontinuous function. The deta function
iIs a so-caled generalized function, and it has a more precise forma
definition than that just introduced.

The formal definition of the delta function specifies how it affects
ordinary  functions. Equation (2.5) is not suitable as a strict definition
of P becauses 1)P is not an arbitrary function and we have used EQ.(2.5)
to determine the properties of P rather than to introduce the delta
function; and 2)P(Y<Z) can be a discontinuous function of Z and this
means that the pdf function P introduced by EQ.(2.1) can itsdf involve
delta functions. The delta function can be strictly defined by describing
its properties. the function which affects any function F(Z) (which
belongs to the certain class of "good" functions *) such that

+oo
JF(Z) 8(2)dz = F(0) (2.6)
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iIs the deta function. In general, this definition depends on what we
understand as the class of "good" functions. Normally these functions F
must be smooth enough and rapidly tend to zero as Zste. We assume here
that the function F is continuous and has as many derivatives as required.
According to the definition in EQ.(2.6), the delta function is an even
function &8(-2) = §(2). Generalized  functions, f;, ae defined by
describing  their properties  under integration. This means the
specification of: 1)the variable over which the product fsF is to be
integrated; and 2) the result of the integration for any arbitrary
function F which belongs to the class of good functions.

With this more forma definition we can now prove that EQ.(2.5) is
the property of the delta function introduced by EQ.(2.6). Equation (2.6)
defines the delta function located a Z=0. This definition can be extended
to involve the delta function located at Z=Z,

+oco +oco

F(Zo) = JF(Z+ZO) 8(2)dz = IF(ZO) 822, dz° 2.7)

This equation can be formaly derived from Eq.(2.6) by substituting
Fo(2)=F(Z+Z,) for F(Z) and introducing the new variable ZO:Z+ZO. It is
easy to see that the new function F, aso belongs to the class of good
functions.

After formal substitution of Y for Z, and Z for Z°, Eq.(2.7) is
averaged over Y

+oo +co
<F(Y)> = < JF(Z) S(Z-Y)dz > = JF(Z) <8(Z-Y)> dz (2.8)

Since EQ.(2.8) is vaid for any F(Z), upon comparing Eq.(2.8) and EQ.(2.3)
we obtain P(Z)=<d(Z-Y)> which is EQ.(2.5). Equation (2.5) is the basc
equation which is used to derive the governing equation for the pdf, P(2).
The governing equation is derived first for y=4(Z-Y) and then averaged.
This technique is not the only one possible. Sometimes the characteristic
function ®(A)=<exp(iLY)>, which is the Fourier transform of the pdf, is
used for derivation of the pdf equations”.  While ®(\) has the advantage
of being an analytica function, derivations using ®(A) usualy require
more steps.
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2.1.2. Joint pdfs

In this section we generdize the  single-variable  probability
functions introduced in the previous section to the case of n stochastic
variables Y; and their joint pdf. The joint cumulative probability P(Y<Z)
of a set of stochastic variables Y, (i=1,2,...n) is the probability that
Y1<Zy, Y,<2Z,, Y<Z, are jointly valid. The joint pdf
P(2)=P(4,....Z,) and the average vaue of a deterministic function F(Y)
are given by

0"P(Y<2Z)
0Z,0Z, . ..9Z,

P(Z) = (2.9)

<F(Y)> = JF(Z) P(Z) dZ,dZ,...dZ, (2.10)

Here, and further on, the integral is taken over al possible vaues of Z.
If P is an ordinary function and AZ is smal, the product
P(Z) AZ,AZ,..AZ, of the joint pdf P and the volume of the box with center
Z and sides AZ specifies the probability of Y being in this box. If the
joint pdf is the product of the one-variable pdfs
P(Z) =P(Z,) P(Z) ... P(Z,), the stochastic variables Y are
statistically  independent. We do not introduce any special notation for
the joint pdf. The number of the stochastic variables is specified by the
number of arguments Z in P. Surface and contour plots of a Gaussian
two-variable joint pdf are shown in Figs 6 and 7

Joint cumulative probabilities and joint pdfs can aso be introduced
using the functions H and &

P(Y<Z) = <H(Zs-Y1) H(Z>-Yo) ... H(Z,-Y,)> (2.12)
P(Z) = <y> W = 8(Z1-Y1) (Zo-Yo) ... 8(Z-Yr) (2.12)
where the new function y is introduced for convenience. This function y is

called the fine-grained pdf. Equations (2.9) and (2.12) ae smilar to
Egs.(2.1) and (2.5) for a single stochastic variable.



2.1.3. Conditional pdfs and conditional expectations

Now we turn to consideration of conditional pdfs and conditional
expectations. Conditiona pdfs and conditiona expectations are the pdfs
and expectations determined for certain selected realizations among the
ensemble of all redizations of the flow. The criterion for selection of
these redlizations is the fulfillment of a particular condition which is
specified. The conditional cumulative probability #(&|8) is the cumulative
probability of the event & determined for these realizations which meet
the condition appearing on the right-hand side of the verticd bar (that
is for these redlizations for which statement % is valid). For example, if
the event & can be specified as Y;<Z; and the condition B8 can be specified
as Yx<Z, the corresponding conditional probability can be written as
P(Y1<Zy | Y<Z,). According to Bayes theorem '®, the joint probability
of two events &4 and B both occurring, #(&,8), can be decomposed into

P(a,8) = P(@|5) P(B) (2.13)

The conditional pdf P(Z;|8) is the probability density for Y; being
a the vaue Z; for those redlizations which meet the condition appearing
on the right-hand side of the verticd bar. In general, the condition B
should have a non-zero probability. If B represents a condition which
never occurs, P(Z;|B) cannot be determined. If the condition B s
specified as Y,=Z,, this means that Z,-AZLY,<Z,+AZ for sufficiently small
AZ (note that the probability of Y,=Z, may be zero). We consider here two
stochastic variables Y;, i=1,2. Their joint probability function P(Z;,2,)
can be also decomposed into the product of the pdf of Z, multiplied by the
pdf of Y; conditional on Y,=Z,

P(Z) = P(Z1,Z2) = P(Z1|Y2=2;) P(Z) (2.14)

Equation (2.14) determines the conditional pdf P(Z;1]|Y,>=Z;). If the
variables 2z, and Z, ae  datisticaly independent then P(Z;,Z) =
P(Z)P(Z,) and P(Zy|Y=2;) = P(Zy).

The conditional expectation <Y,|8> is the average of Y, over the
sub-ensemble of these redlizations which meet the condition appearing on
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the right-hand side of the wvertica bar. If the condition 8 is specified
as Y,=Z, this has the same meaning as in Eqg.(2.14). The conditiona

expectation is determined by
+o0

lep(zl,zz)dz1

- 00

+oco
<Y, |Y=Z> = lep(zlwzzzz) dz, =

- 00

(2.15)

P(Z2)

The conditional expectation is a function of the variable Z, which
specifies the condition of averaging. We may use the brief notation
<Y1|Z,> which means exactly the same as <Y;|Y,=Z>. The conditional
averages and conditional pdfs are shown in Fig. 8 for the case of a
"banana’ pdf. This figure illustrates the differences between P(Z;]|Y,=a)
and P(Z;|Y,=b) for conditional pdfs and between <Y;|Z,> and <Y;|Z;> for
conditional  expectations. The following properties of the conditiona
expectations are derived from Eqg.(2.15). The conventional (unconditional)
mean value is given by the integral

+oco
<Y;> = I<Y1|Y2=ZZ> P(Z,) dZ, (2.16)

- 00

If wvariables Y; and Y, ae datisticaly independent the conditional
expectation <Y;|Y,=Z,> does not depend on Z, and coincides with the
unconditional expectation <Y;>. For any deterministic function F(Y,) which
does not depend on Y;, the conditiona expectation of the product Y;F is
given by

<Y1F(Y2) | Y2:22> = <Y1 | YZZZZ> F(Zz) (217)

If Y, is a deterministic function of Y, (that is Y;=F(Y,)) then, according
to Eq.(217), the conditiond expectation is  the  function, itself:
<F(Z) | Y=Z>=F(Z»).

Using the formalism of the deta function the  conditional
expectations can be also expressed as

<Y1|Y2:ZZ> P(Zz) = <Y1 6(22-Y2)> (218)
In order to prove this equation we multiply EQq.(2.18) by any good function
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F(Z,) and integrate over Z,. The left-hand and right-hand sides of
Eq.(2.18) then take the forms

+oo too

IF(ZZ) <Y1|Y=Z,> P(Z;) dZ, = J<Y1F(Zz) | Y2=2,> P(Z;) dZ, = <YiF(Y2)>
+oo too

[F@) <8z ¥)>dz, = < Vi [F(2) 8z YD) dZ > = <YiF(Y)>

Here, in the second equation, Y; does not depend on Z, and Y; is put
outside the integration sign. Since both sides of EQ.(2.18) are thus found
to be identicad for any arbitrary function F, this proves Eq.(2.18).
Equation (2.18) is often wused in pdf derivations. This equation is more
general than EQ.(25) since EQ.(25) can be obtaned by substituting Y;=1
into Eq.(2.18). Equation (2.18) can be generalized for multiple conditions

<Yo|Y=Z>P(Z) = <Yoy> (2.19)
where v is specified in EQ.(212) Y=(Y,...Y,), Z=(Zy...Z,) and Y, is
not included in the set (Yi,...,Yy).

2.2. Differentiating Generalized Functions and Pdfs

In this section we show how to differentiate generalized functions
and then we apply this technique for the derivation of some identities
which involve pdfs and conditional expectations. These identities will be
used later when we consider the governing equation for the joint pdf.

2.2.1. Generalized derivative
We consider here functions or generalized functions for which normal

derivatives do not exist. If the derivative of the function f exists, we
can write for any good function F



too +oo +oo
JF(Z)f "(2)dz = [Ff] "~ JF’(Z)f(Z)dZ = - IF’(Z)f(Z)dZ (2.20)

Equation (2.20) results from integration by parts and taking into account
that the good function F rapidly tends to zero as Zste. If, on the other
hand, the  derivative  f’=df/dZ  does  not exist a a norma
"non-generalized”  derivative, this equation becomes the definition of the
generalized  derivative. This derivative is a generalized function which
has properties specified by EQ.(2.20). For example, let f be the Heaviside
function: f(Z)=H(Z). Equation (2.20) takes the form

+oo +oo Foo +oo
_IF(Z)H (2dz = _-iF (DH@)dz = - lF (2)dz = - [F(Z)]0 = FO)

This equation coincides with the definition of the deta function in
Eq.(2.6) which proves that 06(2)=H’(Z2)=dH/dZ. The derivative of the deta
function &'=ddo/dZ is also a generalized function and it is defined by the
eguation

+oo +oo
JF(Z) §(2)dz = - JF’(Z) 8(2)dz = -F(0) (2.21)

The higher derivatives of the delta function &™=d"8/dZ" are introduced
in a similar way

+oo +oo
JF(Z) §"2dz = (-1)" IF(”)(Z) 8(2)dz = (-1)"

- 00

(4"F
\dz"

|] (2.22)
)

Z=0

We should emphasize here, that if f’ is a generalized function, Eq.(2.20)
looks like a mere integration by parts, but it actualy represents the
definition of f’. If f” happens to be a ordinary function, EQ.(2.20) is
still  valid and represents simple integration by parts. This gives a
simple rule for checking any equation which may involve generalized
differentiation: multiply this equation by a good function F and formally
integrate it by parts so that all generalized derivatives are excluded.

Let us consider a few examples of identities which will be utilized
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later. We will use formal differentiation by parts to prove that

d

Wés[z i Y(t)] -9 (%s[z i Y(t)] 2.23)

where Y is a function of the variable t. Equation (2.23) is multiplied by
a good function F(Z) and integrated over Z, with the left-hand side

becoming
[F(Z)—gt—S[Z-Y(t)]dZ = 2 (F(Z)S[Z-Y(t)]dz = dFLM) = vy SY

and this is identical to the right-hand side since the integrated by parts

+00 +00

[y (B ofeo)fe = [-Gofevo)Dae = e

-0

This proves EQ.(223). We note that Y does not depend on Z in EQ.(2.23)
so that dY/dt can be taken outside of the differentiation sign 0/d0Z. The
form of the equation, as it is written in EQ.(2.23), is wusuadly more
convenient for our purposes.

We note that it is quite convenient to operate with the deta
function as if it was an ordinary (non-generalized) function. In many
cases this vyields correct resultss A sounder viewpoint is that any
equation involving the delta function implies that this equation is valid
when applied to a good function F.

The rules for operating with multiple delta functions are similar to
the rules discussed above. We consider the variables Y; (i=1,..n) which
depend on time, t  The time derivative of the finegrained pdf,y,
specified in Eq.(2.12) is given by

d\|I —_ 0 in _ 0 in
_dt_'ZUZ[_dt_ "’]='6Zi[‘lfw] (2.24)

i=1

Equation (2.23) is applied in EQ.(2.24) to each of the deta functions in
the product y. The summation convention over repeated dummy indexes is
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applied here and further on  (that is, the summation sign "X»" is omitted).
Equation (2.24) can be checked by multiplying Eq.(2.24) by the good
function F(Z) and integrating over Z

Fz) Y dz,.dz, = 3 [F@2) v dz,..dz, = GFCY(®)) - JF dv,
at at at oy
d av, _ocodY, 9 9F dv,
'JF(Z)?Z[ _d_] 02,02, = [v g 57 [F(Z)] 02020 = —C T

The first step uses the multidimensiona form of Eqg.(221) and the last
integral in  this equation is formaly integrated by parts. These
mathematical transformations are similar to the proof of Eqg.(2.23). If the
Y, depend not only on time t but aso on coordinates X=(X1,Xo,%3), partia
derivatives  should be  substituted for the ordinary  derivatives in
Eq.(2.24)

o= o var 229

Let wus consider the differentiation of the product fgy, where
f—f(t) is assumed to be a smooth function and y is as gspecified in
Eq.(2.12). The differentiation rules are smilar to the differentiation of
ordinary functions

dyf d df
Wts = f, ‘f g (2.26)

This equation is tested as wusua: the left-hand side of EQ.(2.26) is
multiplied by F(Z) and integrated over Z

IF(Z) s 4z,..dz, = G j F@)VZ..dz, = G [F(Y(t))f(t)]

while after similar operations the right-hand side takes the form

JF(Z)[S_d_ﬂy_gf_]le dz, = fs—(ﬂjF(Z)del dz, +

¥ gI—SJF(Z)\U 02,..dz, = £, 9ECHD) 4 py () dstt)
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It is easy to see that the both sides are egual since both F and fs are
smooth functions which can be differentiated in the usual way.

2.2.2. The gradient operator

We consider some equations which involve the gradient operator.
Variables Y; ae assumed here to be dependent on the coordinates
X=(X1,X2,X3). The gradient operator applied to y yields

Vy = - %Z[WW] (2.27)

This eguation is a vector equation with components that are specified by
the derivatives 0d/dx;, 0l0X,, dloxs. Each of these components is similar
to EQ.(225). Let us consider the derivatives of higher order which
result from the divergence operator being applied to EQ.(2.27). We use
the vector anadlog of Eq.(2.26), V-(fsw) = wdiv(f)+fsVy, and aso assume
that the Y, are smooth functions of the coordinates.

Vay = -v-[ oy VY, ] _owVEY oYy VYY) - ayViY | Py(VY - VY)
“dZ; : JZ, dZ;

9Z; Z 9Z,9Z;

Note that EQ.(2.27) is used twice and that VY; does not depend on Z.

For pdf derivations we will need a dightly more complicated form of
this equation which involves the molecular diffusion term. First
Eq.(227) is multiplied by pD (D is the molecular diffusion coefficient
which is assumed to be similar for all scalars Di=D; p is the density) and
then we take the divergence of the product. The values of p and D do not
depend on Z. After some manipulation we obtain

div[pr] = . %Zi[div[quDVYi]] .

. 92
- 57 [waveDvY) | + o7 (weD(VYVY)) (2.28)
This equation is an identity and does not involve any modeling of the
properties of turbulent scalar transport. If p and D ae not constants,

the term on the left-hand side of EQ.(2.28) is more conveniently written
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div[pr] = div[V(q;pD)] i div[q;V(pD)] (2.29)

Another equation which has some similarities with EQ.(2.28) is obtained by
applying the divergence operator to ypDVY;

div[\ppDVYi] = wdiv[pDVYi] i gzj[wpD(VYi-VYj)] (2.30)

Here i is any of 1..n if Y; is one of the variables Y;,..Y, in
Eq.(2.12) or i=0 otherwise.

2.2.3. Differentiating the joint pdf

The equations for y derived above can be considered as equations for
the fine-grained pdf. The variables Y, ae stochastic variables which
depend on time and coordinates. Now we can derive some equations involving
the joint pdf P(Z). The simplest equation represents the time derivative
of the pdf. After averaging, EQ.(2.25) takes the form

8P$Z) _ . %Zi [<%|Y:Z>P(z)] (2.31)

Equations (2.12) and (2.19) have been taken into account in arriving at
this resuilt.

We will need some equations which involve the gradient operator. The
technique for their derivation is smila: the equations involving the
fine-grained pdf ae averaged and then EQs.(2.12) and (2.19) are applied.
Combining Egs.(2.28) and (2.29) we obtain after averaging

div[<pDV1|1>] = V2[<pD|Y=Z>P] i div[<V(pD)|Y:Z>P] - (2.32)

2
%Zi [<div(pDVYi)|Y:Z>P] ¥ gngj [<pD(VYi-VYj)|Y=Z>P]

where P=P(Z). Averaging of Eq.(2.30) yields

div[<pDVYi|Y=Z>P] =
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= [<div(pDVYi)|Y=Z>P] i gzj[<pD(VYi-VYj)|Y=Z>P] (2.33)

Note that these equations are identities and their derivation does not use
the scalar transport equation. Equations (2.32) and (2.33) have been
derived for the case of D;=D, but a more general result with D; # D can
also be obtained in a similar manner (see Section 9.1.1).

2.2.4. Differentiating conditional expectations

It is wel-known that the conventional (unconditional) averaging and
differentiation can be commuted

< IY 5 _0<Y> (2.34)

ot = T ot

This equation can normaly be applied in engineering applications and we
have used it repeatedly in derivations made so far. [Mathematicaly,
Eq.(2.34) needs further qualification. For example, it is possible that
o<Y>/dt exists but dY/0t does not] Equation (2.34) is vaid for
conventional  expectations but it is not necessarily valid for conditional
expectations since the condition of averaging may also be dependent on the
variable t. The equation for the differential of a conditiona mean can be
derived by differentiating the product

Gi[¥ 82) = 51 8@ - G (ViGP2 82 (2.3

The conditional mean is determined by EqQ.(218) so that EQ.(2.35) after
averaging takes the form

0<Y;|Yo=Z,> JdP(Z
1(1”2 2 p(z,) + <Y1|Y2:22>7g—2)
=< aYl|Y2—Zz> P(Zo) - 2[ <Y1 aY2|Y2‘ZZ> P(ZZ)] (2.36)

It is seen that there are two additional terms in Eq.(236) and the first
teem on the left-hand side is not necessarily equal to the first term on
the right-hand side. Equation (2.36) includes EQq.(2.31) which can be
derived from EQ.(2.36) by substituting Y;=1. Equation (2.36) can be easly
generalized for conditional expectations with multiple conditions. If Y,

2-14



does not depend on t, Eq.(2.36) takes the form

0<Y1|Yo=Z,> _ _ 9Y _
1(19 127007 = < ON1|v,=7,> (2.37)

When the condition of averaging does not depend on t, differentiating with
respect to t and conditional averaging can be commuted.

2.3. The Pdf Equations

In this section the joint pdf equation for a set of the scalar fields
Y; (i=1,..,n) in a turbulent flow is derived. Each of the scaars is a
function of time t and physica coordinates x and, assuming Fickian
diffusion, is governed by the scalar transport equation

pIU + pv-VY, - div[pDiVYi] = pW, (2.38)

2.3.1. The equation for the fine grained pdf

In this section we derive the equation for the fine grained pdf w
which is based on the transport equation (2.38). The pdf transport
equation is then obtaned by averaging of the eguation for .
Substituting dYj/dt determined by Eq.(2.38) into Eq.(2.25) we obtain

N = %Z_i [ v [v-Wi i %div(pDiVY) i vv.]] (2.39)

Equation (2.27) multiplied by v yields

V-V = - %Z.[ v (V) (2.40)

Note that v does not depend on the independent sample space variable Z;.
Combining Eq.(2.39) and EQ.(2.40) we obtain

oG+ p(vVy) + Gz (waveDYY) = - G- (wpW) 241

Density, p, is independent of the independent sample space variable Z but
p is a dochastic function of t and x which can be stochastically
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dependent on Y;. The continuity equation

gli_ + div[pv] -0 (2.42)

multiplied by v and added to EQ.(241) transforms Eq.(2.41) into the
divergent form

BV div[pvw] ¥ gzi[wdiv(poivv)] = - gz[pwwi] (2.43)
The divergent form of the equation for y is more convenient for averaging.
Equation (2.43) is a transport equation for the fine grained joint pdf .
This equation is not a mathematical identity. It essentiadly incorporates
the equations which govern scalar transport in  turbulent flows. If all

diffusion coefficients are the same D=D, EQq.(2.28) transforms EQq.(2.43)
into the form

g‘i—w + div[pvw] - div[pDV(\p)] +
¥ Ug%zj[WPD(VWW)] = - %Zi[\vpvvi] (2.44)

2.3.2. The joint pdf equation

According to Eq.(219) averaging of EQ.(243) yields the equation for
the joint pdf P(Z)

0<p|Y=Z>P , div[<pv|Y:Z>P] ¥ a—[<div(pDiVY)|Y:Z>P] =
dt 0Z;

9
0Z;

[<pwi | Y=Z>P] (2.45)

Equation (2.45) is not the only possible form of the joint pdf
equation. If al of the scalars have similar diffusion coefficients D;=D,
the last term on the left-hand side of EqQ.(245) can be transformed into
the form  which  explicitty involves the scalar  dissipation  terms
D(VY;-VY). This form can be obtaned by substituting Eq.(2.32) into
Eqg.(2.45) or by substituting EQ.(2.29) into EQ.(2.44) and averaging
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a< Y:Z P . 82
_Pét—> + dIV[<PV|Y:Z>P] + W[<PD(V\4'V\G)|Y=Z>P] +

+ div[<V(pD)|Y:Z>P] i V2[<pD|Y=Z>P] =.9_ [<pV\/i|Y:Z>P] (2.46)

0Z;

These pdf transport equations are derived wusing the scalar transport
equation (2.38). Equations (2.45) and (2.46) are exact equations but they
are unclosed. This means that some of the coefficients of Egs.(2.45) and
(2.46) (these are <pv|Y=Z> <pD(VY;-VY))|Y=Z> and <div(pDiVY)|Y=Z>) are
not known. Such unclosed equations need further modeling to transform the
equations into a closed form.

2.3.3. The case of high Reynolds numbers

If the Reynolds number, Re, is high, the last two terms on the
left-hand side of EQ.(246) can be neglected. These terms correspond to
macro-transport by molecular diffuson. When Re is large the kinematic
viscosity coefficient, v, and the diffusion coefficient, D, are relatively
smal (we assume here that EQ.(246) to have been normalized by a suitable
velocity, length and density so that v~D~Re™).

We consider the limit D0 (that is Rese) in order to estimate the
dependence of some gradients and functions on D. If Re is large enough (D
is small enough), some of the functions do not depend on D while others
indicate a significant dependence on D (or v). The instantaneous gradient
can be estimaed as VY~YD™ (since Y can have different scaling, VY
iIs proportional to Y). This estimate follows from the fact that the mean
scalar dissipation <D(VY)2> specifies the rate of the dissipation of the
scaar Y fluctuations. The dissipation is linked to other macro-parameters
of turbulence and does not depend on D. That is <D(VY)2>~1 as D-0 and
Res. Here we refer to the important property of developed turbulence -
independence of its macro-characteristics from the Reynolds
number ¥ The diffusivity coefficient, D, and the density, p, are
functions of the concentrations of species so that VD~DDY=D"? and
Vp~p DY, The characteristic values of instantaneous gradients are
relatively large in turbulent flows due to small-scae fluctuations. The
gradients of mean vaues ae smaler. For large Re, turbulent scalar
transport is not dependent on D. Both conditional and unconditional means
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are smooth functions of coordinates. This is reflected in estimates V<Y>~Y
and V<Y;|Y,=Z,>~Y;. (It should be emphasized that these estimates are
quite approximate and reflect only the dependence on or independence from
Re. It will be demonstrated in Sec5 that the study of more refined
properties of some turbulent flows indicate that V<Y> and V<Y;|Y,=Z,> can
be of different orders) The unconditiona mean value of the gradient VY
can be estimated by <VY>=V<Y>~Y. Estimation of the conditional
expectation of the gradients is not as sSmple as estimation of
unconditional  expectations since, according to EQ.(2.36), <VYi|Y,=Z> s
not necessarily equal to V<Y;|Y,=Z>. The order of the conditional
expectation <VY;|Y,=Z,> can not exceed the order of instantaneous gradient
VY, so that <VY;|Y,=Z> < VY,;~Y,D™

The edtimates of gradients of scalars and their  functions in
turbulent flows at high Re can be summarized in the following simple rules :

1)The  gradients  of conditional and unconditional expectations
have dependence on D similar to the expectations themselves.

2) An unconditional expectation of a gradient is identical to the
gradient of the unconditional expectation <VY>=V<Y>.

3)A conditional expectation of the gradient of a scalar variable or
its function can increase the order of the variable or function by <D™,

We consider first the case of D=const, p=const. Since V(pD)=0, we
need to estimate only the last term on the left-hand side of Eq.(2.46).
This term can be written as pDV?P and estimated by pDV?P~pDP. If D is
smal (Re is large), this term is smal and can be neglected. Let us
consider the more complicated case when p and D ae not constants and
estimate the last two terms on the left-hand side of EQ.(2.46).
According to Rule 1, the Laplace operator applied to an averaged value
does not increase the order so that the term  V*(<pD|Y=Z>P) ~ <pD|Y=Z>P
~pD can be neglected. Let us estimate the next term div(<V(pD)|Y=Z>P).
The divergence operator is applied to the average value and so does not
increase the order of the term. Gradients inside the conditional brackets
should be estimated as explained above so that div(<V(pD)|Y=Z>) < V(pD) ~
pD”2 and this is negligible a high Re. Now we retain only the most
significant terms in EQ.(2.32) so that

2
%Zi [<div(pDVYi) | Y:Z>P] = gngj [<pD(VYi-VYj) | Y:Z>P] (2.47)
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This equation transforms EQ.(2.45) into the form

a< Y=2>P . 82
_Pét—> + dIV[<PV|Y:Z>P] + W[<PD(V\4'V\G)|Y=Z>P] —

9
0Z;

[<V\/ip | Y:Z>P] (2.48)

This form of the joint pdf equation is used extensively in the derivation
of the CMC equation. This equation has n+4 independent variables and
involves the conditional expectations of velocity and dissipation tensor
D(VY;-VY). These terms are unclosed. Equation (2.48) is quite universal.
It governs the probability density function of any scalar vaues
satisfying equations which can be written in the form of EQ.(2.38) with D,
= D.
Equation (2.47) is often used in pdf modeling. Let us also prove that

<div(pDVY)|Y=Z>P = [<pD(VYi-VYj) | Y:Z>P] (2.49)
J

This equation is not a mere integral of EQ.(2.47). Equation (2.49) being
integrated over Z involves the arbitrary rotational vector function o
which obeys Jai/0Z=0 (note that vector <div(pDVY;)|Y=Z>P is not uniquely
determined by its by divergence J(<div(pDVY))|Y=Z>P)/0Z). Let us estimate
the term on the left-hand side of EQ.(2.33). Smilar to previous
estimations we have div(<pDVY;|Y=Z>P)<pDVY~pD" . This term can be
neglected and this proves Eq.(2.49).

2.4. The Conserved Scalar Pdf Equation and
its Boundary Conditions

In this section we consider the pdf of a conserved scalar & which is
not involved in chemica reactions and satisfies EQ.(2.38) with zero
source term

pde + pv-VE - div[pova] =0 (2.50)

In practice, & can be the mixture fraction defined in section 1.2. The

2-19



sample space variable which corresponds to & is denoted by m. The pdf P(n)
is governed by the equation

I<plE=n>P(n) div[<pv|gzn>p(n)] = 32<PNI§=‘1>P(11) (2.51)
an

where NED(V&)Z. This equation is a direct consequence of Eq.(2.48).

In this section we consider some conditions for the pdf P(n)
(specifically for the product <pN|&=n>P(n)) a the bounds of the pdf, Nmin
and MNmn It Is assumed the conserved scalar pdf takes positive values
only inside the closed interval Mmin<N<Nmax- We consider here the boundary
conditions for the onevariable conserved scalar  pdf  only.  These
conditions will be utilized later. The techniqgue developed in this section
is, however, quite general and can be used in more complicated cases. It
is assumed in Eq.(251) that the Reynolds number is large. In this section
we will consistently keep this assumption and neglect macro-transport by
molecular diffusion. Investigation of the boundary conditions for pdfs in
the case of moderate Re is considered by Klimenko and Bilger®. As
outlined in Section 1.2 different types of pdfs are in current use in
turbulence  modeling. Examples include clipped Gaussian pdfs (Fig. 2)
which are inherently intermittent and beta function pdfs (Fig. 3) which do
not involve delta functions a mMmn ad MNmx. These types can have
different boundary conditions and need Separate consideration.
Furthermore, we include the consideration of mMyn and mnmx Varying in
space and time.

In order to obtan the boundary conditions we derive the transport
equation for the function F(§) which is assumed to be an arbitrary good
function. By using Eq@.(250) and chain differentiaion of F(E) =
F [E_,(x,t),x,t], we obtain

pg" + p[v-VF] - div[pDVF] = PNF” (2.52)
where
2

Equation (2.52) is averaged with the use of the continuity equation and
the transport by molecular diffusion div<pDVF> is neglected
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0<pF - ’
?fi—> + d|v[<va>] = - <pNF”> (2.53)

2.4.1. Smooth pdfs

These pdfs do not have any generdized components, eg. deta
functions. The transport equation for <F> can be aso derived from the
pdf equation. Equation (2.51) is multiplied by F(Mm) and integrated over
the interval mi<n<m, where Mpin<ni<no<nNmax- (Note that n and F(m) are
independent of t and x and hence F(m) can be taken inside the
derivatives) The term on the right-hand side of EQ.(251) is integrated
by parts

N2 N2 N2
[ 2<LIZEN>FPO). gy 4 [ div|<pvic=noFR(|dn = - [ Fr<pNIE=n>P(men -
N1 N1 N1

_ [9<pN|E=n>P(n) E N2 + |<pN|[E=n>P(n)F’ N2
[ I ]ﬂl [ | ]ﬂl

If m1 and mn, depend on t and x, the first two integrals on the left-hand
side are transformed according to

N2 N2
[ = . N2
9= [<pl&=n>FPm)dn = | I<p|SEN>FP() g 4 [%%<p|§:n>FP(n)]
N1 N1 M
N2 N2 s
div f<pV|§=n>FP(n)dn = f div|<pv|&=n>FP(n)|dn + [Vnr<pVIi=ﬂ>FP(ﬂ)]
N1 N1 N1
where 1), is for either n, or n,. These equations yield
5 N2 N2 N2
St [<ple=n>FPm)dn + div| [<pvig=n>FP()dn| = - [ F"<pN|&=n>P(n)dn +
N1 N1 N1
. — N2
¥ [%ﬂ)l&w ¥ Vni-<PVI&=n>] PMF - a<pN(J)$] n>P(n) F] 4
N1
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N2
+ [<p|\||§=n>p(n)F']n (2.54)
1

Assuming Ni=Nminte and Mo=Nma-€ and taking the limit &0 (or MMNmin
N>-Nmax TOr infinite Nyin and Mma) We obtain

J0<pF> . ”
?‘E— + dIV[<pVF>] = - <pNF”’> +

¥ [JPF] :.a:+ [<pN | §:n>P(n)F’] :T: (2.55)

where

J = <p|&n>P() o a<pN$§:n>Pm) (2.56)

dm _ M <pv|&=n>
gt = 9t T <p[eEns v

1.7 0T 1= l)

and index "m" is for either "min" or "max".
Equations (253) and (255) must be identical for any function F.
This specifies the boundary conditions required

J->0 a8 N - NMn (2.57)
<pN[|E=n>P(M) > 0 & M > N (2.58)

In deriving EQs.(257) and (258) it has been consistently assumed that
Rese. In general, the question of neglecting transport by molecular
diffusion in the vicinity of mnyn ad mpx IS quite problematical since
the pdf structure near these bounds may depend on D. If My, and nnx ae
not constants and if the transport by molecular diffusion is not
neglected, EqQ.(2.56) involves some additional  terms™.
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As discussed in detail in Section 4, it can be  quite important that
the behavior of the pdf and conditional dissipation of the conserved
scaar a the bounds of m are properly modeled. In order to assess this
behavior we use EQ.(254) and assume mMpNmin ad  Mpin<No<Nmax-  EQuation
(2.54) takes the form

N2 N2 N2
0 [<ple=n>FPdn + div| [<pv|g=n>FP(m)dn| + [ F"<pN|Z=n>P(m)dn -

: [JPF]:?: [<p'\l|é=n>F>(n)F']112 : [JPF]n + [<oNIg=n>PF |

min 2 N2

Here the boundary conditions in Egs(257) and (258) are taken into
account. The integrals on the left-hand side of this equation tend to zero
as Mo Nmine If Mo=m (n is close to Mmin but M#n.in) we suggest that these
integrals can be roughly estimated by the simple integral

n
| FP@)dn’

min
which yields

n
| FPO)dn” ~ 3o + <pN|&=n>P()F’ & nnmin

min
A similar equation is valid for n-nma. ASSUMing power-law asymptotes

PM) ~ [NMm|% <pN|E=n> ~ |nNm|” & Mo

where o is aways greater than -1 (otherwise P(n) can not be integrated),
we obtain using Eqg. (2.56)

MM ~ 0 ]+ N P+ M| 8 monm (2.59)
at

Equating the power-law dependencies of the first and the second terms on
the right-hand side, since these ae the largest terms, we obtan =1,
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that is

<pN[E=n> ~ |NMm| & N > My (2.60)

2.4.2. Smooth pdfs with fixed bounds

In many cases the conserved scalar pdfs are assumed to have fixed
bounds (that is mMmn and mMmx ae constants). In this case the boundary
conditions (2.57) and (2.58) take the forms

IONIE=NZP() 0 a5 - g (2.61)
<pN[|E=n>P(M) > 0 & M - N (2.62)

If the pdf bounds are infinite these conditions are quite obvious. Let us
estimate . Assuming dn,/dt=0 in EQ.(2.59) we obtain o+B-1=a+1 and

<pN|E=n> ~ [n-Nm|® @ N > My (2.63)

Note that the estimates in EQgs.(2.60) and (2.63) are rough and the exact
asymptote can involve some weaker functions of |n-n,| (for example
Inj]n-nm|). For the specid case of a Gaussan pdf it is known " that
the conditional scalar dissipation is independent of m in uniform density
nce equal to its unconditiona  value.  Figure 9  demonstrates  the
gualitative shapes of pdfs and corresponding conditional dissipation for
three different cases considered above.

2.4.3. Intermittent pdfs

Intermittency is conventionally associated with the presence or not
of wvorticity fluctuations in the fluid. Here we are going to associate it
with the presence or absence of the scalar. We shall for simplicity of
language assume that the flow is like that of an initially nonturbulent
gas jet into a nonturbulent surrounding fluid. The diffusion of vorticity
into the nonturbulent fluid is assumed to be accompanied by diffusion of
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the scalar. In such intermittent flows the contaminated turbulent spots
alternate  stochastically ~ with  uncontaminated  nonturbulent  spots. For
two-stream mixing with initiad values of &=nm,, in first stream and &=
in the second stream, the intermittent pdfs involve delta functions:

P(ﬂ) = Ymins(n'nmin) + Ytpt(n) + Ymaxs(n'nmax) (2-64)

where Ymin + %+ Ymax =1 and 7y is caled the intermittency factor. The
delta function components of the pdf correspond to the vortex-free
uncontaminated regions. In these regions the vaues of the conserved
scaar are constants (either &=Mmin OF  E=Mmax)- The values of n.,, and
Nmax a€e constants. The component P, is smooth and corresponds to the
fully  turbulent region where MNpir<N<Nma-  The dissipation in  the
vortex-free regions is ze&)Oo N = 0 a m = 1, o that

<pN|&=n>P(n) = 1<pN|E=n>Py(n) (2.65)

where 1M, is for ether Ny, or Mma Note that P=0 and P=0 for n<nm, and
for N>Nmax-

The pdf eguation (2.51) has been derived as an equation for the
expectation of the generalized function y and it is dtll valid for an
intermittent pdf. We treat Eq.(251) as an equation for generalized
functions P which is valid for all mn (-co<n<+e). We multiply EQ.(2.51) by
an arbitrary good function F(n) and integrate it over all n. This yields

+oo
2 —
0 aufeoues) = [ PPMEEP) gy -
+oo -ee
| <pNjE=n=PM)F"dn = <pNF”> (2.66)

- 00

There is dignificant difference in the derivations of Egs(2.55) and
(2.66). In the derivation of Eqg.(2.55) the pdf equation (2.51) is treated
as an equation for ordinary function and the integra is taken over the
interval  Mi<nN<n,  (Where Mmin<ni<na<Nma)  Which  excludes any possible
singularity at the bounds. The integra in EQ.(2.66) is taken over al n.
The product <pN|&=n>P(n), as it is indicated in EQ.(2.65), does not have
any generalized component, but its second derivative could have such
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components. The modification of the integra on the right-hand side of
Eq.(2.66) seems to be an integration by parts but this modification
represents the rules of operating with  generalized functions  (see
Eq.(2.20)). Equation (2.66) is consistent with EQ.(2.53).

The product <pN|&=n>P(n) represents an ordinary, smooth function and
we are interested in determining its limits m-n,. The integra in
Eq.(2.66) can be modified

Foo MNmax Mmax _,
[ <oNiE=mPaFran = [ <pNjgmnoPaoFan = [ CPRLEEZEO Ry +
o MNmin MNmin n
max _ max
" [<pN|§=n>p(n)F'] : [a<PNE|)‘§‘“>P(“) F] (2.67)
min M min

The notations are the same as in EQ.(255). We subdtitute Egs.(2.64) and
(2.67) into Eq.(266). The function F is an arbitrary function which can
have the arbitrary vaues of FMmin), FMma)) FMmn) ad F(Mma). The
function F is a continuous function so that F(n.)=[F].. Equating the terms
which are multiplied by F'(Nmin), F(Mma), FMmin) @ad F(Mma) We obtain

<pN|E=n>P(n) > 0 as M-MNmin (2.68)
<pN|E=n>P(n) > 0 as MM (2.69)
MYmin<p |E=Nmin> [0<pN|&=n>P(n)]
+ le[Ymin<pV|E.>:nmin>] = - (2.70)
dt | aﬂ J min
MVmax<p | E Nmax> [0<pN|&=n>P(n)]
+ le[Ymax<pV|§:nmax>] = (2.71)
ot on

max

It can be seen that the product <pN|E=n>P(n) has zero limit a m-n., but
the limit of its derivative is not necessarily zero. Kuznetsov and
Sebelnikov”” caried out a similar andysis assuming that <N|&=n> has
non-zero limit a m-n, This is an additional assumption which is not
determined by the properties of Eq.(251). This additiona assumption
results in P(n)-0 as n-nm.

2.5 Summary of the Major Results
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The techniques, which have been systematicaly introduced in this
section, can be wused for derivation of the transport equations and
identities for various pdfs (probability density functions) in turbulent
flows. These equations are extensively used in conditiona methods. The
techniques ae based on manipulations with the delta function and its
derivatives. The delta function is a generalised function and often needs
special  treatment. This may present some initia  difficulties  for
someone who does not have much experience in this fied. We think,
however, that overcoming these initial difficulties should be rewarding
since the technique is powerfull and, a the same time, is relatively
simple to use in partica derivations. Here, we provide a summary of the
main results obtained in this section.

The transport equation for the multivariate scalar pdf P(Zy,25,..Z,)
has two equivalent forms EQq.(245) and EQ.(246). The first of these
forms is most commonly used in pdf methods. The second form, Eq.(2.46),
becomes EQ.(2.48) a high Reynolds numbers and this is the form that will
be used in the next section (see that which follows EQ.(3.3)) for deriving
the first-order CMC equation by the pdf method. It is aso wused in
Sections 8 and 9 for derivation of the second-moment (see
that which follows EQ.(8.6)) and doubly-conditiona (see that which
follows EQ.(9.27)) CMC equations by the pdf approach. At high Reynolds
numbers the transport equation for the pdf of a single conserved scalar is
smplified into EQ.(251) and this is widely used in CMC methods in the
form of EQ.(3.15). It is to be noted that, in these equations, some terms
involving the diffusion coefficient, D, are neglected when the Reynolds
number is large. Simplified rules for determining which terms can be
neglected are listed in section 23.3. These approximations are also
involved in derivation of the closely related result of Eq.(2.49), that is
found to be very wuseful in modeling differential diffusion effects (see
Eq.(9.16)). The transport equation for the fine-grained joint  pdf,
Eq.(243) is the preferred starting point for derivation of the CMC
equation in the presence of differential diffuson (see EQ.(9.3)) and is
aso used in an adternative approach to deriving the first-order CMC
equation as is presented in section 3.1.2.

Basic formulae for conditiona averages, Eq.(2.15) and Eq.(2.18), are
needed for the derivation of the first-order CMC equations (Egs(3.3 and
(34)) and higher-order forms in Sections 8 and 9.21. Conditiona
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averaging of functions, Eq.(2.17), is widely wused in the formulation of
the decomposition approach to the derivation of the CMC equation (see that
preceding EQ.(3.20)) and in the development of primary closure hypotheses
(see EQs(3.11) and (3.30)). It is aso used in exploring the relationship
between CMC and other models such as frozen and fast chemistry (section
43) and flamelets  (section 4.4). The warning that
differentiation and conditional averaging do not usualy commute, as shown
in  EQ.(2.36), is important in formulating the primary closure hypothesis
when deriving the CMC equations by the decomposition approach (see section
3.2.2). Equation (2.36) is aso needed in showing the equivalence of the
primary closure hypotheses by the various approaches (see section 3.3).

Conserved-scalar pdfs used in applications can be broadly divided
into two groups. intermittent pdfs and smooth pdfs. The former involve one
or two generalized components at the bounds of the pdf which correspond to
the non-turbulent spots in a turbulent flow. As shown in section 24 the
most common boundary conditions for the pdf are given by <N|&=m>P(n) -» O
as m tends to its maximum and minimum vaues. In some cases, as shown in
section 2.4.2, the zero condition can be aso imposed on the derivative
J0<N|&=n>P(m)/on. These boundary conditions are important in determining
the conditional scalar dissipation from the transport equation for the
conserved-scalar  pdf  (sections 4.1, 56, 61 and 7.2) and the closely
related question of preservation of the conservation integrals (sections
4.2, 54, and 5.5).
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3. THE CMC EQUATION

In this Section we consider derivations of the equation for the
conditional mean QE<Y|&:n>E<Y|n> and the basic closure hypotheses
which lead us to the model for first-order Conditional Moment Closure
(CMC). Here the variable Y represents a reactive scalar, that is a scalar
which can be involved in chemica reactions. For simplicity, and without
loss of generality, we drop the subscript i used in Eqg. (1.1). Usudly,
severa reactive scaars  Yp,...Y, ae involved: Y represents any of them
and the CMC model can be written for each of the scalars. The variable &
denotes a conserved scalar for which its transport equation has zero
source term. The model considered in this section is an effective tool for
non-premixed combustion in turbulent flows with two-stream mixing (usualy
fuel injected into oxidizer). The best, physicaly sound choice of the
conserved scalar £ is the mixture fraction which indicates the frozen
(without chemical reactions) mass fraction of fuel in the fuel-oxidizer
mixture. In this Section the molecular diffusion coefficients are assumed
to be the same for both scaars & and Y. The transport equations (2.38)
can be written for & and Y as

pde + pv-VE - div[pova] =0 (3.1)
Y . _
p9Y + pV-VY - dlv[pDVY] = pW (32)

It is noted that, in general, W will depend on & and this means that Y
will not be independent of & and <Y|n> will differ from its unconditional
vaue <Y>.

There are different approaches to the derivation of the first-order
CMC eguation as independently suggested by Klimenko® and Bilger'®*.
These  approaches use different  mathematical methods and  different
modelling assumptions but yield the same result for the CMC equation. They
give different insights into the nature of the CMC equation and into the
primary closure assumptions wused in its formulation. Both approaches
should be wunderstood to get a full appreciation of the rigour of the
formulation of the CMC equation and the transparency of the primary
closure assumptions made. In Section 3.1 we follow Klimenko™® and use the
joint pdf of the reactive and conserved scalar as has been derived in
Section 2. In Section 3.2 we follow Bilger'®? and derive the equation by
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considering the reactive scalar to be decomposed into its conditional
average for the corresponding value of the mixture fraction and a
fluctuation from that. This derivation does not rely heavily on the
results of Section 2 and may be more accessible to newcomers to CMC. The
primary closure assumptions used in these derivations are compared and
discussed in Section 3.3.

In flows with heat release it is necessary to consider the energy
equation.  Section 3.4 presents the first-order CMC equation for the
conditional average enthapy.

Apart from the primary closure hypothesis, the next most important
issue for closure of the CMC equation is the closure of the conditional
average chemical raction rate term. Basic considerations regarding the
conditional average reaction rate and radiation source term are outlined
in  Section 3.5. Higher-order closure using second conditional moments is
left until Section 8. The modeling of other unclosed terms is left to
Section 4.

For simplicity, conditional correlations between density and other
scalars are neglected in the man treatment of the theory. In dituations
with  heat release and large fluctuations about the conditional means,
these correlations could be  gignificant.  Section 3.6  outlines  how
conditional Favre averaging can be used in these problems.

A Dbroader discussion of the physica bases for the closure hypotheses
used in these approaches may be found in Section 3.7. This discussion
involves the theory of Markov processes and uses concepts which are more
complex than the smpler level of explanation adopted in Sections
3.1-3.6.

The Section closes with a summary of the major results obtained.

3.1. The Joint Pdf Method
3.1.1. The unclosed equation
The relationship of the conditional expectation Q, the joint pdf

P(Zm) (where Z is the sample space variable for Y) and the pdf P(n) is
given by EQ.(2.15)



+oo
QP(M) = <Y|&=n>P() = Jz P(Zn)dZ (3.3)

- 00

We utilize the joint pdf equation (2.48) which is valid for the case of
large Re and consider this equation as the equation for P(Zm). We put in
Eq.(248) Z=Z;,, n=Z,, W=W;, W,=0, n=2 (n is the dimension of the vector
7=(2,,...2,)).

a< Y:Z P . 82
_Pét—> + dIV[<PV|Y:Z>P] + W[<PD(V\4'V\G)|Y=Z>P] —

=- 9 [<W1p|Y:Z>P]
0Z;

This equation is multiplied by Z and integrated over al Z It can be
noted that since Z is an independent variable it can be taken inside
derivatives with respect to t, x and m. The terms which involve d/dZ are
integrated by parts

+oco

[ Z agzzm[<pD(VY-Vé)|Y=Z,§=n>P] s [Z?ﬁ [<9D(VY'V5)IY=Z’§:“>P]]

- 00

/=+oco

/=-c0

+oco

o [ (<PD(VY-VE)| Y=2E=>P)dZ = - S(<pD(VY-VE)|En>P)

- 00

and
Foco ) -
[Z J - [<pD(VY-VY) | Y:Z,EJ:TPP] dz = |:Zgz [<p D(VY-VY)| Y:Z,};:T]>P]:| )
)z .
Z=+o0
l<p D(VYVY) | Y:Z1E..:n>P:| = 0
/=-o0

Note that P(Zn) - 0 as Z » te. The result of the integration is
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aanPgn) + div[pn<vy|n>p(n)] = py<W|n>P(n) + g;:_Y (3.4)
where
Jy = 2p,<D(VY-VE) [n>P(n) - apn<NY(J)R>P(“) (35)

Here <-|n> is short for <-|&=n>; N=D(VE)* is the dissipation of the
conserved scalar; and  subscript  "'nm" aso indicates conditional averaging:
eg. py, = <p|n> Equation (2.15) is repeatedly used in the derivation of
Eq.(3.4). Note that the density fluctuations about the conditional mean
are not taken into account here. This will be discussed in Sec.3.6.

Equation (3.4) has five independent variables. t, X;, X, X3 and n.
The physica meaning of this eguation is quite obvious since there is a
certain  degree of smilarity with the unconditionally averaged scalar
transport equation. The second term on the left-hand side of EQ.(3.4)
corresponds to the convective terms conditional on m. The first term on
right-hand side of EQ.(3.4) represents the conditional expectation of the
reactive source term. Transport in physical space by molecular diffusion
is neglected since Re is large, but it would be incorrect to say that all
molecular diffusion effects are neglected in EqQ.(3.4). The new term dJy/on
is determined by small-scae diffusion processes. The variable Jy in
Eq.(3.5) gpecifies the net diffusve flux of the reactive scaar Y in
conserved scalar space.

3.1.2. Alternative derivation of the unclosed equation

The derivation given above for Egs(3.4) and (3.5) is not the only
one possible. Here we consider an dternative derivation of Egs.(3.4) and
(35). In general, both techniques are equivalent but in some cases the
aternative  derivation can be more convenient. First we derive the
governing equation for ¢ = Yy,, where vy, = J(§(x,t)m), and then average
it. The new function ¢, can be caled the fine-grained density in the Xx-n
space. We use EQ.(243) as the equation for wy, (M=Z;, &=Y;, W;=0, n=1).
This equation is multiplied by Y and added to Eq.(3.2) multiplied by w,,

d Y . v, Ydi DV .
P+ div [pvy,y) + DYGVDVE) -y aiv(pDVY) = py (36)
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We use aso Egs(228) and (230) which are written with some minor
modifications

aiv oDV, = g:—z[wnvaW&f] - S {wavompve ] @7
. gn (0 Y0D(2) - (i YaiveDVE)] - I fwpD(7ETY)
div[\pnpDVY] = v, div[pDVY] i gn_[wnpD(vg-vv)] 3.9)

The two last terms on the left-hand side of Eq.(3.6) are modified using
Egs.(3.7) and (3.8)

WY+ v [puv,) + ;]z—z[wnvpmv&)z] -2 % (wpDvE V)

- diV[pDV(wnY)] = ynpW (3.9)

Equation (3.9) is averaged with the wuse of EQ.(218). The term
div<pDV(y,Y)> is neglected since it is small if Re is large (see Section
2.3.3). The resulting equation is exactly the same as Egs.(3.4) and (3.5).

3.1.3. Primary closure hypothesis

The flux of the reactive scalar in conserved scalar space, Jy, IS
given by EQ.(3.5). This equation is unclosed. We seek a closure for Jy in
the form of a diffusion approximation

_ 0Q
Jy = AQ + BW (3.10)
We do not assume any particular form of the drift coefficient A and the
diffusion coefficient B but we note that formulas for these coefficients
must preserve the linear properties of turbulent scalar transport. This

means that A and B are independent of Q. The physical basis of these
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assumptions is discussed in Section 3.7 where the analogy between particle
diffusion in conserved scalar space and a Markov process is established.
There is adso an analogy with conventional modeling of scalar transport in
turbulent flows, where the turbulent flux <vY> is approximated by the term
<v><Y>-D,V<Y>, There is, however, a sgnificant difference: the
turbulent diffusion coefficient D; needs further modeling, whereas the
coefficients A and B are fully determined by a necessary constraint. This
constraint is. if W=0, a=const, b=const and the initiad and boundary
conditions for Y are related to those for & by Y=atbf, then Y = atbf is a
solution of Eq.(3.2) for any velocity field. According to EQ.(2.17) this
solution corresponds to Q=at+bn. By substituting Y=a+bf into Eq.(3.5) and
taking into account that

a(a+bn())T<]N|n>P(n)pn - (a+bn) 8<NIBT>]P(TI)Pn + b<N|n>P(n)p,

and that the identities <N(at+bf)|n> = <N|n> (atbn) and <D(V(atbf)-VE)|n> =
b<N|n> can be easily derived from Eq.(2.17), we obtain

Jy = -(a+bn)apﬂ<N|3;P(n) + bp,<N|n>P(n) (3.11)
while the substitution of Q=a+bn into Eq.(3.10) yields

Jy = (a+bmA + bB (3.12)
Since Egs. (3.11) and (3.12) are vaid for any arbitrary constants a and

b, the coefficients A and B must be determined as the corresponding terms
in Eq.(3.11). The closure for Jy takes the form

5 = - apn<N|3;P(n) Q + pn<N|n>p(n)gnQ (3.13)

Since the coefficients A and B are independent of Q this closure is,
according to assumption (3.10), vaid not only for Q=atbn but also for any
arbitrary field Q. The substitution of EQ.(3.13) into EQ.(3.4) yields

apergn) + d|v[pn<vY|n>P(n)] = pn<W|1’]>P(T])

2 2
.9 Pn<N$leP(n) Q + py<N|N>P(n) g Q (3.14)
n n
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This equation is the basic CMC equation which governs the evolution of the
conditional expectation Q. It involves the conserved scalar pdf P(n) and
some conditional expectations <N|n>=<D(VE)*|n>, <vY|n> and <W|n>. The pdf
equation (2.51) is rewritten using the notation of this section

donb() div[pn<v|n>P(n)] = . azpn<N$:§P(”) (3.15)
We have put n=Z, and W;=0 and n=1 in Eq.(248). The conditional
expectations <N|n>, <vY|n> and <W|n> need further modeling. This modeling
and the basic properties of the CMC equation will be considered later.
Equation (3.14) can be written in another equivalent form. Subtracting Q
times Eq.(3.15) from Eq.(3.14) we obtain

div|py<v”Y”|n>P(n)

2
g% + <v[n>VQ + - <N|n> 9°Q ? = <W|n> (3.16)
PM)py o
where v” = v-<v|n> is the velocity fluctuation about its conditional mean.

The conserved scalar pdf equation (3.15) is essentially mathematically
adjoint to EQ.(3.16). This is not a coincidence since such linkage of the
CMC and pdf eguations is necessary to preserve conservation integrals. In
CMC modeling the CMC and pdf equations must both be satisfied.

3.2. Decomposition Method
In this section we consider an dternative way of deriving the
equation for Q(nx,)=<Y(x,t)|n>. The idea of this derivation is based on
the decomposition
Y(x,1) = QE(x,1),xt) + Y'(x,t) (3.17)
where Y” is the fluctuation with respect to the conditional mean or, more

briefly, the conditional fluctuation.

3.2.1. The unclosed equation



Let us apply conditional averaging <-|n> to Eq.(3.17). According to
Eq.(217) <QExt)|n>=QMmxt) so that this averaging vyields <Y”|n>=0.
The function Q(§(x,t),x,t) is a non-random function of variables x, t and
€. Variable & is a random variable which is aso function of x and t. Let
us differentiate EQ.(3.17)

Y _9Q , dQIE , oY
9t T 9t Tomat Tot (3.18)

VY = VQ + g%vg + VY (3.19)

We aso consider the transformation of the molecular diffusion term by
decomposition (3.17)

div(pDVY) = div(pDVQ) + g% div(pDVE) + pD(VEY? 32? ¥ pDVﬁ-Vg% ¥
+ div(pDVY?) k (3.20)

We subdtitute Egs.(3.18)-(3.20) into EQ.(3.2) and use EQ.(3.1). Thus we
obtain

2
pW = p32 + pvVQ - pN g Q. div(pDVQ)- pDVﬁ-Vaa% +
M

+ pg\t(_” + p[v-VY”] - div[DpVY”] (3.21)

Taking the conditiona expectation of Eq.(3.21), conditiond on &(x,t)=n,
yields

2

aQ.,. < \V/ N azQ = W|n> + + 3.22
Prgt T Pn<V[N>VQ - py< |n>an = pp<W|n> + &g + ey (3.22)

with
& = < div(pDVQ) + povg-vg% | ExH=n > (3.23)
— aY” 4 H 4 —_
& = - < pI + pUVY” - dlv[DpVY] | E(xb=n > (3.24)
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Here N = D(VE), pn = <p|m> The conditional fluctuations of density are
neglected (see Section 3.6 for details). Equation (3.22) represents the
unclosed form of the equation for Q.

3.2.2. Primary closure hypothesis

The analysis of Section 233 indicates that the term ey is small
when Re number is large. This teem can be neglected. Now we need to
estimate the last term on the right-hand side of Eq.(3.22), ey.

The conditiona fluctuations Y” have been introduced such that
<Y’|n>=0. Hence <Y”">=0. It follows from Eq.(2.36) that <Y’|n>=0
does not necessarily mean that <VY’|n>=0 and <dY’/dtjn>=0. We can,
however, conclude that the unconditional averages of such derivatives are
zero: <VY”>=V<Y’>=0 and <dY"/dt>=0<Y">/0t=0. This means that

J<VY”|n>P(n)dn =0 (3.25)
J<8Y”/at|n>P(n)dn =0 (3.26)
where the integrals are taken over al mn. Terms such as <VY’|n> are not

zero but, according to (325 and (3.26) their integral contribution is
zero. Let us determine the unconditional average value of ey

-[erPudn = < S0Y + div(pvy) - div[pDVY’) >

= 9pY> div[<va”>] i div[<pDVY”>] = div[<pv”Y”>]
- divUpn<V”Y”|n>P(n)dn] - Jdiv[pn<v”Y”|n>P(n)] o (3.27)

Some details in this derivation of EQ.(3.27) need comment. The continuity
equation multiplied by Y”, that is

[?ﬁ_ ¥ div(pv)]Y” .

has been conditionaly averaged and added to EQ.(3.24). The conditional
fluctuations of density p and diffusivity D are neglected so that <pY”|n>
= pn<Y’|In> = 0; hence <pY”>=0. The diffusion term is transformed as
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<pDVY”"> = V<pDY”> - <Y’(VpD)> = 0. The velocity is decomposed as
v=<v|n>+v”. Note that conditiona  fluctuations are different  from
unconditional  fluctuations so that <v’Y’>z<v'Y'> where v=<v>+v' and
Y=<Y>+Y’,

The basic closure hypothesis employed in the decomposition approach
is that

&P() = - div py<v"Y’ [n>P(n) (328)

The equality of the integrals in EqQ.(3.27) is being assumed to be valid
for the conditional expectations inside the integrals. This is, of course,
not generaly true. Here we emphasize that this assumption will not
bring any error in the wunconditional averages since integration over the
range of m, as in EQs(3.25)-(3.27), €iminates any error. With  the
modelling of Eq.(3.28) the resulting equation takes the form

div [pn<V”Y” In>P(n) )
g% + <v|n>VQ + - <N|n> J ? = <W|n> (3.29)
P(M)py on

This is the same as EQ.(3.16).

The second and third terms on the left-hand side of Eq.(3.29) are
convective terms. The third term corresponds to transport by  the
conditional fluctuations. The last term on the left-hand side of EQ.(3.29)
corresponds to diffuson in conserved scalar phase space. This term s
determined by dissipation processes. Note that this term cannot be
neglected even if Re is large. The term on the right-hand side of (3.29)
is the conditional expectation of the chemical source term.

3.3. Comparing the Primary Closure Hypotheses

In this section we first examine the Klimenko™ closure hypothesis  of
Eq.(3.13) using Bilger's™®” decomposition Y=Q+Y”. Taking into account
Egs.(2.17) and (3.19) we may rewrite EQ.(3.5) in the form

Jy = 2<N|n>P(M)pn 3% - 3<N|B;P(H)PnQ +
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7y <NY” >SP
2<D(V(Y')-VE) [n>P()p, - N5 [P0y (330
The term DVQ-VE has been neglected in EQ.(3.30) using the high Re
assumption of Section 2.33. Using EQ.(3.30) we can rewrite the closure
assumption of EQ.(3.13) in the form

2<D(V(Y")}VE) [n>Pm)p, - INYIN>PIen - o (33
Since only dJy/on appears in the CMC equation, the right-hand side of
Eq.(3.31) could in fact be a non-zero constant.  From this it appears that
lack of correlation between Y and N would be a sufficient condition for
the closure to be valid. Such a condition may, however, be too strict.
Indeed, in consideration of the baance equation for the second
conditiona moments (Sections 8.2, 8.3) this term is seen as being an
important component of the major source of conditiona fluctuations.

Next, let us compare in general the results obtained in Sec3.1 and
Sec.3.2. First we note that Egs.(3.16) and (3.29) are exactly the same. We
can aso expect that the wunclosed forms of the equation for Q in
Egs.(3.4)-(35) and in EQgs(3.22)-(3.24) must be equivdent since both
forms are derived from the scaar transport equations (3.1) and (3.2).
This equivalence is not obvious but it can be demonstrated by using
Egs.(2.36) and (3.30). The primary closure hypotheses (3.10) and (3.28)
seem to be quite different, but they arise from equations which are
equivalent and result in identical CMC equations (3.16) and (3.29), and
hence they must be the same. They must also be the same as that in Eq.
(3.31). Clarification of these issues and of the question of what
conditions are necessary and sufficient for the closure to be vaid are
matters of ongoing research. Some further discusson of the latter issue
may be found in Section 3.7.

3.4. Enthalpy Equation in CMC
The enthalpy h of a mixture of different species is a function of

concentrations of the species Y; and temperature T which is given by the
eguation
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]
h = h(Ys...YaT) = 7Y, [(ho)i + J(Cp)idT] (3.32)

i To

where (hy); is the enthalpy of formation and (Cp), is the specific heat
at constant pressure.

For the case of identica diffusion coefficients and low Mach number,
the governing equation for the enthalpy takes the form

pgh + p[v-Vh] i div[DpVh] = B wp (3.33)

where Wg is the heat loss rate per unit mass due to radiation. The
pressure  derivative Jp/dt is often neglected in combustion modelling .
In unsteady systems, such as combustion in a diesel engine, this term is,
however, usually important. The form of EQ.(3.33) is quite similar to
Eq.(3.2). Hence the CMC equation for Q,=<h|n> is given by

div[pn<v”h”|n>P(n)]
g?_h + VIN>VQy + = =
n)Pn

2
<N|n>g ?h + <% g?_ In> - <Wg|n> (3.34)
Ul

This equation is smilar to Egs(3.16) and (3.29) and does not need
special consideration of its properties.
3.5. Note on Averaging of the Source Terms
Solving  the  conventionally  averaged  scalar  transport  equations
requires a closure for the average values of the source terms <W>. In
this section we follow the anadysis of Bilger'®®®. The chemica source
terms for one-step irreversible reactions

A + B - Products
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are given by the equation

k= A TP exp[-Ta/ T] (3.36)

where k is the rate constant, A, is the frequency factor, B is the
temperature exponent, and T, is the activation temperature. It is quite
obvious that W is not a linear function of its arguments. In the generd
case the reaction rate is a non-linear function of the species mass
fractions, Yi,...Y,, and the temperature T. Temperature can be determined
from EQ.(3.32) as a function of h and Yi..Y,  Thus findly we can write
W, =W(Y,h) where Y=(Yy,..Y,) and the reaction rate is a non-linear
function of its arguments. ~ When W, are not linear functions of Y, the
unconditional average values of W, are not functions of the unconditional
averages of the mass fractions and enthalpy <W(Y,h)> # W(<Y><h>). The
size of the eror depends on the size of the fluctuations in the scaars
Y, and h. In rea combustion processes the source terms are usualy
strongly  non-linear  functions of  their aguments and the scaar
fluctuations are large so that use of the approximation <W(Y,h)> =
Wi(<Y><h>) would cause very large errors. This problem is well-known in
combustion science as the problem of averaging the reaction rates. This is
a smple mathematical explanation of what is in redity a complex physica
problem. For multistep Kkinetics the reaction rate for a given species
often has positive and negative terms which are of similar  magnitude.
Borghi’® has shown that it is not possible to obtain closure by modelling
the second or even higher order correlations.

In  conditiona modeling we need to determine the conditional
expectation of the source terms <W|n>. This in itself does not seem to
make problem of averaging easier since <W3> is determined by <W|n> and
the pdf, P(m). The CMC model, however, provides more information for
averaging the source terms because the conditional expectations Q=<Y;|n>
are much more detailed characteristics of the reactive scalar fields than
the unconditional  expectations <Y;>. Also, in many cases conditional
fluctuations are of smaler order than unconditional fluctuations Y’i’ «Y;
where Y’i’sYi-Qi, Yi’sYi-<Yi>. The conserved scdar &  representing the
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mixture fraction gives a measure of the stoichiometry of the mixture and
so usually characterizes well the chemical structure of the mixture. The
inequality Y’i’«Y; will be considered in Section 5 where we consider CMC
in turbulent shear flows and in Section 8 where the equation for the
conditional  variance Gis<(Y’i’)2|n> is derived. We emphasize here that the
intensities  of conditional fluctuations  depend not only on the
configuration of the turbulent flow but aso on the nature of the chemica
reactions. We would not expect, for example, the conditional fluctuations
to be smal in zones where combustion is close to extinction. In many
cases the conditional fluctuations Y’i’ can be neglected so that

<W(Y.h)[n> = <Wi(Q.Qn)[n> = WI(Q, Q) (3.37)

where Q=(Q,...,Qn). This can be seen for the simple case of EQ.(3.35) by
making a Taylor series expanson for the reaction rate around the
conditional means of the reactive scalars and conditionally averaging the
result. To second order accuracy we obtain

<Y:Yg In>
<W|T]> = <P|ﬂ> k(QT) QaQs(1 + Q.08 +

B

o) T ¢ T8 o) ¢
Qr QaQ7 Qe Q7

2 m 2
]JZ[B(B-l) + z(g;l)-ra + gg] <(g$) |T1> (338)

where

KQr) = AOQ%exp[-Ta/QT], Qr=<Tm>ad T =T - Qr.

Correlations with  density fluctuations are neglected in this derivation.
They will not be involved if density weighted conditional averaging is
used as is shown in the next Subsection. It can be seen from Eq.(3.38)
that the errors in making a first order closure will be smal if the
conditional  variances of species mass fractions and temperature are
sufficiently small compared with the sguare of their conditional means. In
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saying this we note that the conditional correlation coefficients are
bounded between -1 and +1. EQ.(3.38) can be used to evaluate the adequacy
of firss moment closures. It is to be noted that where B and T/Qr are
much larger than unity the requirement for smallness of the conditional
temperature variance becomes particularly stringent. In  these cases it may
be necessary to make a second order closure for the conditional reaction
rate. This can be done using EQ.(3.38) and solutions of appropriately
modelled equations for the conditional variances and covariances as are
developed in Section 8.

Let us consider closure for the source terms in EQ.(3.34). Closure
for the conditional average of the radiation source term that appears last
on the right-hand side of Eq.(3.34) follows the same considerations as
those given above for the reaction rate. For systems which are
optically thin, Wk is a function of the composition and enthalpy and
first-order closure estimates the conditiona average <Wgn> by using
the conditional averages in this function smilar to Eqg.(3.37). Estimates
of the error involved in such first-order closure can be made using A
Taylor series expansion similar to that  EQ.(3.38). The second term on the
right-hand side of EQ.(3.34) is related to rapid global expansion or
compression in the combustor such as that occurring due to piston motion
in a desd engine Its conditional average can be reasonably
approximated by using the conventiona average for the rate of pressure
rise so that

1 1_0
= B 0> = <pn>t < P> (3.39)

Indeed for the diesel engine example, it will be probably be sufficient to
take the rate of rise of the average pressure across the whole clearance
volume.

3.6. Note on Conditional Favre Averaging
In the derivations of the CMC equation we repeatedly neglected the
conditional fluctuations of density as if p were a deterministic function

of m. For example <Yp|1”|>=Qpn. This is a reasonable assumption since the
density fluctuations with respect to its conditiona mean are often not
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very dignificant in  non-premixed systems which are not near extinction.
(This corresponds to relatively small conditional fluctuations of chemical
species and temperature). We can, however, follow Bilger'® and  discard
this assumption by introducing conditional Favre averaging: we put
<|n>=<p|E=m>/p, Iinstead of < |n>=<|E=m> where p,=<p|E=1>.
This  corresponds to  new  definitions  of the  conditional mean
Q=<Yp|E=m>/p, and the conditiona fluctuations Y’=Y-Q. Note that
<Y’ |Im>=<Y"p|E=n>/p,=0 but the unweighted conditional average
<Y’|E=m> is not necessarily zero. The equations derived in Sec.3 are
still  valid with the new definitions but their derivations do not require
neglecting the conditional fluctuations of the density.

3.7. The Physical Basis of CMC

We consider here some physica ideas and hypotheses which provide a
basis for the primary closure involved in CMC as has been developed in
Sections 3.1 - 33. This discusson mainly follows Klimenko™® and it
is particularly related to the closure hypothesis in Eq. (3.10). Note that
the constraints associated with these ideas are sufficient but not
necessary for the derivation of the CMC. The CMC egquations can be derived
in  different ways using different versions of the primary closure
hypothesis. The concepts considered in this section are, probably, most
complicated and the section can be omitted at first reading.

3.7.1 Diffusion approximations and the analogy with a Markov process

The focus here is the applicability of the diffuson anaogy
approximation for Jy. We compare the diffusion approximation in EQq.(3.10)
and the diffusion approximation of the turbulent scalar flux

<V'Y'>=-D;V<Y> (3.40)
where VvV =v-<v> Y =Y-<Y>. In the case of a homogeneous velocity field,

constant density and W=0, considered here as a most simple example of
using Eq.(3.40), the average scalar transport equation takes the form
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o<Y>

9X> = div[DtV<Y>] (3.42)

Following Corrsin®, let us assume that the scalar Y is the number density
of an enormously large set of infinitesma particles, which do not affect
the flow. A sample paticle is chosen with uniform probability for al
particles. Its coordinates ae maked by subscript index "p". The
physical coordinate aong a certain direction is denoted in this section
as X and the corresponding component of the velocity is denoted by V. We
consider the case when al particles are initially located a X=X The
main result of Taylors™ turbulent diffusion theory is the relation
between mean square deviation of the sample particle position <(AXp)2>
(Wwhere  AX,=X;-Xg) and the  correlation — K,=<V(ty)-Vy(ty)> of  the
corresponding component of the particle velocity. It is that

t t,
<(AX)> = zj IKV(tl,tz)dtzdtl (3.42)
to to

If the particle motion can be assumed to be steady-state during the period
of time under consideration, the velocity correlation depends only on the
time difference K,=K,(At), At=t,-t;. Differentiating Eq.(3.42) twice with
respect to t, we obtain

t
<(AX%)> = 2K,0) + 2| IRttt 2K, (to) (3.43)
to

d2
dt?

In terms of the mean concentration, <Y>, the mean sguare deviation (or
dispersion) is determined by

J(x-xo) 2<Y>ax®

<@AX)> = = (3.44)
I<Y>dx 3

oo

since al particles will, on average, behave similarly. Assuming constant
turbulent diffusion coefficient D, we multiply Eq.(341) by (X-X9)° and
integrate it over al X. This yields linear dependence of <(AXp)2> in time
and, according  to Eq.(3.43), the  particle  velocities  should be
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uncorrelated K,(At)=0. This is true only for values At greater than the
turbulence integra time scale t1.. It is quite obvious that the diffusion
approximation (3.40) with a constant D; fails to describe the processes
with characteristic time scale less then 1. This means that the turbulent
diffuson  coefficient must be chosen differently for different initia
conditions imposed on Y even if the velocity fields are the same. This
deprives EQ.(3.40) of any useful information since EQ.(3.40) can be
considered in the one-dimensional case as being merely the definition of
the turbulent diffusion coefficient D;=-<V'Y'>/(0<Y>/0X), V'=V-<V> (We
leave aside the possibility of there being negative values for D;.)

Our purpose now is to anayze the diffusion approximation of Jy in
Eq.(3.10). Let us introduce a new variable &, that is the particle
coordinate in conserved scalar space. The value of &, is specified as the
instantaneous value & in the close vicinity of our chosen smal particle.
The vaue &, itself, and its derivative éésdép/dt are random functions
of time. We assume that at initia time t; the particle has a coordinate
& in the conserved scalar space.  The deviation from the initial position
is designated as A& =Ey(t)-Eo. Within time scale of the inerttiad range of
the turbulence we assume that the particle motions are dStatisticaly
uniform in  time <§;(t1)'éé(t2)>:K§(t2-t1). We shall determine the
relation between mean sguare deviation in conserved scalar space <(A&,p)2>
and time At=t-t,. According to the theory of Kolmogorov® and Oboukhov'%
in  time intervals belonging to the inertial interval this relation is
determined by the mean dissipation of turbulent energy <es> and the mean
scalar dissipation <N> where Nng(Vg)z. It requires the following form
of the relation

<(AE)*> = const<N> Af; (3.45)
Using (3.43) we easily obtain

d2

_1
Ké_zdtz

<(AE)*> = 0 (3.46)

This means that increments of the particle position inside the inertia
time interva are uncorrelated. Note that if &, is fixed but not randomly
chosen with probability P(n), conditional averaging <-|&=f,> should be
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substituted here for unconditional averaging <->.

Let us consider the qualitative behaviour of correlation Kg(At) in
the full range of the variable At. We assume that the Peclet number, Pe,
calculated from the conserved scalar molecular diffusivity, Dg, is of the
same order as the Re number calculated from the kinematic viscosity. The
integral  of  function  Kg(At) determines the diffusion coefficient in
conserved scalar space. The correlation K: contains a component related to
the molecular Brownian motion of the particlee The characteristic time of
this correlation is the interval between the molecular interactions. As
such time is very smal this component is shown in Fig. 10 as a
delta-function. Therefore this component is not discussed further in this
section so that the particle we consider becomes a fluid particle. Its
motion in conserved scalar space is given by the equation

&= div(DepVE)/p = D:V°E; & = de/ot

This equation represents the Lagrangian time derivative of &. The vaue of
D:V’¢ which involves derivatives of the second order is determined by the
turbulent fluctuations of smallest scales. Thus the order of &,; can be
expressed using the corresponding Kolmogorov scales. These scales are:  the
length scae x«, the time scade 1t and the conserved scaar scde &E.
Taking into account that <N>~ EZ/tx, we obtain

K(0) ~ ié/tﬁ ~ <N>/1 ;1 ~ T Re? (3.47)

where Re is the turbulence Reynolds number. But in times longer than 7ty
the correlation Kg(At) tends to =zero according to Eq.(3.46) (Fig. 10 solid
ling). It is necessary to emphasize that correlation Kg(At) can have
component Ké~<N>/1L with the typical correlation time At~t. (Fig. 10
dotted line). The component Ké does not interfere with Egs.(3.45) and
(346) in the man order. The particle motion in conserved scalar space
is determined by the wuniversal small-scale turbulent processes. According
to the Kolmogorov® theory (see aso Batchelor’), such processes are
stochastically  independent of non-universal  large-scale  turbulent  motions.
In our case it means, that process Cy(t) a time 1k« At « 71 can be
considered as a Markov process with independent increments. This statement
with some continuity assumptions leads us to the concluson of the loca
analogy between Brownian and conserved scaar space motion.  This
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hypothesis shows  similarities with the  Oboukhov's'’hypothesis of a
Markov-process properties of particle motions in the velocity space. It
would be too optimistic to assume that the motion of a particle in
conserved scalar space is mathematicaly identical to the Brownian motion
but we can reasonably expect that the diffusion approximation in EQ.(3.10)
which corresponds to a Markov diffusion process is much better than the
diffusion approximation in EQq.(3.40). The coefficients A and B in
Eq.(3.10) are expected to be dependent on the velocity and conserved
scalar fields but independent of the reactive scaar field (the scaar Y
can affect the coefficients A and B only by affecting density). This
preserves the linear properties of the turbulent transport in EQs.(3.2)
and (3.4) for the Markov-process assumptions.

Klimenko™  demonstrated that the assumption of  Markov-process
properties for particle diffusion in conserved scalar space corresponds to
the origind  verson of the Kolmogorov®  theory.  Kolmogorov's**
refinements to the theory may result in a sdignificant deviation of the
local transitional pdfs from a Gaussian shape. This seems to be
insignificant for the first moment (Q=<Y|n>) closure, but corrections for
second moment closure may be needed.

Chemical reactions cause the appearance and disappearance of the
particles. The analysis of this section can be applied to reactive
particles, provided that the characteristic chemica time, which can be
aso cdled the characteristic time of particle "life", is much greater
than Kolmogorov time scale tx. We emphasize that we do not draw here a
final conclusion about the the Ilimits of the CMC applicability and these
matters will be discussed further in the paper.

3.7.2. Hypothesis of local similarity

The hypothesis of local similarity of scalar fields is not a needed
assumption in the derivation of the CMC equations but it yields some
additional insights. Here we consider the case when either chemical
reactions do not occur or they ae too weak to affect the small-scale
structure of the scalar fields.

If Y=a+bf and W=0 in the large scaes, this linear dependence would
be preserved in the small-scale fluctuations. Any small-scale
perturbations of a+bf would quickly disappear. So, if it appears that
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there is dependence between Y and & somewhere in a large-scae region of
the turbulent flow, this dependence will be preserved in this region at
smaller scales. The Kkinetic energy and scalar fluctuations are transferred
form large scales to small scales. Once dependence between Y and & appears
a any stage of this transport, it will be preserved a further stages.
The local smilarity of scalar fields is understood as the genera
tendency of the scaar gradients VY and V& to become more and more aigned
even if the large-scde gradients of the scaars ae not aligned. Hence
inside a relatively small region one scalar would be a function of another
scaar VY=fy(§) and this random function is and determined by larger
fluctuations. The implementation of this loca similarity of scalar fields
and of the independence of large-scale and small-scale fluctuations yields

<NY|n> = <N|n><Y|n> (3.48)

<D(VY-VE)|n> = <N|n> %f%m (3.49)

We emphasize here that EQs.(348) and (3.49) ae sufficient but not
necessary for derivation of EQ.(3.31). The assumptions (3.48) and (3.49)
are given here since they represent a self-consistent logic. The CMC
equation actualy requires Eq.(3.31), or more precisely this equation but
with a constant on the RHS (but not Egs.(3.48) and (3.49)) to be valid.

3.8 Summary of the Major Results

In this Section we have presented the derivation of the man CMC
equation with the result given by Egs (3.14), (3.16) and (3.29). The
results in Egs (3.29) and (3.16) are identica and are linked to EQ.(3.14)
by the high Reynolds number form of the transport equation for the joint
pdf of the mixture fraction, Eq.(3.15). These two forms of the first-order
CMC equation are widely used in Sections 4 to 7 that dea with its
application. They govern the spatia and temporal evolution of the
conditional  expectation <Yi|§:n> of reactive scalars Y; conditioned on a
fixed vaue m of the conserved scalar & The CMC equation has the
additional independent variable m and several terms in this equation need
further modelling. Closure for the chemica source term is considered in
section 3.5 and general issues of closure of the other unclosed terms are
covered in Section 4. Simplified versions of CMC and further closures will
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be considered in Sections 5, 6 and 7.

The enthalpy equation which is needed to find the temperature is
considered separately in Section 3.4. In this section the CMC equation is
formulated for the enthapy and the magor terms of this equation are
similar to those in Egs. (3.16) and (3.29).

Conditional expectations of the chemical source terms are present
in the CMC equations. The most simple approximation for these conditiona
expectations is obtaned in EQ.(3.37) by neglecting the conditiona
fluctuations Y”. In other words, a first-order conditional moment closure
iIs made for the chemical source terms in the first-order CMC equation.
Higher-order closure for these terms is considered in  more detal in
Section 8. It should be noted that this approximation does take into
account the most significant components of the conventional fluctuations,
Y’, from the unconditional average and thus has higher precison than the
conventional pseudo-laminar approximations which neglect the effects of Y’
entirely.

Conditional  fluctuations of density have been generally neglected
in the derivations of the CMC equations. This assumption can be avoided by
introducing conditional Favre averaging as is discussed in Section 3.6.

The CMC equations are derived here by two alternative techniques. the
pdf method and the decomposition method. The decomposition method may be
preferred by readers who are familiar with the fast chemistry and the
flamelet models. The pdf method, as it follows from its title, provides
the link with the traditional pdf techniques. It is important to emphasise
that the basc CMC equations (3.14), (3.16), and (3.29)involve certain
basic assumptions - primary closure hypotheses. Although both derivations
yield exactly the same result, the assumptions involved in  both
derivations are not identical, a least from the philosophical point of
view. The pdf derivation is based on a new physical concept - diffusion in
conserved scalar space, which is presented in Section 3.7. This concept is
directly supported by the Kolmogorov theory of turbulence and can not be
found in CMC predecessors - the fast chemistry and the flamelet models.
This concept explains why CMC is vaid for slow and moderate chemistry and
reaction zones which are broad compared with the Kolmogorov length scale.
At the same time CMC is still valid for fast chemistry and, with certain
reservations, for thin reaction zones. It should be emphasised that the
decomposition method does not impose the restriction which is required by
the concept of diffuson in conserved scalar space where it was assumed
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that the chemical transformation time exceeds the Kolmogorov time scale,
. That is why our intention is to inform the reader about different
approaches to CMC. If the reader is concerned with practical applications
rather then fundamental properties of turbulence, he or she may wish to
skip Section 3.7 and focus on comparison of CMC and the fast chemistry and
the flamelet models forgetting for a while about their fundamental
differences. Such comparative anaysis of the models is given in the next
section.
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4. MAIN FEATURES OF THE CMC EQUATION

In Section 3, different methods of deriving the CMC equation and
formulations for the primary closure hypothesis have been presented. They
result in the same first-order CMC equation for the conditional averages Q
= <Y|n>, where the subscript i used in eg. (L1) has been dropped without
loss of generadity (see the beginning of Section 3.) From Egs.(3.14),
(3.16) and (3.29) we see that the CMC equation has two equivalent forms

% + div[<vY|n>P(n)pn] = <W|n>P(m)p, +

d dQ  d<N|n>P(n)p
+ om <N|ﬂ>P(ﬂ)Pn an (J)n 1 Q (4.1)
div|<v”Y”|n>P(M)p, X
dQ 0°Q _
gt t <v[n>VQ + - <N|n> > = <W|n> (4.2)
P(M)py on

The second of these is the more genera form of Eqg. (1.1) in the present
notation. The transformation of Eqg.(4.1) into Eq.(42) and Eqg.(4.2) into
Eg.(4.1) can be easly made by using the conserved scalar pdf equation
(3.15)

2
apgﬂ)Pn + div[<v|n>P(n)pn] =0 <N$E§P(T])Pn (4.3)

First-order closure for the conditional average reaction rate in
teems of the conditional average species mass fractions and enthalpy has
been presented in Section 35 Here we are concerned with models for
closing the remaining unclosed terms in the CMC equation, investigation of
its general properties and the nature of the boundary conditions
applicable.

As outlined in Section 1.2, solution of the CMC equation usualy
proceeds in parallel with some method for solution of the velocity and
mixture fraction fields. Information from these solutions is needed for
modeling P(n), <v|m> and other unclosed terms in the CMC equations. In
Section 4.1 we outline methods for doing this in the general case.
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The CMC equation, (4.1) or (4.2), needs to be solved in a way that is
consistent with the pdf transport equation (4.3). In the normd
procedure this means that models used for the conditional average
dissipation, <N|n>, should show consistency with the given pdf field in
teems of Eq. (4.3). As is shown in Section 4.2, this is necessary to
preserve conservation integrals. It is found, however, that erors in
<N|n> are only significant where they occur in reaction zones. The
conservation integrals aso give some constraints on the  boundary
conditions for Q.

The form of the CMC equation of (4.2) has certain similarities with
turbulent  combustion models applicable in  the fast chemistry limit
(FCL) * and to laminar flamelet modeling '®%. The relationship of CMC
methods to these other modelling approaches is of some interest. The
relationship to the frozen and fast chemistry limits is explored in
Sections 4.3, and to laminar flamelet models in Section 4.4.

Solution of the CMC equation requires specification of the correct
initial  and boundary conditions for the flow under consideration. In
mixing layers with non-reactive fuel and oxidant streams there is little
problem with specification of boundary conditions at m = 0 and 1. There
are many subtleties to be considered, however, when the unmixed streams
are reacting or when, as in jets wakes and rea combustors, the
probability of unmixed fluid of one or both streams becomes very smal.
For example, far downstreem in a jet diffuson flame there is little
probability of there being fluid with & = 1 and questions arise as to
whether applying a boundary condition a m = 1 is meaningful or valid.
These questions are most simply addressed by considering time-dependent
homogeneous turbulent flows. In Section 45 some results are obtained for
the case of homogeneous turbulence which may be of general applicability.
In Section 46 we summarize the nature of CMC modeling for first order
closure.

Equations (4.1)-(4.3) involve five independent variables t, X, X,
X3, and m. Numerical solution of the equations is greatlly eased when the
dimensionality of the problem can be significantly reduced. In Sections 5
and 6 we consider the cases when the general CMC equations can be
smplified and transformed into forms which can be easly wused in
practical applications. In Section 7, the even simpler case of homogeneous
turbulence is considered.



4.1. Possible Closures of the Remaining Unclosed Terms
in the General CMC Equations

Conserved scalar pdf modelling is relatively well-explored area in
combustion theory™®. We assume that the function P(n) is known throughout
the field and with time. In current practice, a presumed form of the
pdf®*"* (such as a clipped Gaussian or beta function) will often be
used and P(n) obtained from solutions for the mean and variance of the
conserved scalar; these being obtained from numerical integration of their
modelled transport equations. In fact, any form of detailed information on
the  velocity and mixing  field is  acceptable, eg. experimental
measurements or output from large eddy simulations.

Where Favre averaging is used for caculating the velocity and mixing
fields, it is usually more convenient to work in terms of the Favre pdf,

P(m), which is related to the conventional pdf, P(n), by

pPM) = <p>P (m) (4.4)

where <p> is the unconditionaly averaged density. Eq.(44) may be used to
convert Egs (4.1)-(4.3) to the Favre pdf form.

The linear approximation for the conditional expectation of velocity
IS given by

V[n> = <v> + <V,é,Z— [n - <§>] (4.5)
<(&)">

with a smilar form applicable to Favre averaging. This simple
approximation is supported by some experimental data summarized in Ref. 72
It is known to be exact if the velocity and conserved scalar are jointly
Gaussian, but this condition is not necessary for Eq. (45) to be an
adequate approximation. The unconditional covariance <v’¢’> is usudly
available from the modeling used for this quantity in the balance
equation for the mean mixture fraction.

The conditional expectation of the scalar dissipation can be found
from Eqg.(4.3) with the use of the boundary conditions for the product



<N|n>P(n) established in Section 2.4. With the use of Eg. (45 and
appropriate integration by parts the double integras can be reduced to
single integrals so that we obtain

NP =250 4 <vsv1,m) +
+ <>V [<prevE )<t ) (4.6)

where
1

W) = [P dn’ (47)
n

These formulae are readily converted to Favre pdfs through the use of Eq.
(44). For a given presumed form of the pdf, 1) = I, (n;<¢><E'>) 0
that look-up tables can be precomputed. The conditional expectation of
the scalar dissipation <N|n> determined in this way is in agreement with
the pdf equation.

As yet no experience has been ganed in CMC modeling in
multi-dimensional systems. The "brute force” approach outlined above may
prove to be too cumbersome or result in negative values of <N|n> being
obtained through numerical error. As will be presented later, errors in
the estimation of <N|n> are only significant for values of m where 0°Q/on’
iIs high which is wusualy where m = mn, the stoichiometric vaue of the
mixture fraction. Usually, values of the unconditiona scalar dissipation,
<N>, will be avalable from the flow and mixing calculation. Sufficient
accuracy may be achievable through the modelling

<N|n> = <N> FN[n;<§>,<§’2>] (4.8)

with the function Fy being determined from limited surveys of the flow
using Egs (4.6), (4.7) above, or from experimenta data. Some experimental
data is available for flows without hear release™™% while Starner et
al'® give some results obtained in turbulent jet diffusion flames.

Closure for the term <v”Y”|n> can be formulated by analogy with
Eq.(3.40)

«vY'|n> = -DVQ (4.9)
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Since the diffuson approximation (3.40) is commonly adopted, EQ.(4.9)
seems to be a plausible approximation. With the use of Eg. (4.9) the
common transport equation for <Y> is obtained by integrating Eq. (4.1)
over mn space; Eg. (3.40) being incorporated in it. It should be noted that
such a transport equation is not well established for reactive scalars.
For the limiting case of premixed combustion it is known that the gradient
transport  assumption (3.40) can be seriousy in eror with the
diffusivities often being negativee We are not aware of any experimenta
data that directly confirms or disapproves EQ.(4.9) for nonpremixed
systems. Suffice it to say that this modeling should be treated with
caution. In many nonpremixed flame dSituations gradients of Q are quite
smal. Eg. (49) can be used to give an estimate of the magnitude of this
teem: it will often be found to be entirely negligible. Exceptions will
occur where strong gradients in Q ae expected as in stabilization
regions, such as in a lifted turbulent jet diffusion flame.

The closure of the conditional average chemical reaction rate and
radiation loss source terms is discussed in Section 35, With the
approximations (3.37), (4.5), (4.9) and proper boundary conditions for Q
(outlined later in Section 4.6) EQ.(4.2) can be solved. In many cases, as
discussed in Sections 5 and 6, we can use the CMC model in a simplified
form and avoid the additional assumptions (4.5) and (4.9).

4.2. Conservation Integrals

The conditional  expectation Q=<Y|n> is a much more detailed
characteristic  of the reactive scadar field than the  unconditional
expectation <Y>. The transport equation for <Y> <can be obtaned by
integrating the CMC equation (4.1) over al m (The conserved scalar pdf
P(n) is bounded by values Mmn and mMma). The CMC equations are fully
consistent™**®  with  different types of conserved scaar pdf as s
shown in this section.

4.2.1. Smooth pdfs with fixed bounds
Here we consider conserved scalar pdfs which do not have any
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generalized function components, such as delta functions a mNyin and Mmax
The beta function described in EQq.(1.6) and Fig. 3 is an example of this
type of pdf. The pdf bounds M, and nn ae assumed to be constant. We
integrate Eq.(4.1) over the inteeva MniSn<n, o where Mpin<Na<n><fNmex-
Assuming Mi=NMminte and Mo Nmax-€  and taking the limit &0 (M-Nmin
N>-Nmax) WE obtain

o<Yp> .
?t—p‘ + d|v[<va>] - <Wp> =
max
- [<N|n>P(n)pnaa_g i 3<NI3;P(n)pn Q] =0 (4.10)

The notation used here is that introduced in EQ.(256). We have aso used
the boundary conditions given in Egs(2.61) and (2.62). Equation (4.10) is
consistent with the average scalar transport equation. Because of the high
Reynolds number assumption, transport by molecular diffusion is neglected
in the CMC and pdf eguations so that the corresponding term does not
appear in EQ.(4.10) Note that EQ.(4.10)is vaid for any arbitrary values
of [Qlmin [Qlmax [0Q/M]min and [0Q/ON]max-  Thus, in the case of smooth
pdfs, the boundary conditions are not determined by the conservation
integral. The boundaries represent a specia point of EQ.(4.2) since
Eq.(2.63) indicates that <N|n>-0 as m-mn,  Hence the boundary values of Q
are restricted by Eq.(4.2) itself, so that

div{<v”y”| n>P(n)pn]

g% + <v|n>VQ + o) -<W|n>| =0 (4.11)
N)Pn

m

This shows that if the boundary fluid is reacting there must be
corresponding temporal and spatial variations in  the boundary values for

Q.
4.2.2. Intermittent pdfs

The intermittent pdfs specified in  EQ.(2.64)) involve delta functions
a nN=Mmin and M=Nmx Which correspond to the uncontaminated, vortex-free
regions of a turbulent flow and mMm, and mMmx ae constants. The clipped
Gaussian pdf described in Egs (1.3)-(1.5) and Fig. 2 is an example of this



type of pdf. Equation (4.10) is not completely valid for an intermittent
pdf. The integration over mn;<nN<n, where Mi=Mminte, Mo Nmax-€ and &0 does
not involve the deta functions a MN=Nmin and MN=Tmax Hence the integral
of Eq.(4.1) should be written as

8<Yp tl t>Yt + d|V [<VYp | t>fyt] - <Wp | 1‘>’Yt =
axX

;P(H)Pn Q] " (4.12)

max
= [nmopeop,g] - [2ML

min

where the condition t represents being in the turbulent region
Mmin<E<Nmax and vy is the intermittency factor (see EQ.(2.64)). The
boundary conditions in EQ.(2.68)-(2.71) indicate that the first term on
the RHS of Eq.(4.12) is zero and that the second term can have a non-zero
value. This corresponds to the entraiment of the scaar Y from the
uncontaminated,  vortex-free  regions (where  Y=Ypin, Y=Yma) into  the
contaminated, turbulent region.

It is reasonable to assume that the conditiona expectation Q does
not have any discontinuity at the vortex-free/turbulent bounds

[Q] Elim[Q]:Ym (4.13)
m  MN>Nm

We remind the reader that index "m" is used for either of the indexes

"min"  or "max". In order to demonstrate the conservation properties we

need to consider a scaar Y which takes zero vaues in the vortex-free

regions so that entraiment from these regions does not involve

entrainment of Y. We introduce Y’ by the equation

- Ymax Ymin

- nmax'nmin; - Mmax~"Mmin

Y= Y + aENmin) +bEMma); @ (4.14)

The scaar Y satisfies Eq.(3.2) hence QOE<Y°|n> satisfies EQ.(4.1). Since
Y’ is a linear combination of Y and E, it is sufficient to demonstrate the
conservative  properties  for Y. The conservative properties of the
conserved scaar are preserved by the pdf equation (4.3). Since Y,(;:O it
is obvious that [Q],=0 and <FY [t>y=<FY> for any F. Equation (4.12)

takes the form



I<Yp> . o
5P+ dIV[<VY p>] - <Wp> =

O max
= [nimpeondQ ™ - [P

min

>P(M)py °]™ =
- ]min =0 (415

This proves that the CMC equation preserves the conservation integrals for
the intermittent pdfs provided the boundary conditions in Eqg.(4.13) are
satisfied. At the same time Eg. (4.15) can be aso considered as the proof
of the boundary conditions in EQ.(4.13)

4.2.3. Errors arising from the conditional scalar dissipation

It has been emphasised earlier that the modeled values used for the
conditional average of the scaar dissipation, <N|n> in integrating the
CMC equation (4.2) must be fully consistent with the pdf field so that the
pdf transport equation and the boundary conditions (2.61), (2.62) are
satisfied. Otherwise, erors will arise in the predictions for Q and in
particular conservation integrals will not be satisfied. Here we seek to
clarify the nature of the errors involved.

Let us assume that the actual conditional average scalar dissipation
used in solving Eg. (4.2) is <N|n> + AN(n), where <N|n> is the correct
value that sdatisfies Eg. (43) and the boundary conditions (2.61),(2.62)
or (2.68)-(2.71) for the given pdf field and AN(n) is the emror. It is
easy to show that the conservation integras of Egs (4.10) and (4.15) will
leave an error term <Ey> on the RHS where

nmax az
<€ = [ pANPY) 22 dn (4.16)
om
MNmin
We will cdl this the "false chemica source term". This is because it

leaves unchanged combinations of species that form conserved scalars, Z,
provided those conserved scalars have initidl and boundary conditions that
satisfy the normal requirement that they are linear functions of n. Thus



nmax

2
<Euz> = [ paNPM) 25y (417
om
MNmin
where

ZEZMM:ZMiQi and ZMiPWiZO

(Note that the symbolc use of Z here is different to that in Section 2.)
This shows that, as far as the conservation of <Y> for any species is
concerned, any error introduced by error in <N|n> will be accompanied by
complimentary errors in other species from which a conserved scalar can be
defined.  There should thus be no evidence of the error arising from this
source in element and other conserved scalar balances.

For many nonpremixed systems most species react only in a narrow
region in conserved scalar space around stoichiometric, and it is only
there that there are significant second derivatives, 9°Q/on. It is seen,
then, that it is only there, that is around stoichiometric, that the
errors in  the conditional average of the scalar dissipation, AN(M), need
to be smal to ensure conservation of <Y> For reactant and product
species, there is wusualy a monotonic change in gradient 0Q/dn around
stoichiometric and the error can then be estimated as

€ = (oo NODP) [92] (418)

where the subscripts "+" and "-" refer to the gradients on the high and
low n side of stoichiometric, n =1s.

For the unconditiona average enthalpy there will be a corresponding
false radiation source term, <Eyp>

nmax
82
<Euw> = [ pyANMIP(Y) Qn (4.19)
Nimi m
min
Here there is no corresponding conserved scalar. Radiation losses ensure

that 0°Qyon® is positive for a broad range of m around stoichiometric and
positive values of the error AN(M) in this region will result in an
overprediction of enthalpy and hence temperature.



4.3. Frozen and Fast Chemistry Limits

The frozen Ilimit corresponds to the situation when chemical reactions
do not occur (that is fuel and oxidizer are mixed in turbulent flow but do
not react). In this case a reactive scalar is a linear function of the
conserved scaar, Y=a+bf, which corresponds to Q=atbn. The constants a and
b ae determined by the values of reactive scalar before mixing.
Condition Y=at+bf has been used in the derivation of the CMC equation in
Section 3.1.2. Hence the CMC mode must be consistent with Y=at+bf. This
can be checked directly by substituting Q=atbn, Y’=0 and <W|n>=0 into
Eq.(4.2). The identity obtained demonstrates that the CMC mode is
consistent with the frozen limit.

We consider next the case of fast chemical reaction which is opposite
to the case just considered. When chemistry is fast, the reactive scaars
tends to their equilibrium vaues: YsY () as Dasxo, where the Damkohler
number is defined as Da=t/1, 7t being the integral  time scale of
turbulence and 1t. a characteristic chemical time scale. The equilibrium
concentration Y, is then a function of the mixture fraction, &, and
following Bilger’ we obtain

= W (4.20)

This applies instantaneously at every point in the field. In order to make
comparison with CMC we obtain the conditionaly averaged version of this
equation. Taking in to account that Y, is a deterministic function of g,
we apply Eq.(2.17). This yields <Y(&)|n>=Yem). We obtain

02Y,

-<N|1']>
on’?

= <W|n> (4.22)

This equation can be derived from Eq.(4.2) by taking the limit QsY¢(n) and
Y”-0. The CMC modd is thus consistent with the fast chemistry [limit
(FCL). The solution of the CMC eguation will automatically tend to this
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limit when the Da number is sufficiently large.

It was concluded in Section 3.5.2 that the CMC model is correct when
it describes processes with 1. greater than the Kolmogorov scale 1.
In the Ilimit of fast chemistry, t«t, we have just shown that the fast
chemistry limit is absolutely correctly described by the CMC model. The
validity of CMC in between these limits is still an open question.

4.4. Laminar Flamelet Model

The dtationary laminar flamelet model (SLFM), for which different
versions have been suggested by Kuznetsov' and Peters'®, can be written
in the form

0%Y

-Ng
&2

= W(Y) (4.22)

In spite of having quite a similar form to EQ.(4.20), these models have
differences which are outlined further here. For a recent review of SLFM
see Bray & Peters®.

FCL is a globa model which covers al (or maybe a significant part
of) the turbulent field. SLFM is a loca model which specifies reaction
processes inside very thin reaction zones. Strictly, SLFM is only
applicable when the thickness of the reaction zone ¢, is much smaller than
the Kolmogorov length scale &. The conserved scalar dissipation D(VE)?
inside the reaction zone is then uniform and is denoted by Ng Unlike N in
Eq.(4.20) where N can vary markedly throughout the reaction zone, Ng in
Eq.(4.22) is effectively a random parameter. In FCL Yg§) is given. In
SLFM Y is to be determined as the solution of Eq.(4.22). This solution
requires boundary conditions at the bounds of the reaction zone &=ngm,
and &=nmgtn, where &=ms is stoichiometric surface determining the location
the reaction zone and 2n, is the width of the reaction zone in conserved
scalar space. These conditions are usually specified as the equilibrium
conditions

Y=Y, a &g, and Y=Y, a &=nstm;, (4.23)

The solution of EqQ.(4.22) Y=Y(EN) is thus a function of the
instantaneous values of the conserved scalar and the instantaneous value
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of the scaar dissipation a  stoichiometricc SLFM  implicitly  requires
large Da number to have conditions in Eq.(4.23) fulfilled. In practice
then, EQ.(422) can be solved in the inteval Mmin<E<nNmax With  the
boundary conditions

Y:Ymin at iznmin and Y:Ymax a E,.:nmax (4-24)

The solution at the outer edges of the reaction zone is normaly very
close to Y.. Wel insde the reaction zone the deviations are larger since
the derivative 02YJ0&? is usudly lage a &=ne In SLFM a flamelet
library is generated for a range of N, YNy, and unconditional
averages can then be obtained by weighting this by the joint pdf of & and
N,.

The CMC model has some similarities with the SLFM model but these
models are not identica. If we conditionally average EQ.(4.22) we cannot
split the correlation <Ng?Y/0E?|n> since Y depends on N, We can
demonstrate, however, that CMC, FCL and SLFM are in agreement integrally
in the reaction zone. We integrate Eq.(4.22) between the Ilimits &=ng¢m,
and £=n¢tn, and utilize the boundary conditions (4.23)

Ns™M:

Nnstn Nnstn
NS[—?{—] T s Ns[%g_e] o I W dE (4.25)
Ns-MNz Ns-Mz Ne-M
S z
Conditional averaging of EQ.(4.25) yields
oY NstM; Ns*M;
'<N|n5>[6_e] = I <W|n>dn (4.26)
M Inem
s Ns-MNz

Equation (4.26) coincides with the integral of EQ.(4.21) over the interval
NeMz<N<NetM,. These equations are in agreement with the limit of the
CMC equation at Daso. Note that inside the reaction zone, as it assumed in
SLFM, <N|n>=<N|ns>.

If the reaction zone is wider than the Kolmogorov length scale, the
scalar disipation will vary significantly and randomly through the reaction
zone so that strictly SLFM modelling is no longer applicable. In practice
the dissipation averaged across the reaction zone N, is often used instead
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of Ns in EQ(4.22) as suggested by Kuznetsov & Sabelnikov’®. Often the
value of N, is also assumed to be a constant. The fluctuations of N, are
significantly smaller than the fluctuations of Ns. In  many practica
applications SLFM is used in the form

2
-<N|ne> géz = W(Y) (4.27)

that is the fluctuations of N are neglected (sometimes it is also assumed
that <N|ns>=<N> in Eq.(4.27)). Conditional averaging of Eq.(4.27) yields

2
<N|ne g Q = W = wy©Q (4.28)

The difference between this equation and EQ.(4.21) is that Q is obtained
as the solution of EqQ.(4.28) and for simple one-step chemistry and finite
Damkohler number Q is close to Y. but does not coincide with Y. For
complex chemistry, especialy for hydrocarbon combustion, solutions for Q
can be markedly different from full equilibrium even a quite high
Damkohler  number. This is particularly so on the rich side of
stoichiometric where peaks in CO are less than one third of those obtained
from  equilibrium  calculations. Such  flamelet calculations give  much
improved  predictions of experimental data® and have led to their
widespread use in practical applications. Such success should not be
alowed to overshadow the fact that the use of Eqg.(4.28) is not soundly
based.

Equation (4.28) can be aso obtaned from EQ.(4.2) by neglecting the
convective terms and assuming that <N|n>=<N|ng>. It is seen that the form
of SLFM using EQ.(4.28) is a specid case of the CMC model.

Various formulations of unsteady laminar flamelet models have been
proposed. Mauss et al “consider unsteady flamelets in a jet diffusion
flame in a Lagrangian manner. From the flow and mixing caculation they
deduce the variation of the average scalar dissipation with time. This is
used in an wunsteady laminar counterflow flamelet caculation to get the
time- or gpace-dependent composition as a function of the mixture
fraction. This function is then weighted by the loca pdf to get
unconditional averages. Pitsch e al "™ consider unsteady flamelets in
diesel engines. They introduce the concept of 'Representative Interactive
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Flamelets  which are applied in domains ".with dtatisticaly average
similar quantities of flamelet parameters’. In both of these applications
of unsteady flamelets the equations being solved ae smilar to the
equations that would be solved using CMC modeling. There are subtle
differences, however. In CMC the modeling assumptions are much more
transparently defined and the specification of the scalar dissipation and
conditional velocity is precise. For the diesel engine problem CMC would
retain the terms involving the spatial gradients of Q; these are neglected
in the unsteady flamelet formulation. Furthermore, in CMC the requirement
that the reaction zones be thin with respect to the Kolmogorov Ilength
scale is not necessary.

CMC, FCL and flamelet models have many similarities and belong to a
category of non-premixed combustion models that use the concept of a
conserved scalar and its dissipation. In general it can be seen that the
CMC model is a more advanced model in which the temporal and spatial
evolution of chemica processes are taken properly into account. This
evolution is neglected in the SLFM and FC models. CMC is a more soundly
based approach than concepts of partialy-premixed and unsteady flamelets
which have been proposed. The SLFM, used in the form of Eq.(4.22), can
have some advantages in consideration of local processes when fluctuations
of the conserved scalar dissipation are important. Local extinction is an
example of such processes.

Clear delineation of the regimes of vaidity of CMC and SLFM awaits
further investigation. For 0 < 1. < 1 (one strict condition for validity
of SLFM) CMC may not be valid even though it is vaid a the fast

chemistry limit, tJtix = 0. This seems likely to be so for one-step
irreversible  chemistry and perhaps for  multistep  chemistry  involving
irreversible  reactions. For reversble reactions the term involving the

scalar dissipation becomes of second order a high Damkohler number, the
balance being between the forward and backward rates, and the first order
solution is that for equilibrium, i.e. FCL. In such cases the width of the
reaction zone, £, may be broader than the Kolmogorov length scale, i,
even though 1. < 1. It seems that if this is so, both CMC and SLFM may
not be drictly valid and may not give the correct results for the
departure from the first order solution, which is  given by chemica
equilibrium.
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4.5. Some Further Results for Homogeneous Turbulence

Here we consider some further properties of the CMC equation which
are more complicated than the properties considered in previous sections.
In order to avoid complications we assume that the turbulence is
homogeneous but the results obtained could have more genera significance.
In homogeneous  turbulence  with uniform and constant density
Egs.(4.1)-(4.3) take the form

aQPEn) = <W|n>P(n) + %ﬁ <N|n>P(n) 3% ) a<N£2>P(n) Q| (4.29)

9Q N> 22 = awjne (4.30)
2

3_5’@ = _ 9°<N|n>P(n) (4.31)

on’

Eq.(4.29) is a combination of EQgs.(4.30) and (4.31) and can be easly
derived from them. If the conserved scaar pdf P(m) is specified and if
<WE,Y)|n> is approximated by WMm,Q), the system of EQgs(4.30) and (4.31)
is closed. The conditional scalar dissipation <N|n> can be determined from
Eq.(4.31). The boundary conditions determined by Egs.(257) and (2.58) for
smooth pdfs or by EQgs(2.68) and (2.69) for intermittent pdfs should be
used to integrate EqQ.(4.31) twice over mn. The boundary conditions in
Egs.(257) and (258) seem to be overdetermined. In fact they are not.
The pdf is not an arbitrary function. It must satisfy certain
restrictions  (for example, the normalization constraint: a pdf integral
over al m is aways unity). It is possble to select any two boundary
conditions from EQgs.(257) and (2.58) and the other two must be fulfilled
automatically. In practice the choice should be such as to minimize
numerical integration errors. Using the boundary conditions in Eq.(2.68)
and (2.69) or in EQ.(2.62) we obtain

MNmax
N n Nma x
-1 OP(M) g - 0 ™" | 9P(n)
N> = ) J gt M - 5 I gt dndn| (4.32)
MNmi n Mmi n
Nmin Mmin
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The conditional scalar dissipation determined by EqQ.(4.32) is utilized to
solve EQ.(4.30) for the conditional expectation of a reactive scalar.

45.1. Low probability effects

The pdf P(m) is not explicitly involved in EQ.(4.30) and any m in the
interval Mmin<n<nmax has equal significance for EQ.(4.30). Some vaues of
Nmin<N<Nmax May have very small probability P(Mm) and should not be
Important. Intuitively, these ranges of m with small probability should
not affect the solution of EQ.(4.30) in the high-probability regions. On
the face of it, this seems to be a contradiction, but in fact it is not.
In order to demonstrate this we assume that the conditiona scalar
dissipation is approximated by

<N|n> = <N> = Nyt) (4.33)

This approximation is consistent with there being a Gaussan pdf
satisfying  EqQ.(4.31). The  approximation in  EQq.(4.33) iIs not an
approximation which can be aways used for Eq.(4.30): it is used here as a
simple example for the demonstration of some quite general properties of
the CMC equations. The unconditiona variance O(t)=<(&)*>, &'=E-<&>
satisfies the equation ™%

g?_ = - 2Ng(t) (4.34)

We introduce a new independent variable

t
g% = Nyt) or 1=r1+ JNa(to)d'[o (4.35)
to

Equations (4.30) and (4.31) then take the form

0Q 0°Q  <W|n>
oS RS (4.36)

8112 N,
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2
aggn) - . aazgﬂ) (4.37)

The variable t can be thought of as the "diffuson time'. This variable
determines the solutions of Egs.(4.36) and (4.37). Combining EQ.(4.34) and
Eq.(4.35) we obtain

Z(T'To) = 90 -0 (438)

where  6p=0(fy). The conserved scalar fluctuations disappear in a
sufficiently long time interval 60, 1-15>60¢/2 as ts and

P(M) » 0(m-<€>) as teo. (4.39)

Equation (4.36) is parabolic, and from the theory of such equations it is
known that any changes to Q a t=t;, m=n, affect Q for al n a any t>t,.
In practice, however, only the limited region mn;-An<n<n;+Amn, where

An ~ (1) "2

and t.=1(ty) is significantly affected. Since

0, - 0

by analogy with Eq. (4.38), this region is bounded for any t>t;
An < const-(6,)"2

This means that the CMC equations can be solved for quite a large range of
n, but the solution in ranges of m which have a small probability P(n)
cannot significantly affect the solution in the high probability range of
n. It aso means that at large times, when the range of the pdf is remote
from the initial bounds of mn, solution can proceed over a much narrower
range of m with arbitrary values of <N|n> and boundary conditions for Q
being used a values of m greater than about four standard deviations from
the mean. This result is also likely to apply to high values of n in the
far downstream regions of jets and wakes, where it is cumbersome to
compute al the way to a mixture fraction of wunity and the numerical
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solution of the pdf transport equation gives unreliable values for the
conditional scalar dissipation at high values of m.

4.5.2. Boundary conditions

The observations in the text immediately preceding this bring up the
gquestion of what are the general effects of moving boundary conditions on
Q and <N|n>

The most complicated case is the case of a smooth pdf with
non-constant bounds mMmi, and Mmx.  This could happen for species when the
unmixed fluid is undergoing reaction or is being fed to the system with a
time varying composition. For enthalpy it might aso arise from
compression or expansion of the unmixed fluid such as happens in a diesd
engine during injection and ignition. First we check if the reactive
Species conservation integral  is preserved in this case Equation (4.29)
is integrated over the interva NN, where MNpinkNi<No<Nmax- T1he  last
two terms on the right-hand side of Eq.(4.29) are integrated by parts

N2 N2
, n
[ 2P an = 9 [ Qpvem - [ Gherm)] =
N1 N1 '
s 9Q _ 3<N[n>P(n) ™
= J<W|n>F’(n)dn + [<|\||n>F>(n)aﬁ - 1 Q] (4.40)
N1
N1

where m; is for ether n; or mMo. AssuMIiNng Mi=Mminte and M>=Nmx-€ and
taking the limit -0 we obtain

Y ° max

a_;_t? - WS = [<N|T1>P(ﬂ)g% + JpQ ]min =0 (4.41)
where

J; = P(n) g?m - 3<N(J)II]>P(T1) (4.42)

We wuse here the boundary conditions in Egs(257) and (2.58) which
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indicate that J;»O and <N|n>P(n)s0 as mn-n, It is easy to see that
Eq.(4.41) preserves the conservation integral for any finite values of
[Qln and [0Q/on], In the case of non-homogeneous turbulence and
non-constant mMmin and mNma the conservation integral is aso preserved
provided PM)<v’Y’|n>Vn,»0 & mn-nn,  This condition is usualy fulfilled
in practical cases.

Preserving  the  reactive  species  conservation  integral  determines
boundary conditions (4.13) in the case of intermittent pdfs but it seems
from the above that in the case of smooth pdfs the boundary conditions
remain undetermined. This needs further consideration. The boundary vaues
[Qlmin and [Q]max ae restricted by the CMC equation itself since n.,., and
Nmax &€ Special points of this equation. We introduce a new independent
variadble m =n-nn in EqQ(4.29). If we consider the boundary conditions at
Nmin then MNy=Mmin and n+20. If we consider the boundary conditions a My
then Nm=Nma and n,<0. Taking into account the differentiation chain

a i (443

), eons = [ 7F)
[at_ n=const Jat T]+=C0n5t

we obtain

W%’Eﬂ_) - <W|n>P(n) = %W [J;Q + <N|n>P(n) %%J _

+

_ 3Jp <N |[n>P(n) 9 °d 92

= Qe d1|11+1 (n) d(ri ¥ Jpa% + <NIn>P() £ Q (a44)
oP(m) _ s
T = dnf (4.45)

where Jo is introduced in Eq.(4.42). We use EQ.(445) to cancel the first
teem on the right-hand side of Eqg.(4.44). According to Egs.(257) and
(258), J0 and <N|n>P(n)s0 as n-0. We assume that [Q],#0. This
assumption is not restrictive since we aways can introduce a new scalar
Y’=Y+a (a=const) which conditional expectation satisfies Eq.(4.30). Hence,
in the vicinity of m =0, we can neglect the two last terms on the
right-hand side of Eq.(4.44)
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l[ér?]n W -l NP 3%} “ 0 (4.46)

+

where [], is for the Ilimit of () a m-n, Taking into account that
[J5]=0 and using Egs. (4.42) and (4.43) we obtain

[[g%n - Mo g% i <W|n>} = {[g%n i <W|n>} =0 (4.47)

The derivative dQu/dt (where Qun(1)=[Q]n) coincides with [limit of the
derivative [(0Q/0t), Im. Equation (4.47) determines the boundary
conditions for Q a N=Nmin and M=Nn« Note that EQ.(4.47) can be formally
derived from Eq.(4.30) by putting [<N|n>],=0. This is in agreement with
Egs.(2.60) and (263) and can be used to obtain the boundary conditions in
the case of non-homogeneous turbulence.

4.6 Overview

The CMC equation, (4.1) or (4.2), is to be solved over the space and
time doman of interest subject to initial and boundary  conditions
appropriate for the problem being studied. Before moving on to consider
smplified forms of the equations and more advanced modelling questions it
seems appropriate to pause and review the nature of CMC modeling.

The modeling assumptions involved in deriving Egqn (4.1) and (4.2) are
that mass diffuson a the molecular level is Fickian with al Lewis
numbers unity, Reynolds numbers are moderate, a least, and that the
primary closure assumption of Section 33 is vaid. The first two
assumptions are normal  practice in turbulent combustion modelling. The
effects of differentia diffuson can be incorporated into the CMC method
as is discussed in Section 9. In Section 3.7, theoretical support for the
validity of the primay closure assumption is given but ultimately
validation comes from studies involving Direct Numerical Simulation (DNS)
and successful applications of CMC in a wide range of reacting flows. This
evidence is presented in Sections 5 and 7. It is believed that the primary
closure assumption is valid for cases wel removed from the the fast
chemistry limit and in flows showing quite large conditiona average
fluctuations about the conditional average. Further work is needed to
establish this firmly, particularly in flows with ignition and extinction
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occurring.

Other modeling assumptions are of a secondary nature. The closure of
the conditional chemical reaction rate <W|n> is discussed in  Section 3.5
and will often be possible a the firss moment level as given by Eq.
(3.34). For this closure to be valid, conditiona average fluctuations of
species mass fractions and temperature about their conditional means must
be smal, particularly for reactions having high activation energies. In
Section 8 we summarise the progress made so far on modeling the
conditional average variance and covariance balance equations and with
second order closure for the chemical reaction rates. Such modeling is
helping to elucidate the conditions under which first order closure will
be valid. At this stage, no simple criteria can be recommended.

Modeling of the conditional scalar dissipation <N|n> is discussed in
Section 4.1 and errors associated with the poor estimation of it is
discussed in Section 4.2. This question is discussed further in Sections 5
and 7. Some flows are quite sensitive to the scalar dissipation and others
are not. The dtuation depends quite subtly on the flow and the chemistry
and it is not possible at this stage to recommend simple criteria. Models
for <v|n> and <v"Y'|n> are aso discussed in Section 4.1. At this stage
litle experience has been gained in validation of these models. It can be
noted here that modeling of the mixing a this first-order closure level
is confined to conserved scalars for both mixing a the molecular level,
as in <N|n>, and a the turbulent flux level, as in <v|n> and <v"Y"|n>.
Mixing of both these sorts for reactive scaars is known to be fraught
with difficulty since the chemistry can have a maor influence on setting
concentration gradients and countergradient turbulent fluxes can aso be
obtained. This is most evident in turbulent premixed combustion * but
will also be important in nonpremixed systems. Modeling for the molecular
mixing terms is a persistent problem with the Monte-Carlo/joint pdf
method ** and the role of the chemistry in the determination of the
mixing rate has not yet been sdatisfactorily treated. The fact that first
order CMC only considers conserved scalars is a distinct advantage of the
method. It is noted also that conserved scalars are only needed for the
modeling of the flow and mixing field. Modeling of reactive scalar
dissipation terms does appear, however, in second order closure CMC and
this is discussed in Section 8.

In applications of CMC to individual problems care is needed in the
specification of the initial and boundary conditions for Q. Examples will
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be found in Sections 5 to 7. Often the two boundary conditions needed for
Q in n space are taken as those in the unmixed fluid a& n = 0 and 1. This
is usualy found to be satisfactory even though there may be a total lack
of one or both of the unmixed fluids in parts of the space time domain
being caculated. It appears that the findings in homogeneous flows of
Section 4.5 ae applicable here. In such places it matters little what
vaues are taken for the boundary condition as its effects will not be
felt in the range of m of practica interest.

It seems, then, that CMC has a very sound basis in theory and that
the modeling assumptions made are expressible mathematically and can be
individually checked. This transparency of the modeling is a distinct
advantage for CMC over models of a more conceptual kind such as the linear
eddy model > or laminar flamelet models used beyond the scope of their
strict applicability.
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5. CMC IN TURBULENT SLENDER LAYER FLOWS

The general CMC equation (4.2) remains rather complicated for general
use. The term <v’Y’|n> is not easy to close satisfactorily and the
closure of Eq.(45) for <v|in> is not well established. Of more practical
concern is the large number of independent variables involved. Here we
consider some techniques that transform the genera CMC equation (4.2)
into well-founded models which are much smpler and easier to use. The
techniques are applicable to turbulent shear flows and other thin layers
such as non-bouyant plumes and scalar mixing layers in  homogeneous
turbulence. For such flows the CMC equations can be significantly
smplified. Many of the comparisons of CMC predictions with experiment
have been made for flows of this type using these simplifications, and
hence much of the evidence for the validity of CMC modeling rests on the
validity of these further simplifying assumptions. Accordingly, we present
in  some detal here the theoreticak basis for these simplifications,
practical concerns about the correct modeling of the conditiona scalar
dissipation, and some comparison of predictions with experiment.

Klimenko® and Bilger'®*?suggested two different forms of the CMC
equation for these dender layer flows. At first these equations were
considered to be approximate equations based on some plausible
assumptions.  Bilger'®?supported  his  assumptions by  comparison  with
experimental  measurements. Later Klimenko® showed that both forms of the
smplified CMC shear flow equation are correct asymptotic limits of the
general  CMC equation, having some similarities with the traditional
boundary layer analysis. The structure of the expansions is, however,
quite different from the traditional equations for conventional means in
dender layers. We stat our consideration of dender layer flows from
the main results of this asymptotic analysis and in the following two
sections present the “simple’ method proposed by Bilger ' and the
Integral  method proposed by Klimenko *. The Integral method is the
prferred method where assurance of accuracy is of prime importance.

The Integra method requires evaluation of a weighted integra of the
conditional average scalar dissipation across the flow. This can be
obtained from the pdf transport equation after  suitable integrations
across the flow and in mixture fraction space. Once again, subtleties are
introduced for consideration of either intermittent or smooth pdfs. These
are explored in Section 54. The nature of the pdf boundaries are also
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important in  considering the preservation of conservation integrals, as
aready considered in  Section 4.2 for the non-Integral case. A  brief
outline of this problem together with methods for assessing the errors are
given in Section 55. Both of these sections can be omitted on the first
reading.

Evaluation of the conditional average scalar dissipation is  not
aways straight forward and smal numerical inaccuracies can result in
negative values which are, of course, physically impossible. Experimental
measurements, results for self-smilar flows and approximate methods that
have been used in the literature are reviewed in Section 5.6.

Measurements in jet diffusion flames ® indicate that there are small
cross-stream  variations in conditional average temperature, and that these
could be important in predicting nitric oxide formation. In Section 5.7
the posshility of predicting these from higher order terms in the
asymptotic expansion is outlined.

CMC predictions and comparison with experiment are presented in
Section 5.8 for a reacting scalar mixing layer, turbulent jet diffusion
flames and for round plumes in grid turbulence.

5.1. Basics of the Asymptotic Analysis

Slender layer flows are characterized by small ratio I/, where |,
and |I; ae transverse and longitudinal characteristic length scales. In
this section the longitudina components are denoted by x; and v;; the
transverse components are denoted by X, and Vv,. We introduce a small
parameter €°=l,/l; which is common for al boundary layer asymptotic
methods. The analysis we consider here is smilar to the traditiona
boundary layer ~methods which simplify the unconditionaly  averaged
Navier-Stokes and scalar transport equations in shear flows (see Hinze™).
Thus in estimates of all variables in the CMC equation we follow Hinze's
estimates. The asymptotic analysis is quite complicated and we consider
here only a brief review of its results. According to Klimenko® and
Klimenko & Bilger® the conditional expectation Q in shear flows is given
by the series

Q = Qubam) + eQibam) + Qs (um, L =52) + . (5.1)
The second term in this series, Q;, can be used® to obtain higher order
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corrections for the CMC shear flow equation. As follows from the
expansion (5.1) the conditional expectations, Q, ae a weak function of
the  transverse  coordinate  X,.  This seems  unexpected since  the
unconditional mean, <Y>, is a strong function of Xx,; but this is predicted
by the asymptotic analysis and is supported by experimental data®'?as is
seen in Fig.1 A nother supplementary result of the analysis is the
representation of the conserved scalar pdf in the form of the series

1
n — a <V | ’>
0

where n=n-<€¢> and a;, a, do not depend on mn’. The asymptotic anaysis
shows that a,»1 and that the pdf P(n) has a strong dependence on x.

5.2. Smple Method
Assuming that Q does not depend on X, Bilger'®? neglected the
transport across the flow and suggested that in turbulent shear flows Q
satisfies the equation

U990 w27 = i Q) (53)
0 X on

[N

The index "' indicating that Q, is the main order approximation of Q. The
coefficients U and N° are given by

U’ = Ua[xl,xg(xlm)]; N = Na[Xl,XZ(Xl,TI)]; (5.4)

where xZ is the solution of the equation E_,a(xl,xz):n and the new functions
introduced here are

Ua(1.%) = <vi>; Na(Xg,%0) = <N>; Eo(xg, %) = <€>
The values of U’ and N’ are specified as the corresponding mean values
taken at XZ:XZ which is usualy close to the most probable location of the
isopleth  &(t,x)=m: more precisdy, at %=X, the mean vaue <> coincides

with . For jets, wakes and plumes the mean mixture fraction on the
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centreline of the flow is much less than unity in downstream regions. A
problem with this method is the assignment of U° and N for values of n
greater than the centreline mean. The conditiona expectation of the
source term is given by the approximation in EQ.(3.37). The asymptotic
andysis’ indicates that Eq.(5.3) is the correct asymptotic limit of the
CMC equation as €0 everywhere except at the centerline of the flow.

5.3. Integral Method

Assuming steady-state flow we integrate Egs.(4.1) and (4.3) across
the flow

%71 {<le|n>P(n)pn} - {<W|n>p(n)pn} _

- %ﬁ {<N|n>P(n)pn 38 - a<N(Jﬁq>P(n)pn } -

2
- ?Tn {2<N|n>P(n)png%} i g—nz {<N|n>P(n)an} (5.5)
2
B, {POIRn) = - 0 {NIPopn) (56

where the curly brackets denote integrals across the flow

(i Joes {J= [ Josws {}=iim{) 62

|X2|<R x§+x§£R2

The first formula in EQ.5.7) is used for two-dimensional flows and the
second formula is used for three-dimensiona flows. Equations (5.5) and
(5.6) ae vaid for any chosen m which belongs to the open interva
Nmin<N<Nmax, Where mmin and mMma denote the pdf bounds which are assumed
to be constants. We consider the case when &snmin and P(M)-0(M-Nmin) &S
Ryo where R=|X| in two-dimensona flows or RP=xg+xs in three-dimensiona
flows. The vaue of My, which corresponds to & far from the turbulent
flow is a constant. The pdf P(m) rapidly tends to zero as R~ for any
fixed N>Nmin. Hence the integrals in Egs.(55) and (5.6) are finite for

54



N>Nmin- In two-dimensional flows (such as a mixing layer) another flow
configuration is possible: &sNmin 8 Xos-o0o  and E-sMpmax 8 Xo>too. N this
case (which is not specificaly discussed in this paper) the bound N
should be considered in a similar way to the bound mnumin. The integrals
{-P(Mm)} can take =zero, finite or infinite values a mM=n.,, depending on
the pdf model used.

Now we take into account that Q=Q, does not depend on the coordinates
across the flow and put Qu in EQ.(55) outsde of the integration
brackets. For example, the most restrictive term in EQ.(5.5) is modified
so that

d

Q) _ .9
29 {<N|n>p(n)pn_dn3} = 2% (5.8)

{<N|ﬂ>P(T])} agopn + O(e)]

The conditional expectation of the density, p, 1is considered to be a
function of m and Q, According to the approximation of Eq.(3.37), <W|n>
can aso be removed outside the integration brackets. Turbulent transport
in the longitudinal direction by conditiona fluctuations is neglected so
that

v1Y|N> = <vin>Qp = <v1>Qp (5.9

This is a common assumption in turbulent shear flows. Approximation (5.9)
is supported by the asymptotic analysis. We introduce the new notation

{P(ﬂ)}; U = {<v1|n>P(n)}; N = {<N|n>Pm)} (5.10)

{pm} {pam}

and write Egs.(5.5) and (5.6) in the form

P*

o . - N P
S (VPP - WQPp, = Go (NPTp, G20 - TLE P Q) (5.11)
9_ (U'Pp,| = - 0* (NP (5.12)
e Pn| = w Pn -
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Another form of the CMC equation for shear flows is derived from
Egs.(5.11) and (5.12)

2
u*gg_g N g Q0 = wQ (5.13)
n

Equation (5.13) is smilar to Eq.(5.3) but these equations have different
formulas for their coefficients. Equation (5.3) is easer in practica
use than EQ.(5.13) since solving of EQ.(5.3) does not require any pdf
modeling. Equation (5.13) is expected to be close to correct near the
centerline and, as is proved in the next subsections, it preserves
conservation integrals. Equation (5.12) is an exact integrad of the pdf
equation. Equations (5.3), (5.11) and (5.13) ae approximate equations
which utilize the approximation of Q in Eq.(5.1). Equations (5.3), (5.11)
and (5.13) are vaid for turbulent shear flows which are characterized by
a smal ratio of the characteristic scales across and aong the flow.
Equation (5.13) effectively replaces the coordinate across the flow x, by
the new coordinates related to moving surfaces &=const. Diffusion in
conserved scalar space is determined by universal small-scale fluctuations
for which the conditional dissipation is the measure.

The coefficients of EQ.(5.13) are specified provided the conserved
scalar pdf P(n) is known. Indeed, the values of P and U can readily be
determined from Eq.(5.10) using the approximation of EQ.(5.9). The
coefficient N cannot be determined from Eq.(5.10), however, since <N|n>
IS unknown. The best way is to determine N by integration of EQ.(5.12).
This requires the specification of the boundary conditions for the product
N'P. These are considered next.

5.4. Boundary Conditions for the Pdf Integrals

On the face of it, determining the boundary conditions for the pdf
integrals across the flow should be smilar to finding the boundary
conditions for the pdfs. This would involve the following



lim P' = Iim Iim{P} =1im lim {P(n)} - Iim{lim P(n)} (5.14)

N->Nm N->Nm Rseo R Rseo Monp R Roee \mong R
where &sm, as Rse. On more careful consideration, however, it appears
that EQ.(5.14) is not aways vaid since the interchange of the order of
the limits m-m, and Rs~ requires specia conditions. We note that the
integration  {-}, which is an integration over an infinite interval,
involves the limit operation Rse as is indicated in EQ.(5.7). Normaly in
engineering  applications,  differentiating, integrating and  taking  limits
are considered as interchangeable operations and we have followed this
practice elsewhere. There is, however, an exception in the case of
Eq.(5.14). Interchanging the order of the limits m-n, and Rs~ needs
special  consideration. We can demonstrate that EQ.(5.14) is vaid for
intermittent pdfs but the order of the limits M-Nmn and Rse cannot be
interchanged for smooth pdfs. In intermittent turbulent flows the pdf is
determined by EQ.(264) and the intermittency factor v (and 7Yma) rapidly
tend to zero as Rsee. This means that if R is large the pdf is small for
al n which belong to the open interva Mmin<N<Nmax- Almost al of the
probability is accumulated in the deta function Ypind(M-Nmn) and does
not affect the integral for MNmin<N<Nmax- Thus in numerica calculations
we can reasonably cut off our integrals somewhere a large R The
situation with smooth pdfs is totally different. These pdfs are large a
n~<&> even if R is large. Since <€>30 as Rse, this does not affect the
vicinity of mnmx and the asymptotes mn-Nmx Of the integrals across the
flow present no difficulties. The asymptote of the integral P of a
smooth pdf P(m) a mn-mmn, IS different from the asymptote of the pdf P(n)
itself. Let us consider the moment integral

nmax

Mo = <ENui)™> = [ (M) "P(0)dN~ (5.15)
MNmin

It is evident that (M-Mmn)™>1 a o-0 everywhere except a n=nm, Where
(M Mmin)*=0. This is why Mys1 as o0 for smooth pdfs and MY +YmaMmax 8S
o0 for intermittent pdfs. If o>0 is fixed, M, rapidly tends to zero as
Rseo for both types of the pdfs since (E-nmin)” < exp(-caR) for large R and
constant o.. The integral



nmax nmax
{ma} = nj (M) P | = nj (M) P (5.16)

exists for any o>0 but, if P(m) is smooth, {Mg-s~ as o-0. This can be
valid only if
P~_—1 a1 nm (5.17)
N-MNmin

The asymptote of the conditional dissipation a mn-Nmn Can be aso
assessed. The formula relating surface to volume ratio for an  isopleth
E=const surface®™® can be integrated across the flow to vyield the
isopleth surface area per wunit length in the x; direction: it is given by
S=(N/D)?P. In planar two-dimensional flows a large distance from the
turbulent region S-const. This gives

N ~ (T‘I'T]min)2 as M > Mmin (5.18)

For the smooth pdfs the asymptote of P is aways determined by Eq.(5.17)
irrespective of the asymptote of P(n) a mM-Nmn While for intermittent
pdfs the asymptotes of P and Pm) a mn-nmn ae smilas. We emphasize
that Egs.(5.17) and (5.18) are only approximate asymptotes. The asymptote
of N a n-Nmx iS Smilar to the asymptote for <N|n> given in EQq.(2.63)
(Mmax=const) which also mirrors Eq.(5.18).

The purpose of the rest of this section is to derive and prove the
boundary conditions for the product N'P. This condition enables us to
solve Eq.(5.18) for N'P’

5.4.1. Intermittent pdfs
In the <case of intermittent pdfs, EQgs(268) and (269) can,
according to our previous analysis, be generdized for the integrals

across the flow so that

NP 50 a 1 > Mm (5.19)



5.4.2. Smooth pdfs

In order to investigate the boundary conditions for the integrals of
smooth pdfs we consider the integra of EQ.(2.53) across the flow

gx—l {<v1pF>} = - {<pNF”>} (5.20)

As dtated earlier, stationary flow is assumed. The arbitrary good function
F(m) is chosen so that F(Mmin)=0 that is Fs0 as Rse. This ensures that the
integral  on the left-hand side of EQ.(5.20) existss The integrad on the
right-hand side of EQ.(5.20) exists since in the flow &sng,, and Ns0 as
Rso. We multiply Eq.(5.12) by F(n) and integrate it over the interval
NN, where Ny=Nminte and Mo=Mma-€ and € is small. The integral on the
right-hand side is integrated by parts. Taking the limit e-0 we obtain

max

gx_l {<v1pF>} - {<pNF”>} = [gﬁ[N P*pn] F] + [N* P*pnF’] . (5.21)

max

Matching Eq.(5.21) and EQq.(5.20) for arbitrary Fpe F’  and Fr’nin yields

max

the boundary conditions for the pdf integrals across the flow

NP 50 a M > Nmn (5.22)
NP 50 a M > Nma (5.23)
gﬁ[N*P*]» 0 a M > Nmax (5.24)

If we assume that mmx IS a function of x;, the revised version of
Eq.(5.24) includes some additiona terms®. Since F(Mmn)=0 Eq.(5.21) does
not specify the boundary conditions for the derivative of NP a M-Nmin
Considering smooth pdfs with constant bounds, one might expect that
Eq.(261) can be generalized for the integras across the flow to vyied
OINP)on > 0 as mMsimn  This equation is not valid, however, because of
the reasons  discussed  above Equations (5.17) and (5.18) vyied
NP ~(N-Tmir) 8 M>NMmin and the derivative has a finite value.



5.4.3 Summary of the boundary conditions

The boundary conditon N'P° 5 0 as m tends to its limiting values
Nmin and Nmax ae valid for al cases considered in  this  section.
Integration across the flow may, however, change the rate how the product
N'P° tends to zero. Thus, certain care is required when the asymptote of
the product N,P(n) is integrated across the flow.

The asymptotical behavior of N and P must be taken into account
when the integration of P(n) across the flow is conducted numerically.
Practically, intermittent pdfs are safer to use since for these pdfs it is
easer to perform integration across the flow. The correct treatment of
the boundary conditions is important also for preserving the conservation
integrals.

5.5. Conservation Integrals

The integra form of the CMC equation for shear flows, Eq.
(5.13), preserves conservation integras provided that the vaues of N’
and P used are consistent with Eq.(5.12). The CMC equation should be
aways used in conjunction with its adjoint equation, given here by the
integral  pdf equation (5.12). The conservation integrals across the flow
are finite provided Q(Mmin)=0 where &-snmin a Rseo. If we consider the case
of intermittent pdfs, we aso require that QMma)=0 to avoid the
transport of the reactive scdar Y from the non-turbulent region at
N=Nmax- It IS apparent that these integrals will not be finite for species
with 'Y non-zero in the outer flow. This does not restrict our
consideration of them since we aways can introduce a new scalar Y and
its conditional  expectation Qo similar that used in Eq.(4.14). Integrating
Eq.(5.11) between the limits mmnte and mMma-€ and letting & tend to zero
we obtain

max max
gx_l {<v1pY>} - {<p\/\/>} = [Qgﬁ[N P pn]]min + [N P pn g%]min =0 (525

We have used the boundary conditions given in Egs.(5.19), (56.22) and
(5.23). It is required tha [Q]nirmQMmin)=0 and aso, for intermittent
pdfs, that [Q]max=QMmax)=0. This specifies the boundary conditions for
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the limits of Q a m-n,  These conditions are quite obvious. For smooth
pdfs the boundary condition for Q a mn-Nmx IS not determined.  According
to the anayss of Sec4b52 (note that [N*]max:O), this  boundary
condition is given by

[U*g% i W(Q)]m =0 (5.26)

ax

5.5.1. Errors arising from inconsistent scalar dissipation

It has been emphasised that the conditional scalar dissipation used
in solving Eqg.(5.13) must be fully consistent with that which satisfies
Eq.(5.12) for a given pdf field. If this is not the case then the
conservation integrals will not be satisfied. We seek here to quantify
the errors involved. The results paralel those for the general case
given in Section 4.2.3.

Let us assume that the value of N actually used in Eq(5.13) is
N'+AN" where N is the value that satisfies Eq.5.12). It is easy to show
that Eq.(5.25) then becomes

nmax
* * az | *
gx_l {<vlei>} - {<PWi>} = J pnAN(M) P % dn = Ey (5.27)
MNmin

We will cal the error, Ey, the “integrated false chemistry source term'.
This is because it is evident that weighting Eq. (5.27) by suitable
coefficients, u;, and summing over appropriate species to form a conserved
scalar, m., will €iminate this term if the aforesaid boundary conditions
are satisfied. This is because al such conserved scalars should be
initially (i.e. a the wupstream start of the caculation) linear functions
of n and will then accordingly remain so, since

nmax nmax
2 2
Ex = wf  pnaNmYP L Ridn = [ pyaN@P S Dan =0 (529)
. an . an
MNmin Nmin

where & = Y, n- = <&m> = wQp, puW = 0 and sum is taken over
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repeated indices.

At high Damkohler number, the mass fractions of reactant and product
species tend to be linear functions of m outside of a narrow reaction zone
centred a8 m = ms For such species the eror due to the fase chemistry
term, Ey, is readily shown to be

£, = [pn AN*P*] [%%] (5.29)
Ns -
where the subscripts "+" and "-" sSignify evaluation of the dlope at vaues

of m ogreater and less than mns For intermediate and radica species,
similar formulae can be derived if their dependence of Q, on mn is treated
piecewise linearly.  Alternatively, the eror can be evauated from
Eq.(5.27)

For the enthadpy there will result a smilar integrated false
radiation loss term

nmax
2
Enp = I Py AN'P' aaQig'h o (5.30)
MNmin N

5.6. Evaluation of the Conditional Scalar Dissipation

In this section we consider evaluation of the conditional average
scalar dissipation integrated across the  flow, N, as defined in
Eq.(5.10). For the stationary dender layer flows wunder consideration
here, N can in principle be evauated from the pdf transport equation,
integrated across the flow, EQ.(5.12). Using the boundary conditions for
NP am =0 and 1 as set out in Section 5.4, Eq.(5.12) may be integrated
by parts to yield

1
paNP = %7[ jan*P*(n')(n-n')dn'] =
n
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1~
=9 {EG jP(n',r)(n-n')dn'} (5.31)
n

where the second version involves working with the Favre pdf, P(n),
defined in  EqQ.(44). For combusting flows density-weighted or Favre
averaging is usualy used and the first and second moments of the mixture
fraction, & and (E”)°, ae solved for in the mixing caculation. A
presumed form for P(n) is assumed so that P(n) can be evaluated at each
point across the flow and Eq.(5.31) is evaluated numerically. It should be
noted that the approximation of setting the conditiona average axia
velocity component to the wunconditional Favre average axia  velocity
component U = <pv;>/<p> has been used - an assumption equivalent to that
made in Eq. (5.9). We shall cal evauation of N from Eq.(5.31) the
direct method. In practice the inaccuracies in numerical integration and
differentiation can lead to dignificant errors, even to the extent that
unphysical negative values are obtained. It is evident that more robust
methods are needed.

For flows without heat release, self-smilar mixing fields are
possble such as in the classica mixing layer, scaar mixing layer, jets
and small deficit wakes. For these flows, self similar-solutions for the
conditiona  dissipation, N, result and can be evaluated  without
approximation from experimental data on the pdfs. These results are of
general interest since they give examples of the effects of flow geometry
on the form of N and alow general solutions of the CMC equation to be
obtained for various forms of the chemical source term. In the following
sections general  considerations are given for  self-smilar  flows, and
these are further simplified for jets and small-deficit wakes. Results
are then obtained for the small-deficit wake, using the experimental data
for pdfs of LaRue and Libby™.

In combustion a flow of particular interest is the turbulent jet
diffusion flame.  This flow is not self similar owing to the heat release,
and often, aso, due to the presence of a co-flow and/or buoyancy. A
robust method is needed for these flows. A method based on the assumption
of local self-smilarity appears to be robust and accurate. It s
presented in Section 5.6.3.

In Section 5.64 we comment briefly on other methods for obtaining

*

N .
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5.6.1. Results for self-similar flows

In this section we consider some examples of the functions P and N
which are consistent with Eq.5.12), and following Klimenko et a % we
concentrate  on  self-similar  solutions. The integrals P, U and N are
functions of x; and mn. Sef-smilarity in the flows of interest ensures
that they can be scaed to be functions of just a normalized conserved
scalar variable ﬁsn/(nc-nmin) where 1. Iis a characteristic value for the
scadlar m a a paticular x;. Furthermore, power-law scaling can  be
expected so that

Ne = T]RX_B“

N A A _B
U = UgU(m) X "™

- 5 A A 'BN
N = (Urnr/er)N(m) X

* (AN B
P = ng(n) X p/nc

where X=xi/ig,and Ug, &g and mr ae reference vaues for velocity, length
and the scalar chosen for each particular flow. For two-dimensional
(planar) flows r=1, while for three-dimensional (axisymmetric) flows r=2.
The functions 0 I/\\I and I/:\> are non-dimensional functions of ﬁ but not of X
Substituting the self-similar forms into equation (5.12) we obtain

oA A d ANANA
2UP + BnT[nUP]
o

d® aa
4 e [Np] =0 (5.32)
with
Bn=Bu*2By+1 ; A'=By-By

Values of By, Bu Bp By can be determined for each particular type of
flow and some examples are shown in Table 1. For homogeneous turbulence,
wakes and scalar mixing layers, the vaue of 0 is a constant. The
self-similar  solution for P(M) and <N|n> in homogeneous turbulence
suggested by Sinai and Yakhot™ is included in (5.32) as a specia case

5-14



A =0.
Turbulent jets and wakes with 1n,i,=0 are now considered further. Let
N N N N
us integrate (5.32) over mn between the limits n>nmsand mMms (the bounds
which correspond to Mpin and Nma). We have

nmax
NN\ o NNN 1 d NN
x[ OPdn’” - n0P - 5 T[NP] =0 (5.33)
A "
n

where A=A"/B, Note that in self-similar flows the variable /ﬁ must be
chosen so that ﬁmmzo and ﬁmax is ether infinite or dependent on X. If
ﬁmaxzoo, the integration constant has zero value, as the function 6 tends
exponentially to zero at ﬁ»oo. In the case of a finite vaue of ﬁmax
Eq.(5.33) is ill valid® Further integration between the limits n and
ﬁmax, taking into account the boundary condition NP»O at n»nmax in
Eq.(5.23) yields

ma X

n
j[xﬁ + @an’) OmHPm e’ (5:34)
n

=[5
o>

The evident mequallty P>0 leads us to the concluson that the boundary
condition NP»O at n»nmax—o in Eq.(5.22) can be satisfied only if A=1. This
is an eigenvalue of the problem under consideration and it is in agreement
with Table 1. Equation (5.34) takes the form

AN

AN nmax
NF) NN No N No No
—= = Um")PmHdn (5.35)
Bl”l N
n

This method of obtaining N in terms of P has dlrect appllcatlon for CMC
modeling. The direct problem (that is expressing P in tems of N and U)
also has an analytical solution in this case
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N

N N N n/\

P(n) = const Ar exp ['ann g AN (5.36)
0

N(n)

The structure of equation (5.36) has some sSimilarities with the pdf
solutions suggested by Sinai and Yakhot™ and with Eq.(5.2).

5.6.2. Results for the planar wake

Figure 11 shows results for the pdf’'s in the wake of a heated circular
cylinder as obtained by LaRue and Libby™*. The pdf's have been scaed so
that ﬁsAT/ATC, where AT is the temperature increase above that of the
external flow and AT, is the mean temperature excess on the centerline (it
is assumed that Ah=CAT, C,=cons). The data are shown here with the
intermittent spike associated with  uncontaminated external fluid  omitted.
This has been subtracted according to the method of Bilger, Antonia and
Sreenivasan®. The symbol P°(N) is used to indicate that these are the
pdf's a a point in the wake and not those integrated across the wake as
in Eg. (5.10). The pdf's ae shown a various distances from the
centerline 'y normalized by the length scale for the width of the wake
l=(xdo)"? where x is stream-wise distance.

Figure 12 shows values ofAP/(\n) obtained by integrating the data of
Fig. 11 across the flow. Here r=1 so that Eq.(5.10) takes the form

(xdo)** 2

P'=(xdo)"2 P(M)/AT, = 2 Jﬁ"(ﬁ)d(ync) (5.37)
0

AT,

The reference length of the flow has been chosen as the cylinder
diameter ¢z=d, athough there are arguments to say that it should be Cpdy,
where Cp is the drag coefficient of the cylinder. The other reference
vaues are taken as Mr=lATJdy and Ugr=U.. It is seen that there is a peak
in |/:\>(ﬁ) for values of the scalar just less than the mean on the
centerline. A further peak is associated with fluid that is close to the
scalar value of the externa flow.

For scalars other than temperature P can be evaluated by replacing
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AT, by the mean vaue of the scalar on the centerline (zero in externa

NN NN\
flow). Figure 13 shows values of N(n) obtained by integration of the P(n)
of Fig. 12 using Eq.(5.35). Since for this flow By=2 and B,=1/2 we have

Ue

e (ATy?N(M) (5.38)

N =

Once agan this may be evaluated for wakes of scalars other than
temperature by using the mean value of the scalar on the centerline (zero
in external flow) in place of AT. With the x™® dependence of this
centerline mean it is seen that N~x° in a planar wake as indicated in
Teble 1. The shape of N() is interesting. It indicates that N is highest
for material that has a scalar value of about half of the mean centerline
vaue and that material of low scaar values or high scaar values has
much smaler N. This is consistent with the notion that material near the
extremes of concentration must have low gradients so that the bounds are
not exceeded. This is unlike the result in homogeneous turbulence with a
linear mean scalar profile where the point vaues of <N|n> are lowest near
n equas mean and rise away from this loca mean™*. When these <N|n>
profiles are integrated across the flow to give N and ﬁl(ﬁ), however, the
result will be a much less pronounced dependence on ?1 It is noted that
the two-dimensional wake will not be sdf-similar if there is heat release
and these results will not apply directly to such a case. They do,
however, give an indication of the form that can be expected for the N’
and P profiles in cases with heat release.

5.6.3. Method for local self similarity in jet flames

Kronenburg et al® have considered the evaluation of the scalar

dissipation from EQ.(5.31) for jet flames. They introduce a scaled value
N -~ =~

of m, m = nl§ where &. is the Favre averaged value of the mixture

fraction on the centreline. They show that EQ.(5.31) may be rewritten as
_ 1
pnN*P* = {ENnﬁn} - - 8T|n§§C) {Bﬂn[f’(no)dno} +
n
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-1

Ec
A {ﬁﬁ’écf 5(n°)<n-n°)dn°} (5.39)

)
+
|

=

In this equation B(N) is the Favre pdf scded to n and evaluated a the
dummy value ﬁo. There is no approximation involved in Eqg.(5.39). In the
region well downstream of the nozzle, & << 1 and there is no contribution
to the pdf integral in the second term on the right hand side from values
of ﬁo near 1/E. Under these conditions this last term on the RHS will be
zero if the flow is locally self similar. This can easily be shown® by
scaing the radial profiles by their centerline vaues and the jet half
radius;. the double integration over the flow and in scaed mixture
fraction space is then for x independent functions and so this double
integral can be taken outside the x derivative. The combination of scaling
values left inside the x derivative is proportional to the total flux of
mean mixture fraction and this is essentially constant since mixture
fraction is conserved and the contribution to the total flux of the term
involving the axia turbulent flux has aready been neglected (see EQs
(5.32), (5.9 and (4.5)).
Neglecting the second term on the RHS of Eq.(5.39) gives

. 1
oNP = {ﬁNn"lin} = - dnd {Bﬂn[f’(no)dno} (5.40)
n

We shall cal the evaluation of N using this equation the quasi-self
similarity method. It is seen that positive values of N are guaranteed
since the mean mixture fraction on the centerline falls with increasing x.
Furthermore, the pdf integra will be easy to evauate well downstream of
the nozzle, as there will be no peak near n = 1.

Kronenburg et al® have evaluated the accuracy of this quasi-self
similarity method for modeling a turbulent jet diffusion flame of hydrogen
in ar. They find that the method is accurate for x/d, > 30, where d; is
the nozzle jet diameter. Beyond x/d; = 120 the error begins to rise and
accuracy can be improved by evaluating the second term in Eq.(5.39) as a
correction term. For x/d; < 30, the quasi-self similarity method was found
to give results a least as good as those obtanable with the direct
method.
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5.6.4. Other methods

Smith et al™ modeled a turbulent jet diffusion flame of hydrogen in
air. For N they used a locally homogeneous flow assumption essentially
incorporating the method developed for homogeneous flows by Girimaji*.
Further details may be found in Smith™®. The method is robust, aways
giving positive values of N, and the errors involved are probably quite
minor for the flow studied.

Problems involved in evaluating N by the direct method of Eq.(5.31)
can be severe when using the Beta function as the presumed form for the
mixture fraction pdf, Eq.(15). Kronenburg et al® use a logarithmic
transformation of the mixture fraction suggested by Swaminathan and find
that the numerica integrations involved are more robust. Unphysical
negative values of N are still sometimes found, however.

Direct experimental measurement of conditionally averaged scalar
dissipation has been made in homogeneous turbulence with a mean scalar
gradient by Jayesh and Warhaft® and in other uniform density shear flows
by Kailsanath, et al® and Mi et al® Vaues of N() are reported for
various positions in the flows. Starner et al'® report measurements of N
as a function of mixture fraction in a turbulent jet diffusion flame of
ar-diluted methane.  Their results are shown in Fig. 14 for x/d = 25 a
four different jet Reynolds numbers obtained by varying the jet velocity.
The Favre average mixture fraction on the centreline, &, for these data
are close to 069 for the two lower Reynolds numbers and to 0.63 at the
two higher Reynolds numbers. The results do not show the expected
increase of N with jet velocity, possibly due to the effect of the coflow
on spreading rates. The results show a much dlower increase of N with n
near n = 0 than is shown for the uniform density wake data in Fig. 13 The
sudden peaks in the range n = 0.65 - 0.85 possibly arise from low number
statistics on the jet centerline.

It may be feasible to use such experimenta data to relae N to the
unconditional dissipation <N> integrated in some way across the flow. It
iIs not clear at this stage whether this sort of modelling would preserve
consistency with the pdf transport equation. The erors in Q may,
however, be small and worth the reduction in computational effort required
to evaluate N from Eq.(5.31) or approximations to it.
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5.7. Corrections of Higher Order

Equations (5.3) and (5.13) are approximations which effectively use
the properties of turbulent shear flows. We may need, in some cases, to
assess the practica precisson of these approximations. For this purpose,
Klimenko and Bilger® found the equation for the next term Q,=eQ; in
expansion (5.1). In genera, this term is expected to be smal. The
derivation of these corrections requires many steps and is not given here.
We present only the main results obtained in Ref. 60 This section can be
omitted at first reading. The man idea of the derivation is to retan the
terms of the next order in EQ.(5.8) and evaluate them using the asymptotic
expansions. The final equation for the corrections is given by

U* 0Q; _ N* 82Q+ —

> =

aXl a’r]
2
-2 Q_[P”[U” 9Q . N 9" -VWnJQ&]] (5.41)
P (1+oy) dn dX1 on
where
{<é><v1|n>Pon} {<&><N|n>Pov}
B = {<§>P(ﬂ)}; U = N =

{<e=P(m} {<e>P(m)}

and Q, satisfies EQ(513). It is assumed in Eq.(541) that the
conditional flux is  approximated by the  diffusion approximation
<v’2’Y”|n>:-DtaQ/ax2, and that the vaue octsDt(a<§>/ay)2/<N> is assumed to
be constant for the purpose of this estimation. It is easy to see that if
<v;|n> and <N|n> do not depend on x, and x; then U'=U, N'=N and the
teem on the right-hand side of EqQ.(5.41) is zero. In this case, the
solution of EQ.(5.41) with the Dboundary conditions Q.(Mmn)=0 and
Q:(Mmx)=0 is Q,=0. No correction is needed. If <v;|n> and <N|n> depend on
X, then the term on the right-hand side of Eqg.(5.41) is non-zero. Such
non-zero values of Q, indicate certain error in the CMC shear flow
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equation. It is expected that, under norma conditions, the value of Q. is
much smaller than Qq.

Recent data in turbulent jet flames® indicate that small variations
occur in  the conditional averages of temperature and species mass
fractions across the flow. These variations should be predictable by the
teem in Q, in Eq.(51). At this stage, the investigation of the variations
of Q across the flow are not completed, but some progress with it is given
in Ref 60

5.8. Results for Some CMC Predictions

In this section we review some applications of CMC to turbulent shear
flows and other turbulent dlender layer flows for which the methods of
Section 5 are applicable. In most cases the calculations have not been
carried out using the full rigour for the caculation of the conditional
scalar dissipation recommended here. Even so the predictions made show
generally good agreement with experimental data.

5.8.1. Reacting scalar mixing layer

Figure 15 shows a schematic of a reacting scalar mixing layer as used
in the experiments of Bilger et al’®.  Upstream of the turbulence grid the
streams are separated by a splitter plate and contain  small amounts of
nitric oxide (stream 1) and ozone (stream 2) uniformly mixed in ar. The
concentrations used were of the order of 1 pat per million (ppm) on a
molar basis and so the heat release and associated density change are
negligible. For these reactants the rate of reaction is proportiona to
the product of the reactant concentrations with the rate constant being
0.37 ppm'ls'lat 20°C. Downstream of the grid the mean velocity U = <v;>
iIs uniform and constant and the turbulence is decaying, somewhat
anisotropic and uniform in its standard deviations in the cross-stream
(%2,%3) directions.  Mixing of the two streams is confined to a narrow but
growing region in the X, direction, with a characteristic thickness
=0(X;) which is defined as the distance between the x, coordinates
where the mean mixture fraction is 0.1 and 0.9. Vaues of #&/x; ~ 0.3 in
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the region where measurements were made but déy/dx; is much lower than
this.

Figure 16 shows measurements of the conditional average Q; = <Yi|n>
normalised by the unmixed value Y;; at various postions across the
layer. It is seen that in accord with the asymptotic analysis of Section
5.1, there is no significant dependence of Qi(n) on Xx,.

CMC modeling of the reacting scaar mixing layer has been carried
out using somewhat crude assumptions about the conditional average of
the scalar dissipation which amount to taking N in Eg. (5.13) independent
of n

12

N = AU/x

where A ~ 004 is a constant for this flow. Since there is no variation
in the mean streamwise velocity we have

Normalization of the reactant mass fractions, Y;,

A Yi

=
Mi(Y1,1/M1 + Y3,/M5)

where M; is the molecular weight of species i, leads to the relation
N
Q =Q-m+ns

and the normalized CMC equation

A N N N 2,\
iQé = Ql[Ql -n + ns] + %A X11LQ% (5.42)
8X1 aXl
Here
Yo, 2

M2(Y1,1/M1 + Y, ,/My)

is the stoichiometric mixture fraction and
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N
X1 = NpXid/Hu

where # is the mesh size of the turbulence generating grid and Np is a
Damkohler number defined

ND = kMa(Y]_/M]_’]_ + YZ/MZ’Z)M/U

Here M, is the molecular weight of ar and k is the rate constant.
N
Eq.(5.42) has only two parameters, A and ms and Q; is a function of the

two independent variables Ql and . Boundary conditions for (51 were
taken as

N N

Qi = n(l-ny ax =0

N

Q. = 0, for m = 0;

and
N
Q=1-n, form=1

Eg. (542) is readily integrated numericaly. Figure 17  shows
solutions obtained for A = 006 and ns = 05. Solutions at Ql = 0 and
correspond to the frozen and fast chemistry limits as discussed in  Section
4.3. It is seen that the solutions aways lie between these two limits
and that the fast chemistry limit is approached for high Damkohler numbers
and large distance downstream from the turbulence generating grid. At the
fast chemistry limit the solution is bilinear with the break point on the
n axis a n = ne Variation of the parameter ms varies the solutions
accordingly.

The effect of the parameter A is shown in Fig. 18 where solutions for
n = 05 ae shown as a function of Ql. A = 0 corresponds to the so-called
reaction-dominated limit obtained by neglecting the mixing term in Eq.
(5.13). At this limit there is a balance between the convective and
reactive terms in Eg. (5.13). It is seen that A = 0.03 gives a very good
fit to the experimenta data'®. This corresponds to N being equal to the
unconditional  dissipation on the flow centreline estimated for this
experiment. On this basis, data from other scalar mixing layers gives
values of A as high as 0.06. It is seen that at redistic values of A the
results are substantially above that for the reaction-dominated limit. In

5-23



fact al three terms in EQq. (542) ae of the same order for realistic
values of A.

With A = 003 it was stated™® that the solution of Eq. (542) a X, =
89 if plotted on Fig. 16 would accurately pass through the data points
shown. In the light of error estimates for N° made in Section 5.4.3, this
seems a little surprising since no alowance was made in the predictions
for the dependence of N on m. Li and Bilger® caried out caculations
with  a model for the scalar dissipation which incorporated a realistic
dependence of <N|n> on n and found only small variations in the results.

5.8.2. Turbulent jet diffusion flames

CMC predictions for kineticaly limited combustion including radicals
and NO formation have been caried out®?H212412  tor  turbulent et
diffuson flames of hydrogen in ar for the conditions of the scaar
measurements of Barlow and Carter®®. Velocity measurements are aso
available for these conditions®. CMC predictions have aso been made®
for the helium-diluted hydrogen flames of Barlow and Carter®® and aso™
for the H,-CO flame of Drake®. In genera the predictions agree well with
experiment. We shal present in some detal the methods and results of
Smith et al'®, supplemented by some recent caculations®™, and then make
brief summaries of the results obtained in other studies.

Smith et al™ solve Eq (5.13) for species using a first-order
closure for the conditional reaction rate (Eg. 3.36) using both a "full”
mechanism (employing 8 species and 21 reactions for H, oxidation and a
further 4 gspecies and 5 reactions for NO formation kinetics) and a
two-step reduced mechanism that assumes partial equilibrium for the main
radicals and steady state for N atom. An equation for the conditional
average enthalpy, similar in form to Eq. (5.13) was solved using a first
order closure for the radiation source term. The instantaneous source term
was assumed to be given by the model of Kuznetsov and Sabelnikov”, see
Eqg. (3.33):

Wk = - 4ooBraoPrao(T - Ty (5.43)

with the emissivity function, B0, being given by
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Bhzo = 2.0E-05 - 6.4E-09 T (Pa'm™) (5.44)

where T is temperature in Kelvin, subscript b refers to the background
value, ppro IS the partiad pressure of H,O in am., and o, is the Stefan
Boltzman constant.  The kinetics and thermodynamic properties were handled
using standard CHEMKIN 11°° subroutines and conditional average
temperature was obtained from the conditional average enthapy and
composition  using these  agorithms, that s by  neglecting any
contribution ~ from  conditional fluctuations. Use of this conditiona
average temperature to obtain the conditional average radiation source
term by first-order closure as is done for the chemical source term in
Eq.(3.36) involves neglect of the conditional fluctuations in  the
temperature. At first sight this seems to be problematicad due to the
fourth-power dependence evident in Eq.(543). This was found to be
compensated in large measure by the temperature effects on the emissivity
given in Eq.(5.44), as is explained below.

The CMC equations were solved in paradlel with a computational fluid
dynamics (CFD) solution for the Favre-averaged velocity and mean, &, and

variance, (£”)® of the mixture fraction. A Reynolds stress turbulence
model was used and a parabolic-like equation solver used to step the
caculation in the x; direction. The CFD code passed information on the
velocity and mixture fraction to the CMC subroutine where U™ and N were
evauated and Eg. (5.13) integrated using an LSODE® solver for stiff
ordinary  differential  equations. This solver has its own step-size
control and in general many sub steps are taken in the CMC routine for
each step taken in the CFD caculation. The CMC subroutine  returns the
conditional average density, p, to the CFD code where it is used to
caculate the unconditiona average density, <p> a each point across the

flow by weighting with the local pdf evaluated from & and (é”)2 assuming a
beta function form for the pdf. It is noted that since the pdf derived
from the Favre-averaged moments of the mixture fraction is a Favre pdf,
P(m), the mean density must be obtained from

-1

<> = |[py'Pn) dn ] (5.45)

The CFD code used 50 radia node points and the CMC code 50 in mixture
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fraction space, a much closer spacing being used around stoichiometric, m
= ns = 0.0285.

Boundary conditions for the flow were those of the experiment: a jet
diameter of 3.75mm, average jet velocity of 300m/s with a profile and
turbulence kinetic energy for fully developed pipe flow a the Reynolds
number of 10,000, a coflow velocity of 1.0m/s with a turbulence level
estimated at 5%. For the CMC caculation the composition is that of air
(23% O,, balance N, by mass fraction) a& n = 0 and pure hydrogen at n = 1.
Ignition of the flow is assured by assuming that the composition is that
for adiabatic equilibrium for the first 5 diameters: results downstream
were found to be insensitive to the axial location where this transition
occurs. (Blowoff occurs if it is taken too far upstream.)

At preset intervals in x; the code writes out the dependent variables from
both the CFD and CMC pats of the code together with unconditional
averages (conventional and Favre) of the species and temperature at
selected points across the flow. These are evaluated from

<!
I

1
| e P dn (5.46)
0

1

<p>[ {@mlipa} PO an (547

0

<
I

with similar equations applying to temperature. (Conditional  average
temperature is obtained from the conditiona averages for enthalpy and
species via the CHEMKIN [l subroutine: it is recognised that this is not
exact due to the nonlinearity involved, but the errors estimated from the
conditional  fluctuation levels present in the experimental data ae less
than 1%.) The code adso puts out profiles of the velocity and turbulence
field and integral checks for momentum and flow rate of mixture fraction.

Of first interest in the results, aways, is the quaity of the
prediction of the velocity and mixing fields. Since this flame is close
to equilibrium and mean density is the only coupling that occurs from the
CMC that can affect the CFD, one can expect that any deficiencies arise
from inadequacies in the turbulence model. Comparisons for the flow field
are not available. A "flame length" to stoichiometric (where & on the axis
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equals mg of 163 diameters was predicted. The experimenters quote a
visble flame length of 180 diameters, but a flame Ilength to
stoichiometric of 128 diameters can be inferred from their data®®> on
Favre averaged mixture fraction. Thus the turbulence model underpredicts
the rate of mixing. This should be kept in mind when the predictions for
reactive species are being considered.

Comparisons for the reactive species are best made in terms of the
predictions versus measurements for the conditiona  averages plotted
against mixture fraction. This is because inadequacies in the CFD
predictions will have less effect on the conditiona averages than will
appear in unconditional averages plotted against radius since these will
be strongly affected by errors in the prediction of the mean and variance
of the mixture fraction. In general the predictions are excellent for the
major species and the OH radical. We will focus first on the most

difficult species to predict: nitric  oxide, NO. Figure 19  shows
predictions for the conditional average of NO compared with the
experimental data a Xx/4 = 0.5 and 1.0, where ¥4 is the inferred visble

flame length in each case. Such comparisons are better than comparisons at
the same vaues of x;, sSince relative position in the flame is important.
It should be kept in mind, however, that the transit times are probably
longer in the predictions due to the longer flame length, athough this
will be compensated to some extent by the velocities being higher. It is
seen that CMC gives good predictions in fuel rich mixtures in the middle
of the flame but overpredicts NO for lean and stoichiometric mixtures here
and a the end of the flame Figure 20 shows predictions closer to the
nozzle. It is seen that NO is grossly underpredicted at 4/8 but the
tendency to overpredict has overtaken this trend by ¢/4.

The CMC predictions of conditionally averaged temperature compared
with the laser measurements are very good near the end of the flame (not
shown here) being within about 30 K. Nearer the nozzle the temperatures
are dSignificantly underpredicted as can be seen in Fig. 21 Temperature
predictions near the end of the flame are sensitive to radiant losses but
not to the Kkinetics or the model value for scalar dissipation: the fluid
there is close to equilibrium. Near the nozzle temperature predictions
are insensitive to radiation losses but are quite sensitive to the Kkinetic
rate constants for the three-body recombination reactions. Differentia
diffusion effects are aso probably significant. One might aso expect
that near the nozzle the results would be sensitive to the conditional
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average scalar dissipation, particularly as mns is much lower than the mean
E in the middle of the shear layer and hence the shape of N will be
particularly important. These effects are considered in more detail below.

The underprediction of temperature near the nozzle could explain the
underprediction of NO in this region. The activation temperature for the
controlling step in the formation mechanism is 38,100 K. This means that
both erors in the mean and temperature fluctuations (Eq. 3.38) will have
significant effects on the mean rate of formation of NO. At x; = 4/8 the
peak conditional mean temperature is underpredicted by about 160 K in 2200
K (see Fig. 21): this will give a reaction rate which is low by a factor
of 4 Closer to the nozzle the error could be even larger. Figure 7 of
Barlow and Carter® indicates that the corresponding conditional rms of the
temperature fluctuations is about 100 K, and calibration measurements
indicate that little of this is shot noise associated with the low number
of Rayleigh photo-electrons gathered a high temperatures. Equation
(3.38) indicates that neglect of temperature fluctuations of this size
causes an underestimation of the reaction rate by a further factor of 1.3.
The correlation between T and O-atom fluctuations can be expected to
decrease this somewhat. In any event, it appears that the NO production
rate will be underpredicted by an amount more than sufficient to explain
the low predictions for NO concentration at x; = 4/8.

Figure 22 shows the effect of radiation loss and man reaction
kinetics on the NO predictions. It is seen that an increase in the
radiation loss by about 25% would be needed to bring the NO down to
measured  values  without alowing for the residence time  effect.
Fluctuations in temperature about the conditiona mean could alter the
radiation loss from the first order closure used for Egs (5.43), (5.44).
We have

<-|_"2 > <T"VY" >
Wil = WQrQuo) 1+ TN 4 o ST Y0l ) (g

1QH20
where
a; = 2(3 - 50Qn)/(1 - aQy)
a = (4 - 500Q7)/(1 - 0Qy)
and
o = 3.2E-04
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For the measured temperature fluctuations these corrections are less than
one per cent, assuming that the rms/mean for the H,O fluctuations are of
the same order as the values measured for temperature.

The effects of the kinetic mechanism shown in Fig. 22 are
significant. The two-step reduced mechanism uses the same rates for the
recombination reactions but assumes that H-atom is given by the partia
equilibrium  relation. This results in  higher recombination rates being
predicted with higher temperatures and lower O-atom concentrations. The
net result is higher predictions for NO. Smith et al™ aso show
comparisons with a Monte-Carlo PDF calculation that used a two-step
kinetics model and adiabatic conditions.  The predictions made for NO were
higher than for those from CMC but not by as much indicated in Fig. 22.

Smith et al”® have sudied this undiluted H, flame and the
helium-diluted flames of Barlow and Carter®®. The CFD code was tuned to
give the correct stoichiometric flame length. Much improved predictions
for NO and temperature are found for all three flames. The maor cause of
improvement was inclusion of the water vapour present in the ar stream, a
factor neglected in the earlier study.

Kronenburg et al® have investigated the effect of the modelling of
the conditional scalar dissipation on the results for the wundiluted flame.
As expected the results in the near field are quite sensitive to the model
used: NO predictions at x;, = 4/8 are nearly doubled when N is computed
directly from the pdf transport equation rather than using a simpler model
based on Girmgi’s™ method for homogeneous turbulence. In the near field
there is a diffusivereactive balance with the first term on the LHS of
Eg. (5.13) being much smaller. Downstream, where most of the NO s
produced, the convective and reactive terms are in balance and the results
a the end of the flame are insensitive to the model used for scalar
dissipation and even to artificial inreases in its magnitude. Kronenburg
e al® adso found that increasing the rate constants for  the
recombination reactions raised the predicted temperatures as expected. NO
predictions in the near field were unchanged, however, but were lowered
toward the end of the flame. It appears that the effects of reducing
O-atom levels dominate over the effects of increased temperature in the
far field but baance out in the near field. The standard rate constants
for the recombination reactions give the best predictions of OH levels
throughout the flame.

In summary, it appears that CMC predictions in the near field will be
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improved by  improving the modelling of scalar  dissipation, by
incorporating a second order closure for the effects of fluctuations on
the temperature, O-atom concentration and the NO formation rate, and by
modelling the effects of differential diffusion. Predictions in the far
field are now satisfactory and are not likely to be sensitive to these
refinements needed for the near field.

Smith™® presents results of caculations for the H,-CO turbulent jet
diffusion flame data of Drake®. In genera good agreement is obtained
athough  there is evidence of  differentia diffuson  effects  not
incorporated  in  the  modeling. Roomina™® aso finds differential
diffusion effects to be sdignificant in CMC predictions of jet flames of
H,-CO, mixtures and also methanol *®'". Such effects are not found to be
of great significance ™ in computation of the partialy premixed methane
air diffusion flame of Barlow and Frank®.  Good predictions are found for
al major species and temperature using the full GRI mechanism™ involving
49 gpecies and 277 reactions. Predictions for OH are aso very good. For
NO the predictions are somewhat high on the lean side but are very good
on the rich side where strong effects of the reburn kinetics for NO are
evident. These methane calculations took about 130 hours on a DEC 3000/400
work  station. Shorter  calculation times should be possible when
improvements have been made to the numerical methods used for solving the
stiff equations involved.

5.8.3. Round plumes in grid turbulence

Figure 23 shows schematically the set up for the experiments of Brown
and Bilger® for a reacting axisymmetric plume in grid turbulence.  The
mean velocity of the flow is wuniform and constant, while the turbulence
decays downstream. A point source of nitric oxide diluted to 515 ppm is
loated three grid mesh lengths downstream of the turbulence grid and
enters the flow with the same mean velocity. The main flow contains about
1 ppm of ozone. Here T'=Y/M;. The streams mix and react as they flow
downstream. Measurements were made a x/# = 9 to 17 where the plume
spread is describable by turbulent diffusion. The plume width there is
less than 0.3x;, and so may be treated as a dender layer with the analysis
of Section 5.3 being applicable.

Conditiona average dtatistics for this plume and CMC modelling for
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the conditional mean values are presented in Brown and Bilger®™®. It is

found that there is a smal variation of the conditional averages across
the flow with a range of about + 5% of the conditiona mean of the NO
concentration. In  the CMC modelling the conditional average scalar
dissipation was estimated from the experimental measurements of the
conserved scalar variance using the strategy of Section 5.2 assuming a
vaue of the time scae ratio (for decay of turbulence kinetic energy to
that for scaar variance) to be independent of radius. Vaues for n > <&>
on the centreline were computed from the centreline variance. Results for
a moderate Damkohler number case are shown in Fig. 24 Here Qis<Yi|n>. It
iIs seen that agreement is excellent. The reaction dominated limit shown is
obtained by setting <N|n> = 0. It was found that the predictions were
relatively insensitive to the values taken for <N|n> in the CMC equation:
changes by a factor of 2 only change the predictions by about 10%. This
means that the mixing term in Eg. (53) is less significant than the
convection term, particularly far downstream. In this flow the scalar
dissipation decreases with distance, x;, raised to the -3.6 power, amost as
strongly as it does in a jet.
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6. CMC FOR SIMPLIFIED TURBULENT REACTORS

Here we consider analogues of the Perfectly Stirred Reactor (PSR) and
the Plug Flow Reactor (PFR) for conditions under which the flow within the
reactor is incompletely mixed in terms of the mixture fraction. The first
of these is the Incompletely Stirred Reactor (ISR), an analogue of the
PSR, in which it is assumed that the conditiona averages of the reactive
scalars are uniform within the reactor even though the mixture fraction
field is not. Its limiting case is a PSR with incompletely mixed inlets,
which is dtill in fact a PSR. The ISR may prove to be a useful model of
such reactors as the gas turbine primary zone in which strong
recirculation is present and the Damkohler numbers are moderate.

The second is the Dilution Flow Reactor (DFR) which is an analogue of
the Plug Flow Reactor (PFR): the reactive scalars are assumed to be
uniform across the flow, as found to leading order for turbulent slender
layer flows. The DFR may prove to be a useful model for the dilution zone
of a gas turbine combustor and for NOx reburn zones of furnaces.

In both cases it is emphasised that the conditions under which such
modelling will be valid are not yet clearly defined. It can be expected,
however, that these models will be more informative for such flows than
PSR and PFR models a a modest increase in computational cost. They may
prove to be useful for parametric studies.

6.1 The Incompletely Stirred Reactor

In this section we examine the application of CMC methods to a class
of flows that define what we shall term an Incompletely Stirred Reactor
(ISR). The ISR is a generalisation of the well-known Perfectly Stirred
Reactor (PSR). In the PSR low temperature reactants enter the reactor and
immediately mix with the reacting mixture within the reactor volume. The
composition and temperature within the PSR are uniform and are the same as
in the outlet flow. The PSR concept has been a useful one and has been
used as a preliminary design tool for combustors in which the conditions
of uniformity are, in fact, far from being realised. Generalisations  of
the PSR which alow for incompleteness of the mixing within the reactor
should prove to be wuseful additions to the amory of the combustor
designer. The Partidly Stirred Reactor (PaSR) concept has been developed
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from the Monte-Carlo pdf method and has been applied to premixed®®* and

nonpremixed”® systems.  Plausible predictions of NO and CO emissions and
extinction and ignition phenomena are obtained that show a dependence on
mixing rates that give insights beyond what is obtaned from PSR
calculations. There is no direct link, however, between the mixing rates
assumed and the flow field that exists in the combustor. The ISR concept
provides such a link for nonpremixed systems and may prove to be useful
for these reasons.

As has been described in Section 5, ~great simplifications are
possible in dender layer flows where it is found that there is little
variation across the flow of conditional averages of the reactive scalars,
even though there are very strong variations in the mixing field as
represented by the crossstream profiles of <&>, <€*> and P(n). This
idea is here generalised to  strongly recirculating  flows:  if  the
recirculation is strong enough and other flow  characteristics are
appropriate, the conditional averages of the reactive scalars could be
essentially uniform  within  the reactor even though the mixing field
represented by <&>, <&’*> and P(n) is far from uniform.

Figure 25 shows a schematic of an axisymmetric combustor which may be
a suitable candidate for ISR analysis of the recirculation zone. The
figure defines the cylindrica coordinate system (xr). A centra primary
jet  of partialy premixed fuel and ar enters without swirl aong the
combustor  axis. A thin annulus of secondary air enters axialy at high
velocity without swirl a a large distance from the centreline but not
quite a the wal of the combustor. Figures 26 - 28 show the mean

streamlines computed for the flow together with the Favre mean, f =
II2

<pt>/<p>, and Favre variance of the mixture fraction, g = <p&">/<p>,
where &' = &-f. For the partial premixture chosen for the primary jet
stream, the stoichiometric value of the mixture fraction is ms = 0.3

These computations have been made using a standard k-epsilon model for the
turbulence and using a fast chemistry assumption for the combustion®™. The
mean flow pattern shows three toroidal vortices, with the large downstream
one being of most interest to us. It is seen that the stoichiometric
contour of mean mixture fraction goes right through the middle of this
recirculation zone. Since most of the reactions of interest to us occur
near stoichiometric, it is evident that there is no obvious reason for
there to be strong spatia  variations in conditional  averages  of
temperature and reactive species mass fractions for values of mn  near
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stoichiometric. It is aso seen that the incoming primary fuel-air stream
mixes with combustion products, rather than with cold secondary ar and
hence should not give rise to local premixing without ignition or to loca
extinction events. Furthermore, the secondary air stream mixes with
recirculated combustion products rather than with cold fuel so that there
should be no unignited pockets of mixture as occur where a ported flame is
lifted and not stabilised right a the burner lip. Conditiona variances
about the conditional mean for species and temperature, a any point in
the flow may not be so large as to make a first moment closure for the
conditional  reaction rates greatlly inaccurate. It is obvious that the
strong variations of mixture fraction, spatid and temporal, make this
combustor far from being a PSR. It is aso evident that reaction will not
be confined to a thin flame front and laminar flamelet modelling for the
combustion will not be valid®® This is because the width of the
reaction zone in mixture fraction space is comparable with the rms
fluctuations in the mixture fraction.

ISR modelling is not generally applicable to &l recirculating flows
and indeed may only be valid for a narrow range of tightly constrained
combustor designs. Even so, this class of combustors may have practica
significance. Like the simply supported beam, ISRs may find favour with
designers for the simple reason that they are easily analysable and that
combustor geometry and flow parameters are directly linked to performance
through CFD and CMC analysis.

Various vesions of the ISR concept have been presented in
Ref, 99912112 pere  we present the forma  definition of an ISR and
the derivation of its governing equations. We apply the method to the
combustor illustrated in Figs. 25-28 and discuss the validity of @ this
application and the effects of design and operating parameters on
combustor performance.

6.1.1. Definition and governing equations

We define an incompletely stirred reactor (ISR) to be a region of
flow, bounded within simple boundaries, within which the conditiona
averages of temperature and species mass fractions show little spatial
varigtion and the conditional variances about these conditional averages
are gsmall. Quantification of "little" and "small® in this definition is
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such as is necessaty to alow a first or second order closure for the
conditional average reaction rate terms in the CMC equations. By "simple
boundaries® we mean inlet boundaries across which fluxes of species and
enthalpy are given, walls which are non-reactive and impervious to flow
and across which heat transfer is readily evaluated, and outlet boundaries
across which fluxes of enthadpy and mixture fraction ae known, or
available from CFD calculations.

For clarity of presentation we restrict ourselves to dSatistically
stationary flow, athough unsteady ISRs are also possible. We begin with
the CMC equation of Eg. (4.1) in the the statistically stationary form

div[§<vv|n>’F'>(n)] =p<W|n>P(n)

P<N|T\>P(ﬂ) Q + py<N|n>P(m) 2Q (6.1)
on’? on 2

where the last teem on the RHS of Eg. (41 has been differentiated
through and the converson to Favre pdfs of Eqg. (4.4) has been made.
Integrating this over the ISR or "core® volume, V, and using the flux
divergence theorem leads to

f p<vY|n>P(n)dA - f p<vY|n>P(n)-dA = I p<W|n>PMn) dv

Aout Ain \%

J82p<N|n>P(ﬂ) Qdv + j §<N|n>’|5(n)22—(23 dv (6.2)
m

\Y

In this equation conditional correlations between the species and velocity
have been ignored, it being assumed that they are small compared with the
mean convective flux. Since, according to the definition of the ISR, all
conditional reactive scalar dtatistics are uniform inside the core, they
can be moved outside the integrals. We use the definitions:

Pp = i I§<v|n>'|5(n)‘dA (6.3)
m
Ay
pr=_1 [ #Pm) av (6.4)
PV ¥



**

=1 [ av (6.5)
Viov
N** . 1 J* o~
= pP(M)<N|n>dV (6.6)
p PV v

where m is the mass flow rate through the reactor and subscript "b" refers
to inlet or outlet. Eq. (6.2) can then be written

QP:)ut - QinPTn =

(6.7)

2
:rr[P Win> + P'N" 222 g

where the residence time 7, is given by
T = p Vim (6.8)

According to the previous discusson we assume in EQ.(6.7) that 1) Q does
not have significant variations within the volume V so that Q can be
placed outside the integration sign and 2) the outlet vaue of the
conditional expectation Q coincides with the value Q within the volume V:
Qout=Q. Integrating the Favre form of the pdf transport equation (4.3) and
using the above definitions yields

* % * %

P:)ut - P?n = T 78 P 2N (69)
an
Subtracting Q times this from EQ.(6.7) yields
_ * % * % * % azQ
(@ QuJPin = w[P <Wn> + PINT 25 (6.10)

om

The volume weighted conditional scalar dissipaion, N°  may be found by
double integration of Eqg. (6.9) with respect to m



nm
N = 1 f f [F’Zut(n”) - F’Tn(n”)] an”dn’ (6.11)
00

Use has been made of the boundary conditions of Egs (2.61),(2.62) and
(2.68)-(2.71), with the stationary flow assumption.

Equations (6.10) and (6.11) ae the ISR equations for generalised
inlet conditions where P, has a broad distribution indicative of partial
premixing. In this case Q,, is defined

_ 1 —5
Qn = —— [ PPm)<vY|n>dA (6.12)
I:)in Ain

With N~ obtained from Eq.(6.11), Eq. (6.10) is integrated with boundary
conditions at m = 0,1 given by the inlet values, Q, a these bounds.

Of greater interest is the case when there are two inlet streams,
each having uniform composition and enthalpy, so that P, is comprised of
two delta functions, one a¢ n = 0 and the other a&a m = 1. In this case
the ISR equations reduce to

2
NT 29 + awpn> - 0 (6.13)
on 2
1 n
N = = [(1-éa)n - f [n - n’] Pou(n’) dn’] (6.14)
TP 0

In EqQ.(6.14) use has been made of integration by parts in reducing the
double integral to a single integra. Also &, is the fully mixed vaue of
the mixture fraction for the inlet and outlet flows

1 1
&= [ n Pidn = [ n Poudn (6.15)
0 0

For flows in which there is no conduction or convective heat transfer at
the walls an equation similar to Eg. (6.13) will apply for the conditiona
average of the standardized enthalpy. The source term will now be the
conditionally averaged heat transfer gain by radiation. Extra terms will
be needed for incluson of heat transfer by convection/conduction at the
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walls.

The boundary conditions to be used in solving Eq. (6.13) are

I
o

Q= [Qm]n:O for

Q= [Qm]n:1 for

I
[EEN

(6.16)

The inlet streams may be partialy premixed (uniformly) mixtures of fuel
and air. They may even be reacting as long as the Q;, values are taken at
the boundary assumed in evaluating the integrals of Egs (6.3)-(6.6).

The ISR becomes a PSR in the limit of the mixing in the core becoming
so srong that both P~ and P, become delta functions centred at &,
This can be shown by substituting Eg. (6.11) in Eg. (6.10) and integrating
over mixture fraction gpace. Integrating the second derivative of Q by
parts yields

1
Y - J QinPTndn = Wr, (6'17)
0

where 'Y is the species mass fraction that is wuniform throughout the
reactor and equal to its outlet valueg W is its rate of formation by
chemica reaction. If the inlet stream(s) are fully premixed we obtain
the usual PSR formula

It is evident hat a PSR does not necessarily need to have its inlet flows
fully premixed. If the mixing within the reactor is strong enough the
essential  features of the PSR  ae present and the dightly modified
formula of Eq. (6.17) applies.

6.1.2. Application

Mobini* has modelled the head end of the combustor of Fig. 25 as an
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ISR, taking the outlet area to be the plane normal to the axis as defined
by X = Xnx = 0.053m. From Fig. 26 this is seen as being a the end of

the recirculation zone. This seems an appropriate place, athough
srictly the turbulent flux contribution to the outlet integral should be
included for points near the axis where the axial velocity is small. The

flow and mixing calculations shown in Figs 26-28 were made with a primary
fuel-air flow rate of 0.76 g/s a an equivadence ratio of 4 with methane
as the fud and a secondary ar flow rate of 43 g/s. Inlet flows were at
300K and the combustor pressure is 1.0 am.

Figures 29 and 30 show the core, P, and outlet, Py, pdfs and the
core-averaged conditional scalar dissipation, N, computed from the CFD
output assuming that the mixture fraction Favre pdf a any point in the
flow has a betafunction form. It is seen that the core pdf, P, is
guadrimodal with spikes a n 0,1 associated with the potential cores of
the inlet jets, a peak a m =~ 0.04 associated with the recirculation zone
a the outer corner, and a man peak at n = 0.11 associated with the outer
flow near the combustor wall which has a high radius and relatively high
density. These latter two peaks are responsible for the bumps in the N~
profile a these vaues of . The N~ profile has a significantly
different shape to that found for Ilaminar counterflow flames, with the
steep gradient near m = ns = 0.3 being of possible advantage, as discussed
later.

The ISR equation (6.13) is identical to the equation solved for
laminar counterflow flames and is solved using a standard two point
boundary value problem solver suitable for stiff equation systems®. Note
that the ISR determined values of N~ are used, however.  Mobini* has
obtained solutions using the full Miller-Bowman mechanism, including all
prompt kinetics for the NO.  Solutions took approximately 2hrs on a 1995
vintage advanced work station (DEC Alpha 3000-700).  Figure 31 shows the
prediction obtained for conditional average values of the mass fractions
of the magor species, while Fig. 32 shows predictions for the
conditionally averaged temperature and mass fraction of nitric oxide. The
residence time obtained from the volume average of the unconditional mean
density was 8.6ms. The magor species and temperature are sSimilar to those
that would be obtaned for a laminar flamelet calculation with the same
value of conditiona scalar dissipation at stoichiometric, except that the
peak CO is somewhat higher. The peak conditional average temperature at
2000K is well above that a which local extinctions would be expected to
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occur. The conditional average nitric oxide mass fractions are somewhat
higher than would be desired for a rich-burn quick-quench combustor and
yield an average vaue at exit of 4lppm. Such average vaues a exit can
easily obtained by weighting by Pgy

' 1
(<Y = Mot = [ Q)P (6.18)
0

m

where mg,: is the mass flow rate of species i a the ISR exit.
Figure 29 shows that P;ut is quite narrow, so that this quadrature is easy
to estimate by eye. It is apparent that the NO levels could be decreased
by increasing the mass flow rates of the primary and secondary streams,
bringing the ISR residence time down and decreasing the peak temperature.
The pressure loss in the secondary ar streaem would become severe,
however, and the CO emissions from the ISR would increase. The latter
would perhaps not be too much of a problem as the CO will continue to burn
out in the flow downstream of the ISR while little further NO will be
produced. The flow downstream of the ISR essentially meets the criteria
for dender layer flows presented in Section 5 and the methods put forward
there could be wused to predict further burn out of the CO wusing the
Dilution Flow Reactor model presented in section 6.2. Parametric studies
of the effect of residence time and other variables have been carried
out * but for a different system.

Unconditional averages of temperature and species mass fraction can
be estimated a every point within the combustor by weighting the
predicted conditional averages by the loca pdf, P(n;xr), obtaned from
the local values of the mean and variance of the mixture fraction and the
presumed form of the pdf. Favre averages or conventional averages can be
obtained. Usudly it is the Favre pdf P(m;xr) that is avalable and so
the formulae are then

1
Y = | QPmixr)dn (6.19)
0
B 1
Y= p0en) [ py" Q) Plix) dn (6.20)
0



with similar formulae applying for temperature. Mobini* gives contour
plots for severa species and temperature obtained in  this  way.
Parametric studies can be made for ISRs with differing characteristics
without resorting to ~ CFD caculations. Since N~ is the only thing that
affects the chemistry for given inlet composition (see Egs 6.13, 6.16)),
the effects of different mixing patterns and residence times can be
explored by parametric variation of the shape of the core, P, and
outlet, P;ut, pdfs and of the residence time, 7. Consequent  effects on
core average conditional scalar dissipation, N, can be caculated from
Egq. (6.14), and solutions for Q obtaned from solution of Eg. (6.13)
Emissions from the ISR can be evaluated from Eq. (6.18). As a result of
such parametric studies it should be possible to find the desirable shapes
of P~ and P, and acceptable value of 1, to meet emisson goas. CFD
design studies can then be caried out in attempts to meet these desired
pdf shapes and residence time. Smith and Bilger'® and Mobini et al® have
carried out such parametric studies. General findings are that the outlet
paf, Potw has little influence on the results provided it is not too
broad in mixture fraction space’®. This is because the numerator for the
RHS of Eg. (6.14) has an amost triangular shape with zero values a n =
0,1 and an apex of E(1-&) a m = &g broadening Pout merely rounds off
the corner of the apex. Narrowing P~ causes N~ to shoot up to high
values at m vaues away from that where P~ has its peak: this is how the
ISR approaches the PSR limit.

6.1.3. Validity of ISR modelling

Criteria for determining the validity of ISR modelling are as yet not
clearly defined. For simple chemistry with an identifiable chemica time
scale, 1., a suitable criterion may be

Tre << T. << T, (6.21)

where 1, IS a suitably defined recirculation time scale. In  strongly
recirculating flows 1, will be a measure of the time for a fluid particle
to make one orbit of the recirculation zone, many such orbits being made,
on average, before the fluid particle exits the reaction zone. If 71, <<
. then it can be expected that there will be little spatial variation of
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the conditional averages, Q, within the reactor volume. The requirement
that 1. << 1, seems appropriate to ensure that there is no likelihood of
extinction events within the reactor volume. For complex chemistry the
situation is more complicated and further analysis is needed. A full CMC
analysis of the reactor shown in Figs 25-28 is possible and should throw
much light on the requirements for validity of ISR modeling.

Gough et al * have made measurements in a combustor very similar to
that shown in Fig. 25 Flow conditions were dightly different than those
discussed in Section 6.1.2 due to the fact that for those conditions the
CFD  predictions ae inaccurate and the fuel jet penetrates the
recirculation zone. The outer annulus ar velocity was increased so that
the fuel jet was no longer penetrating. Measurements made with sampling
probes and a thermocouple a the exit of the recirculation zone are
compared with revised ISR model predictions in Fig. 33. It is seen that
the predictions show quite good agreement with experiment athough NO is
overpredicted somewhat and CO is underpredicted. @ These results give some
encouragement that the ISR model can at least be used for giving the right
trends in parametric studies. Work is in progress to verify this. The
model may aso be helpful in getting starting solutions in  fully-elliptic
multi-dimensional calculations.

6.2. The Dilution Flow Reactor

The Dilution Flow Reactor (DFR) is a generdisation of the well-known
Plug Flow Reactor (PFR)™. In the PFR, the flow is assumed well mixed in
a crossstream direction so that profiles of velocity and composition are
uniform. Composition gradients in the streamwise direction are assumed to
be smal so that longitudinal molecular and turbulent transport can be
neglected. The problem is steady and one-dimensiona with chemical
reaction being balanced by longitudina convection. Dilution by mass
addition can readily be added to the problem but is usualy not
considered.

In the DFR, dilution of the flow is specificaly catered for, as is
nonuniformity of the mixture fraction across the flow. The assumption is
made that the conditional averages of reactive scalars do not vary across
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the flow and that fluctuations about these conditional averages are smal
enough for closure of the source terms to be made at the first conditional
moment level. Figure 34 shows a schematic of such a reactor. The duct may
be of varying cross-sectional area, but for simplicity it is assumed that
its centreline is straight. In the analysis that follows, the flow through
the walls of the duct is assumed to be inwad and either of mixture
fraction zero or unity. In gas turbine combustors the diluent is air,
while in furnaces with NOx reburn the inflow is first fuel (not realy a
diluent!) and later air. In NOx reburn systems the fuel injection
generates NH, and other radicals that can reduce the NOx generated in the
upstream  regions. The chemistry is complex and very sensitive to
stoichiometry so that incorporating the mixing effects is very important.
It is possible to derive the model for inflows a intermediate mixture
fractions, but for simplicity we will assume that the inflow is a & = 0
or 1.

Integrating Eqg.(4.1) and (4.3) across the flow with the assumption
that Q = Q(m,X) with x =x; (the streamwise direction) yields

P U Q iy (08(1-M)Q - Ma3M)Q =
* 9 s 0 op,P N’
W|n>p, P+ Bn_[pnPN dg - PPy Q] (6.21)
* * 2 * *
P Y it (08(1n) - ife(3(n) = - a—gﬂﬂ (6.22)
n

where (X)) and M (X) are the mass inflow rates per unit length in the
x direction of fud and oxidant respectively. P, U and N are averages
computed across the flow as in EQ.(5.10). Subtracting Q times EQ.(6.22)
from Eq.(6.21) and dividing by pnP* yields

2
U992 = <wn> + N gn? (6.23)

which is essentidly the same as EQ.(5.13). Integrating EQq.(6.22) by parts
yields
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PPN = G [ ™npyP U’ + (L)t (629
n

If a full CFD prediction for the flow and mixing field is available, U’
and N can be obtaned from Egs(5.10) and (6.24), respectively.
Equation.(4.5) should probably be wused for obtaining the conditional
velocity in the axial direction since there will be regions of low
velocity in the wakes of the jet inflows. In parametric studies more
approximate estimates for U” and N will probably suffice.

In the above it has been assumed that the walls are nonreactive.
There will be a corresponding equation for the conditional average
standardized enthalpy with a radiation source term. Additional terms will
appear for the effects of conductive/convective heat transfer at the wall
and for variations in temperature with x of the "diluents".
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7. CMC IN HOMOGENEOUS FLOWS

As noted in Section 45 the CMC equations are considerably simplified
in cases where the flow and mixing can be taken as being homogeneous. Such
flows ae approximated experimentally by the flow behind a turbulence
generating grid. Scalar mixing in such flows has been studied extensively
for temperature in air by Warhaft and others (see Tong and Warhaft'*®, for
entry into this literature). Reacting experiments have been carried out
in a tubular reactor by Toor and others and these have been modelled by
Southwel ['*".  This work is briefly reviewed in Section 7.1. Homogeneous
turbulent flows are particularly amenable to direct numerical simulation
(DNS), the pseudo-spectra method being applicable where density and
transport properties are constant. We review results obtained for simple
one-step chemistry in Section 7.2 and for multi-step kinetics in  Section
7.3.

7.1. Turbulent Mixing Reactors

Southwel | " has modelled the experimental data of Vassilatos and
Toor™ and Li and Toor® using CMC. In the Vassilatos and Toor
experiments the reactor consisted of one hundred pardlel jets issuing
from hypodermic tubing closely set together. The two reactants issue
dternately from the jets. The turbulence generated is approximately
homogeneous in the cross-stream direction and the rate of decay is such
that it is essentially homogeneous in the flow direction. Dilute sodium
hydroxide was one reactant and the speed of the reaction was varied by
using acetic acid (very dow), dissolved carbon dioxide (quite fast) and
hydrochloric acid (very fast) as the other reactant. Mixing data for this
reactor is available from Shenoy and Toor'™® and the variance of the
mixture fraction fluctuations was fit by piecewise power law functions of
the distance downstream. These functions were used to deduce the
unconditional scalar dissipation. In  the CMC modelling the conditional
average scalar dissipation was assumed to be equal to the unconditional
value. The predictions showed good agreement with the experimental
results, the unconditional average of fractiona conversion to product
being dlightly underpredicted in the dlow case, and dlightly overpredicted
in the quite fast case The very fast case was indistinguishable from
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full  equilibrium. More accurate modelling of the conditional scalar
dissipation may improve predictions for the quite fast case.

In the experiments of Li and Toor® the reactor was similar to the
above, but only had 14 jets. Mixing data for this reactor were obtained
from Li” and Singh™® and the mixture fraction variance was found to be
quite strongly dependent on Reynolds number: once again piecewise power
law fits were made to this data and the unconditiona dissipation of

mixture fraction was obtained by differentiation. In the CMC modelling
the conditional  scaar  dissipation was once agan taken as the
unconditional  value. The reactants were 1-naphthol (A) and diazotised

sulfanilic acid (B) to produce two dyestuffs R and S through the
series-paralel reactions

A+B — R (7.1)
R+B — S (7.2)

The first of these reactions is quite fast and the second reaction is much
dower. Measurements were made only at the reactor exit. Figure 35 shows
results obtained with the CMC modelling using the average value of the
rate constants that have been published for the first reaction. Also shown
are the predictions with the mechanistic Four-Environment Slow model of
Dutta and Tarbell®, the most accurate of the unconditional moment
closures methods used by chemical engineers. It is seen that the CMC
predictions are good. They probably can be improved with improvements to
the model for the conditional average scalar dissipation.

7.2. DNS with One-Step Chemistry

Direct numerical simulations with nonpremixed reactants with a single
ireversible  chemical step have been studied by Mel e al®*
Swaminathan and Mahadingan™, and MeI®. Lee and Pope™ consider a
reversible  one-step  reaction with  features corresponding to a high
activation energy in the reaction rate. Their man interest is in
predictions of extinction, and here CMC does poorly as can be expected
since only a first moment closure is considered for the conditional
average reaction rate. In general all the other comparisons with DNS show
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CMC to make very good predictions for unconditional averages of reactant
concentrations  provided that the conditiona  average of the scalar
dissipation for the mixture fraction is modelled adequately.

In principle, DNS dlow us to examine in every detail the closure
assumptions made in CMC modelling. The limitation is that the simulations
are only avalable for farly low turbulence Reynolds numbers and in most
cases to low and moderate Damkohler number. Kosaly® has stated that
CMC is exact a the Ilimit of zero turbulence Reynolds number (no
convection). We have not been able to find a satisfactory proof for this.
If it is true, questions of validity a high Reynolds number must be
addressed by other means. For reasons that will become apparent, we look
first a the issues of correctly modelling the conditiona average scalar
dissipation. We then examine what should be the primary question - the
validity of the fundamental closure hypotheses for the basic CMC equation,
as have been summarised in Section 3.3. We then address issues concerned
with the limitations of first order closure of the conditional average
chemical reaction rate term.

7.2.1. Correctly modelling conditional scalar dissipation

Mel et al® caried out DNS in homogeneous turbulence with an
initial turbulence Reynolds number based on the Taylor microscale Re, = 35
and for a simple equimolar reaction without any temperature dependence of
reaction rate. DNS caculations were made for two values of the mean
mixture fraction, <&>, which was aso the stoichiometric vaue, &g
namely, <€¢> = & = 025 and 0.5. For each of these cases, three different
initial Damkohler numbers, Da,, were computed, Da;, = 0.5 2 and 8. In the
CMC modelling two different models were used for the conditiona average
scalar dissipation:

<N>, (7.3)

Case (a): <N|n>

Case (b): <N|n>

<N|n=0.5>F(n) (7.4)



where the function Fy(m) is obtained from counterflow laminar flame
modelling as

2
Fim) = exp [ 2[erf'1(2n-1)] } (7.5)

The values of <N> and <N|n=0.5> on the RHS of Eq. (7.3) and (7.4),
respectively, were obtained from the DNS. The modeling of Eg. (7.4),
(75) is aso obtaned as the result of Kraichnan's® amplitude mapping
closure (AMC) and solutions for the initial stage of mixing'®

The unconditional average of the product of the reactant species mass
fractions, <Y,Yg>, gives a sensitive overal measure of the goodness of
the CMC modeling, since this is proportional to the mean reaction rate
and will have consequent effects on the unconditional averages of the
species mass fractions. ~ Table 2 from Mel e al®™ shows the errors
arising in the CMC predictions for this statistic obtained from

1
NYaYe>ouc = | Qaln) Qa(n) P(n) dn (7.6)
0

with P(n) taken from the DNS. The error is reported relative to the DNS
value. Time is normalised by the initia eddy turnover time, Iolu;, where
lo is the initid integra length scale of the velocity field and u(’) IS
the initial value of the rms velocity component fluctuations. It is seen
that the errors arising from the use of the unconditional dissipation,
Case (a), are large, particularly near the beginning of the experiment and
when the Damkohler number, Da, is high. Results are much better for the
counterflow model, Case (b), particularlly where <¢> = & = 05 and Dg is
not high.

These errors in the CMC predictions can amost entirely be attributed
to errors in the modelling of <N|n> As shown in Section 4.2.3 errors in
<N|n>, AN(n), result in a false chemica source term, <Ey>, which in the
present context may be evaluated as

1
2
<€ = Da' [ ANmPM 22 dn (7.7)
0
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This false reaction rate term is essentially identica to the eror in
<YaYs>. The second derivative 0°Q/on® pesks strongly at m = & and errors
at this location in mn space ae of most importance athough this is
modified by the values of P(m) in this region. The strength of the peak
a a given time strongly increases with Damkohler number, since the fluid
is then more highly reacted and closer to the equilibrium chemistry [limit
where the second derivative becomes infinite. Figures 36-39 show the
pdfs, <N|n>/<N>, <N> and the fraction of the reaction rate balanced by the
transient and diffusive terms. Figure 38 aso shows the modeling for
<N|n> used in Case (b). Note that the modelling for Case (@) is inherent
in the normalisation used: <N|n>/<N>. It is seen that the modelling of
Case (@) involves very large errors in <N|n>, particularly at early times.
From this information and Eq. (7.7), it is possible to make an approximate
check on the errors involved in using the modelling of Case (a) for <N|n>.
A more accurate check is obtained by referring to the Case (b) results
where the modelling for Case (b) is accurate. It is seen that the correct
modelling of <N|n> accounts for essentially al of the error, except for
Da = 8, where errors of up to 5% remain unaccounted for by this means.
Mell et al®™ propose that the modelling of <N|n> by the counterflow or AMC
model could be improved for the <¢> = ng = 0.25 case by matching a n =
0.25 rather than at n = 0.5 as is done in Eq. (7.4).

Swaminathan and Mahaingan™ have aso examined the effects of
modelling for the conditiona  average scalar dissipation on < CMC
predictions. They compared results using the AMC model of Eq. (7.4),
(7.5) with those using the model developed by Girimagji** based on the use
of a beta function pdf for the mixture fraction. This model yields

<N|n> = -2<N>t<§>[1-<§>] 1m) (7.8)

¢'P(n)

where 6° is the mixture fraction variance and I(m) is given by

n
i) = H<é>[ln(n°>-<ln(é)>]

0
+ (1<E>) [ln(l-no)-<ln(1-&)>]lp(n “an® (7.9



In theory, Girimgji’'s model should give better performance than the AMC
model at later times since the AMC modd strictly requires there to be
some unmixed fluid present in the mixture. No such restriction applies to
Girimgji's model. The smulations carried out by Swaminathan and
Mahalingam™ start with an inhomogeneous layer and it is only late in the
calculation that the mixing field becomes homogeneous. At these later
times Girimgi’'s model does seem to give  Dbetter results for the
conditional average scalar dissipation. Results for the CMC modelling
appear better with the AMC modd but this is clouded by the lack of
homogeneity in the scalar fields at early times.

7.2.2. Validity of the primary closure hypothesis

We are concerned here with the fundamental closure hypotheses of CMC
assumed in Egs (3.13) and (3.28). As dready pointed out, these can be
shown to be essentidly the same, and essentially the same as Eq. (3.31).
Taking into account the fact that it is dJy/on that appears in the CMC
Eq.(3.4), the closure hypothesis is correctly stated as

5 8<DVY"-Z%|n>P(n)pn ] 82<NY"|T]>|23(T])pn -0 (7.10)
an

Mel1* examines the "error" terms <DVY"-V&|n> and <NY'[n> in the data base
of Mel e al® and finds them to be significant fractions of the
corresponding retained terms <N|n>dQ/dn and <N|n>Q, particularly at the
highest Damkohler number.  The signs of these "error" terms are however
the same and they may amost completely cancel when the true test of
Eq.(7.10) is applied. Further examination of this issue using the DNS
data bases is warranted.

7.2.3. Closure of the chemical source term

For a onestep irreversible reaction  errors  in first  order
conditional moment closure of the conditional reaction rate are given by

k<YaYg|[n> - kQaQe = k<Y'AY'g|N> (7.11)
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where the effect of temperature fluctuations on the rate constant k are
negligible.  Mell® using the data bases of Mel et al®™ found that the
error was less than 1% of k<Y,Yg|n> a Da = 05, but rises to as much as
7% a Day = 8. It should be noted that there could be a strong Reynolds
number dependence on such results since the fluctuations in N about <N|n>
increase with Reynolds number. It is not yet clear whether the error will
continue to increase with Da, as reaction becomes confined to a thin sheet
and al terms in Eq.(7.11) become zero outside this sheet. This question
should be answerable by appropriate asymptotic analysis. In Section 8 we
consider the formulation and modeling of baance equations for covariances
such as <Y'AY'g|n> and closure of the chemical source term at the second
order.

Inferring general conclusions from such results is foolhardy. If the
rate constant is strongly temperature dependent, we expect to find the
errors from first order conditional moment closure to be greatest at low
Da;, since now there will be increases in Y's and Y'g due to loca
extinctions or much reduced reaction rates where the temperature is low.
Lee and Pope™ studied reversble onestep chemistry with a high
activation energy for the rate constant, and find that first conditional
moment closure is good only a high Da,. At low Dg dignificant
extinction occurs and first order closure becomes innaccurate. They did
not investigate the possibility of obtaining better results with a higher
order conditional moment closure.

7.3. Multi-step kinetics

Montgomery et al®® consider the H,-O, reaction from a fundamental
Kinetics point of view but end up caculating the reaction wusing a
one-step reduced mechanism. They find good agreement with CMC predictions
for unconditional averages of maor species and temperature even when
assuming <N|n> = <N>. Proper modelling for <N|n>; is needed to get
accurate predictions of reaction rate and conditional average statistics.

Swaminathan and Mahadingam™ consider a 3-step series  paralle
reaction with two intermediate species. They find that the intermediate
species are more sensitive to correct modelling of the scalar dissipation
and that a second order closure would improve predictions for the
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intermediate species with the highest Damkohler number.

Swaminathan and Bilger’”® have studied a 2-step reduced mechanism for
hydrocarbon combustion. They find"®® that CMC predictions of both the
maor and minor species are excellent, athough second order closure would
improve predictions of the conditional average reaction rates.



8. CONDITIONAL VARIANCE EQUATION AND SECOND ORDER CLOSURE

In this section we consider the conditional expectations of the
second moments of reactive scalars which are given by

K= (Y)Y G=<K|n>
Kij = Y’IIY]/, GijE<Kij|n> (81)

The double prime denotes fluctuations with respect to the conditional mean
(conditional  fluctuations) Y’=Y-Q, Q=<Y|n> The matrix G; is the
conditional covariance matrix. It is obvious that the matrices in EQq.(8.1)
are Ssymmetric: Kij =K, G =G;. Normally, the conditional
fluctuations of the reactive components are significantly smaller than the
unconditional  fluctuations and the conditional fluctuations can often be
neglected when the average value of the source terms in kinetic equations
is caculated (see Section 3.5). However, if conditional fluctuations of
reactive components ae not small, the conditional expectations of the
second moments can be used to find more accurate average values of the
source terms. EQ. (3.38) can be used for this purpose provided that the
higher order terms are negligible. This will generally be the case if the
corrections  themselves are  dignificantly less  than  the  first  order
teem.  Since correlation coefficients lie between -1 and 1, this will be
achieved for

[<Yi?n>]" << @ (8.2)
and
[<T?>]"4Qr << 3Q{T, if <1

<< 3/(B-2) if B>2and T, < Qr (8.3)

where B is the temperature index and T, is the activation temperature.
Alternatively, we may use EQ.(2.10) & (2.15) and write

<W(Y) > = J W(Z) P(Z|n) dZ;dZ,...dZ, (8.4)

(o]

where  Yy,..,Y,1 ae governed by Eq.(3.2); Y,=h is governed by
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Eq.(333) and P(Z|m) is the conditiona pdf (introduced in Sec.2.1.3)
which can be assumed to have a presumed form such as the Gaussian form

n 172 1
PEIn) = ((20det@))]  expl- 5 6,(2-Q)Z-Q)] (85)

where ¢; is the inverse matrix of Gj that is 0ikG=0;. A
clipped joint Gaussian form may be necessary to avoid unredizable
portions of the Z domain. For extinction problems a bimodal form may be
better since the fluid is either aight or extinguished with amost
nothing in between.

CMC models for G have been derived by Bilger using the
decomposition technique and by Klimenko™® using the pdf approach. Li
and Bilger® formulaed a CMC mode for Gj using the decomposition
techniqgue. Derivations using the pdf and decomposition techniques are
considered in Sections 81 and 8.2 respectively. The mode for Gj is
formulated first and then the equation for G is derived by putting i=j.
General discussion of the CMC equations for the second moments can be
found in Section 83. Some comments on the application of second order
closure are presented in Section 8.4 including simplifications that make
the technique more tractable for practica systems. Without loss of
generality we can put i=1, j=2 from here on in this section.

8.1. The Pdf Method

Firt we derive the equation for GL=<YiYz|n> = Gp + QQ, The
relationship of Gi,, the joint pdf P(Zn) the pdf P(n) is given by

GLP() = <ViY|E=n>P() = [Z:Z,P(Z,Z,m) 42,2, (86)

The joint pdf equation (2.48) is used in the derivation. We assume that
N=Zz W3=0 and n=3 in EQ.(248) and consider this equation as the equation
for P(Z;,Zm). Equation (2.48) is multiplied by Z;Z, and integrated over
al Z, and Z,. Note that Z; and Z, are independent variables and may be
taken inside derivatives with respect to t, x and mn. The terms which
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involve 0/0Z; and 0/0Z, are integrated by parts. Note aso that P(Zn)-0
as |Z|»ee. The result of the integration is

PC1BMPL 4 giv [<vKiz|n>Pmp| = <WAY + Wa¥s > P,

- 2 <D(VYyVY) [n>P()py + a_a;’]lz 8.7)
Iy = - a<NK52|n>P(n)Pn + 2<D [VK}z-vg] In> PM)p, (8.8)
m

where p,=<p|n>, Ki=Y1Y, Gi,=<Ki,|n> and N=D(VE)’ is the dissipation of
the conserved scalar. The closure assumptions used by Klimenko *°

<NK12|n> =<N|n> <Ki,|n> (8.9)
<D(VK{zVE)|n> = <N|n> I<51zl1> (8.10)

are smilar to the assumptions in Egs(3.47) and (3.48). As we note in
Section 8.3 these assumptions may be too restrictive.  With  these
assumptions Eq.(8.8) takes the form

Jip = - 3<NIB;F’(H)Pn G, + <N|n>P(n)pngﬁ_12 (8.11)

With the use of the pdf equation (3.15) and closure (8.11) EQ.(8.7) can
now be written in the form

div [<v”(Y1 Y2)” |11>P(T])Pn]

+ 2 ~+
TaG%Z + VN> VG, + - <N[n>2C12. Cu =
P(n)pnq om
= WY, + WoY1n> - 2 <D(VY1-VY2) [n>P(M)py (8.12)
The last term in this equation may be written
<D(VY,VY)[1> = <D(VY/VY)|n> + g%l g% N (8.13)



Here, we have used Eq.(3.19), have neglected the terms which involve VQ
since these terms are smal for large Reynolds numbers (see Sec.2.3.3) and
have taken into account that

" _ o<Y’|n> _
<D(VY”. > = <N|n> =
(VY VE)n> = <Njn> 25N = o0

according to Eq.(3.48). The identity

(Y1Y2)” = Ki, - Gip = [(Q1+Y,£) (Qz"‘Y';)] - QQ2 - G =

= QY] + QY] + Kpp - Gp
Is used to modify the third term in Eq.(8.12)

div(<v/(Y2)"[n>P(pa) - Qaiv (<v"Y;[n>P(mpy ) -

. Qldiv[<v”Y’2’|n>P(n)pn] = div[<v”K’1’2|n>P(n)pn] "

+ VYT IN>P(M)pnVQ2 + <vY In>PM)p,VQ: (8.14)

The next step in the derivation is obtaining the equation for the
product QQ,.. Equation (3.16) written for Q; is multiplied by Q..
Equation (3.16) written for Q, is multiplied by Q;. Adding the results

yields

909+ v VQQ) +
1

P(M)pny

[deiv[<v”v';|n>P(n)pn] + Qldiv[<v”vg|n>P(n)pn]]

2
~ N> Q2 oen > 999 4 Qemyn> + QWn>  (8.15)
on on adan

Subtracting EQ.(8.15) from EQ.(8.12) and using Eg@gs.(8.13) and (8.14) we
obtain
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div [<V’ Y Y2 n>P(n)pn]

2
TaG%Z + VN> VG, + - <N|n> 9" Cu: Gz =
P(M)pn om
= WY, + WY/|n> - 2<D(VY-VY)|n> -
QWY NPVQL - VY N>V, (8.16)

Another form of this equation can be obtained with the use of EQ.(3.15):

aG_lz(F)’Mw + div[<VK12|n>P(n)Pn] =

2 2
_9d <N|lep(n)pn Gp + <N|n>P(n)pn87?12 + (8.17)
on on

+ PPy [SW,Y; + WY/ 1> - 2<D(VY, VYo + VY, naVQy - VY[ >V Q)

The equation for the conditional variance can be easily obtaned by
putting Y;=Y>=Y in Eq.(8.16)

div[<v”(Y”) 2 In>P(n)py, ,
g?_ + <v|n>VG + - <N|Tl>a—(23 -
PM)py m

= 2<W'Y’|n> - 2<D(VY")?|n> + 2<v"Y”[n>VQ (8.18)

8.2. Decomposition Method

The first step in the derivation of the equation for Gy, using the
decomposition method is the equation for Ky, = Y’l’Y’Z’

p9Kiz 4 ovvKy, - div[DpVKlz] + 2Dp(VY'-VY)) =
ot
= P(WlY'z""WzY'l') + Epip + Epor - Eqiz - Egot (8.19)
where



Epij = Y’i’pDV@V-ag—ﬁL + Ydiv(pDVQ) (8.20)
2
Eqj = Y’i’[pg%i + pv-VQ - pN aa—ﬁlz—] (8.21)

This equation is derived from Eq.(3.21) which is valid for both Y’i and Y2
The correlation is decomposed in a way which is similar to Eq.(3.17)

Kiax) = GuaE()xt) + K7 (x.) (8.22)

where K; and G; is gven by (81). It is eay to see tha
<K’1’2(x,t)|n>=0. The differentiation of EQ.(8.22) yields

It "9t Tom ot Yot (823)
— aG| ”
VKij = VGij + an—l Vé + VKij (8.24)

Equation (8.19) takes the form

0G 2°G vV 7 WY
P t12 + pv-VGy, - pN an;Z + 2Dp(VY1-VY;) = p(W1Y2+W2Y;) +

+ Ep1> + Ep21 - Equz - Ega1 + B - Ex (8.25)
where
Ec = div(pDVGy) + pDVEV ISLi (8.26)
aK//
Ec = pyrit + p[v-VK’l’z] i div[DpVKi’z] (8.27)

Taking the expectation of Eq.(8.25), conditional on &(x,t)=m, yields

G 9°G
pnat_12 + pp<v|N>VGyp - pp<N|n> - ;2

Pr<WY, + WIYT|n> - 2p,<D(VY[-VY)) N> - & - €qr - €qat (8.28)

where e« = <E¢|n> and
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2
eqj = <Eqj|n> = pn[VQj'<Y;’v”|n> - _J_aan <Y;’N”|n>] (8.29)
According to the analysis of Sec.2.3.3, the terms <Ep;|n> and <Eg|n> are
small for large Reynolds numbers. These terms are neglected in EQ.(8.28).

Let us analyze the unconditional mean of the term Eg.

”

<Ec> = [aPmn = < 55— + div[va’l’z] . div[DpVK’l’z] > =

J9<K7,p>
B div[<va’1’2>] i div[<DpVK1’2>] . div[<pv”K1’2 >] -
= divUpn<V”K’l’2|n>P(n)dn] = j div[pn<v”K1’2|n>P(n)] o (8.30)

The derivation of this eguation is smilar to the derivation of Eq.(3.27).
The basic closure used here is similar to EQ.(3.28)

&P(n) = div(py<v'K7, [n>P(n) 83Y)

With this closure, equation (8.28) takes the form

div[<v”K” n>P(m)p ]
8612 12 | n

+ <v|n>VG;, - <N >82612+
9212 + <v|n>VGy, - <N|n>~ 2L

8n2 PM)pq

= WY, + WY/ |n> - 2<D(VY/VY)[n> - VQu<YV'[n> - VQr<YV'|n> +

2 2
+ 9°Qu <Y’N”|n> + 9°Qo <Y’N”|n> (8.32)
an? 2 2 1

The governing equation for the conditional variance can be obtained from
Eq.(8.32) by assuming Y;=Y,=Y

, div[<v”K” In>P(n) pn]
g% + <v|n>VG - <N|n>a G,

8n2 PM)pn




2
= 2<W'Y'|n> - 2<D(VY")|n> - 2VQ<YV|n> + 2.9 (23 YN’ > (8.33)
d

8.3. Discussion

If the Reynolds numbers is large and differentia diffusion effects
are neglected, equations (8.32) and (8.33) represent the most complete
form of the second moment CMC equation. Let us compare the equations
derived by the pdf and decomposition methods. Equations (8.18) and (8.33)
are the same except that there is one extra term in EqQ.(8.33). The last
teem of EQq.(8.33), which is denoted in this section as -T,, does not
appear in EQ.(8.18). A similar conclusion can be drawn form comparison of
Egs.(8.32) and (8.16): the last two terms of EQ.(8.32) does not appear in
Egs.(8.16). If we apply hypothesis (3.47) to these terms, we obtain that
these terms are zero. For example, <Y’N”|n> = 0. This indicates that
closure hypotheses (3.47), (348), (89 and (810) wused to obtan
Egs.(8.16) and (8.18) are more restrictive than closure hypotheses (3.10),
(328) and (8.31). The more restrictive hypotheses, applied to EQs.(8.32)
and (8.33), transform these equations into Egs.(8.16) and (8.18).

The more restrictive hypotheses in EQs.(8.16) and (8.18), used in the
earler work of Klimenko™, correspond to the old Kolmogorov theory® which
neglects the large-scale (>lx) fluctuations of the scalar  dissipation.
Klimenko® demonstrated that the refined Kolmogorov theory® requires that
the additional source term

Ty = 2[ g:? ]2[<N|n>]2m; (8.34)

should be added to EQ.(8.18). Here, ty is the integra Lagrangian time
scae for the scalar dissipation N. It appears that the term T, s
automatically present in  EQ.(8.33). Equations (832 and (8.33) were
obtained by Li and Bilger”® (although the third terms on the left-hand
side of EQs.(8.32) and (8.33) were missed). Term (8.34) can be considered
as a modeling assumption for the term T, in EQ.(8.33).

Let us compare Eqg.(42) and EQ.(8.33). Equation (8.33) has some
additional terms. the dissipation term 2<D(VY”)2|n>, the generation term
2<vY’In>VQ  and the extra-generation term due to  N-fluctuations



2<Y’N”|n>0°Q/on°. These terms need modeling. Li and Bilger™® considered
the onestep irreversible reaction in a  steady-state  turbulent  scalar
mixing layer and suggested

2<D(VY")?|n> = C,Glty (8.35)
2 2

2vN' > £ = cenpn> 62 29 (8.36)
on on

where 7ty=k/e; is the integral time scale, C; and C, are constants. The
generation term  -2<v”Y’|M>VQ was neglected. We can expect that in
turbulent shear flow this term can be neglected in most of the cases since
the transverse gradients of Q ae smal in shear flows (see Section 5).
The last term on the left-hand side of Eq.(8.33) can aso be neglected.

Li  and Bilger® compared the modeling results with  direct
experimental measurements of the conditiona variance G made in the
reacting turbulent scalar mixing layer presented in Section 5.8.1. Their
modelled equation for the normalised first moment (/51 includes an extra
term é on the RHS to account for second order closure of the reaction
rate. Here G is the normalised version of G, using the same normalisation
as for 6 The effect of this teem was found to be entirely negligible. The
modelled equation for é was

N

2
%Gh = - Zé [261‘11"'115] + ACZQiléUZg—? - ukleilé (8.37)
X1 mn

Here m is the power law index for the decay of the turbulence Kkinetic
energy with distance x;; with pu, = 1.3 taken from the experimenta data.
In this modelled equation the chemica term has been closed a the second
moment level: the extra term involving the conditiona third moment
<Y'3|n> being found in the experimenta data to be ne;'\ver more than 15% of
the other chemical term. The boundary conditions used for G are

(/\3:0 for x; =0; andé:Oatnzo,l for x; > 0.
With these boundary conditions Eq. (8.37) has a singularity a x;=0. Li

and Bilger’® overcame this by reformulating Eq.(8.37) in terms of G2
N
which involves dividing the equation through by G"2 The term on the RHS



involving 92Q/an? then becomes a source for GY2 as soon as Q becomes

nonlinear under the influence of reaction. It is evident that the sign
taken for C, in the modelling of Eg. (8.36) needs to reflect whether the
species is a reactant or a product. Here species 1 is a reactant and C, is
positive. It was set equal to 1.1 to give a good match to the data

Figure 40 shows the general nature of the results predicted by Li and
Bilger™®. It is seen that the conditiona variance pesks a n = & = 05
and that this peak increases with distance downstream before finally
decaying. The solutions reflect an approximate balance between the source
teem, Eg. (8.36) and the chemica term acting as a sink. The dissipation
teem, Eq. (835 and the convective term, the LHS of EqQ.(8.37), ae an
order of magnitude lower.

Figure 41 shows comparison of the predictions with the data. Separate
solutions were made for the value of mng pertaining to each data set. The
figure shows predictions for two different models of the scaar
dissipation. Model A is for that presented here and in Section 5.8.1.
Model B is more sophisticated and alows for <N|n> to vary \I/\vith n. The
models give amost identical solutions for the first moment, Q;, but the
more sophisticated model gives a somewhat higher peak vaue for G. The
vaue of C, = 1.1 was chosen to give the best fit at x;, = 154 for Model B.
The figure shows that there is no consistent dependence of the
experimental data for the conditional variance on position across the
layer as was aso found for the first conditional moment (see Section 5.1
and Figs. 1 and 16). This was assumed in the modelling. The data indicate
that the peak conditiona variance begins to fal a large distances
downstream, and this is not predicted by the modelling. The modelling also
predicts narrower profiles in m space than is found in the experimental
data.

As has been pointed out, Li and Bilger® did not include the third
teem on the LHS of Eq. (8.33). Estimates indicate that it is an order of
magnitude smaller than the source term, Eg. (8.36), and the chemica sink
teem and of the same order as the dissipation term, Eg. (8.35) and the
convective term. Its incluson may not greatly change the magnitude of the
solutions obtained, but may improve the profile shape in m space and the
X; dependence. The use of the source term of Eg. (8.34) in place of that
in Eg. (8.36) is aso likely to significantly change the profile shape in
n space and in x;. This has not been investigated as yet.
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Swaminathan and Bilger’® examine DNS data bases for nonpremixed
reaction in decaying homogeneous turbulence with a two-step reduced
mechanism for hydrocarbon combustion™ in terms of the conditional
variance Eq. (8.36). For homogeneous flow this may be written

2
dG 2<Y'W |n> - <N|n> J (3

ot on

2<Y'N” n>-e =0 (8.38)

2
n>2"Q 4 2cDVYVY
om

Figure 42 shows results for the fuel species in two different simulations
R1 and RS. It is seen that the conditional species fluctuation scalar
dissipation term, T, is far from being negligible as assumed in
Klimenko™ and Eq. (89). Indeed it is the largest term and is balanced
largely by the reaction rate correlation term, T, so that an estimate for
G can be made by setting these two terms equal. It is seen that the
primary closure assumption of Eg. (8.31) is much better. Note that for
homogeneous flow this becomes e = 0 and that e for the fuel species
appears as €q in Fig. 42. It can be noted that the terms in the balance
for simulation R5 are much larger than the terms for R1. This is in part
due to the higher turbulence Reynolds number producing higher fluctuations
in N, but also due to the fact that the Damkohler numbers in simulation R5
are about half those in R1.
Swaminathan and Bilger™ aso examine the modelling for terms T, and
Ts given in Egs (8.36) and (8.35) respectively. The "constant” C, can be
expressed

<N|n>

CzE

where Ryy is the conditional correlation coefficient between N” and Y”. It
is found that Ryy is a function of m but apparently not a strong function
of the Reynolds number. or the Damkohler number. For a first
approximation, the assumption of it having a magnitude of about 0.8  with
the appropriate sign may be sufficient. The sign is positive for reactant
species and negative for product species. The "constant® C; in EQ.(8.35)
is also found to be dependent on m, but is aso dependent on the Damkohler
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number.

Swaminathan and Bilger ** have continued the anaysis of this same
data base in terms of the progress variables for each of the two reaction
steps and have included analysis of the conditional covariance equation. A
new model for the conditional dissipation of the progress variable
fluctuations is proposed based on dSationary laminar flamelet modeling.
This model is an improvement over that of EqQ. (8.35), but further work is
still needed to improve its general applicability.

2

8.4. Second Order Closure

It is becoming evident that the use of a second order closure for the
conditional reaction rate term will be of value in such problems as the
prediction of autoignition in diesel engines and the formation of NO. It
may aso be capable of handling flows with local and even bulk ignition
and extinction behaviour. Further investigation of the correct form of the
conditional variance and conditional covariance equations and appropriate
modelling for the unclosed terms is merited. Data from direct numerical
simulations (DNS) and laboratory experiment should be useful for doing
this.

In systems involving complex multi-step chemistry it may be possible
to simplify the making of the second order corrections to the basic first
moment  closure. Correlations  between  species mass  fractions  and
temperature could be related to correlations among the much fewer progress
variables necessary for a reduced Kkinetic mechanism. Thus for the H»-O,
system Kronenburg et al® use a full mechanism to compute the leading
order of the reaction rates but the second order corrections to these
rates are al related to the conditional variance of the fluctuations in
the total moles per unit mass which is a suitable progress variable for
the one-step reduced mechanism for this system. Only one extra equation -
for this variance - need then be solved to obtain closure which is made
using a presumed form for the conditiona pdf of this progress variable.
Results for NO formation in a turbulent jet diffusion flame of hydrogen
are shown in Fig. 43 for distances from the nozzle exit plane, X, equal
to 0125, 05 and 0.75 of the visible flame length, L,. Results at the
downstream positions including at the visible flame length (not shown
here) are excellent. Discrepancies remain at  positions close to the
nozzle. These ae likedy to be due to the effects of differentia
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diffusion (see Section 9.4) and problems of modelling the mixing at the
outer edges of the jet where the flame sits at these locations.

Mastorakos et al® have used DNS to study autoignition in homogeneous
turbulence with initialy nonpremixed cold fuel and hot air. They find
that the turbulence has a very dgnificant effect on the time for
ignition. Locally high values of scaar dissipation result in lowering the
temperature due to high conduction losses. Fuctuations about the
conditional average temperature are quite large and must be included in
the modelling of the reaction rate if predictions of the ignition time are
to be a all accurate. Mastorakos and Bilger®® have formulated a second
order closure CMC model for this system and find excellent agreement of
the predictions with the DNS as is shown in Fig. 44.
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9. CONDITIONAL MOMENT METHODS: FURTHER TOPICS

The topics considered in Section 9 are prospective topics for futher
development of the Conditiona Moment Closure. These involve the
differential diffuson, CMC with multiple conditions, CMC for spray
compustion, CMC for premixed combustion and CMC & Lagrangian modelling.
The CMC-like techniques can be applied to generate conditional equations
with conditioning variables which are different from the conventiona
mixture fraction. New types of conditions generate new equations with new
applications. We shall refer to these CMC-like methods as conditional
methods. The extend of the discussions presented here is determined by the
relevance to the origina topic of this review - the turbulent combustion.

9.1. Differential Diffusion
In this section we consider the equation for the conditional mean

QE<Y|§:n>E<Y|n> when the conserved scalar and the reactive scalar have
different diffusion coefficients

p% 4 p[v-vg] i div[Dpva] =0 (9.1)
P9y + p[v-VY] i div[DYpVY] = Wp 9.2)

That is D#Dy in these equations. The difference in the diffusion
coefficients can affect the CMC equation for Q as well as induce some
additional generation of the conditional variance G. Here we focus only on
the conditional expectations of the first moments. In Sec. 9.1.1 the
general unclosed CMC equation is derived. In Sec.9.1.2. we follow
Kronenburg and Bilger® and consider the closures which provide good
agreement with the DNS calculations.

9.1.1 Derivation of the unclosed equation

As in Sec.3.1.2, we derive the governing equation for Yy, where
y,=0(E(x,t)-n) and then average it. Equation (2.43) is used as the
equation for y, (M=Z;, &=Y1, W;=0, n=1). This equation is multiplied by Y
and added to Eq.(9.2) multiplied by v, to obtain



+awtpY + div[vwan] + alIfanT']V(DPV@ -y div(DypVY) = yWp (9.3)

The derivation of the following equations is similar to the derivation of
Egs.(3.7) and (3.8)

div[YDqu;n] = gnz—z[WnYDp(V};)Z] ) gﬁ[\pndiv(YDpV@]

- gn (1 Y00(72) - 9 YaivDp¥E) - G [ DP(VETY)] (0
aiv (yDvpVY) = i iv(DypVY) - G (wDrp(VEVY) (95)

The two last term on the left-hand side of EQ.(9.3) are modified using
Egs.(9.4) and (9.5)

i‘gtLY + div[vwan] + gnz—z["’ﬂ YDp(Vi)Z] - %[wn (D+Dv)p(V&‘VY)] -

i div[DpV(Y\pn)] ; div[wn(DY-D)pVY] = yWp (9.6)

Averaging of EQ.(9.6) yields

8QPEH)Pn + diV[<VY|T1>P(T1)Pn] = <W|n>PM)p, + g%( + & (9.7)
where

Iy = <(D+DYVY-VE noP(p, - 2NYIN>P(n)p, 8

o = div[<(DY-D)pVY|n>P(n)] + V2[<DpY|n>P(n)] -

i div[<YV(Dp) |n>P(n)] (9.9)

and N=D(VE)®. The differential diffusion effects are significant at
moderate Reynolds numbers and the term ey is retained in EQq.(9.7) . We use
the term "moderate” to emphasize that we do not consider the limit Resew
but, practically, the Reynolds number can be as large as in red
combustors. The first term of the representation of ey in EQ.(9.9) can be
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expected to be most significant.

Considering the differential diffusion effects we still can apply the
CMC approximation (3.10) to Jy and we still should require that Q=Y=a,
W=0, a=const is the solution of Eq.(9.7) but the solution Y=£, W=0 is not
valid if D#Dy in Egs.(9.1) and (9.2) . Hence, as in Sec.3.1.3, we can
find the coefficient A in EqQ.(3.10) but the coefficient B is not
determined. The approximation for Jy takes the form

3 = 8<N|B;P(ﬂ)9n 0+ B°<N|n>P(n)png% (9.10)

where B =B/(<N|n>P(n)p,) is unknown.

The unclosed equation can aso be derived by the decomposition
method. Details of the derivation are similar to those given in Section
3.2 and may be found in Bilger™. The resulting equation is

2
Png% + py<v|N>VQ - pngL<N|n> g (29 = pn<W|n> + e + ey (9.11)
m
where
— I . aQ
e = < div(pDyVQ) + pDyV§ Vaﬁ In> +
D .
[T)L - 1]<d|v(pDV§)|ﬂ> 3% (9.12)
and
ey = - < pg\t(_” + pv-VY” - div[DYpVY"] |n> (9.13)

In the above the ratio Dy/D has been assumed constant even though the
diffusivities are varying. These equations can be compared with Eqgs
(3.22) - (3.24) for the equal diffusivity case. It is seen that D,
replaces D in some places and that a new term appears in the definition of
€o, involving the difference in the diffusivities

€as = pn[ ‘BL - 1] Mng% (9.14)

where
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M, = é_n <div(pDVE) |n> (9.15)

Is the conditional diffusion and is related to the conditional dissipation
N, by

oN, P.p

MoPypy = Sgamabn (9.16)

as can be seen from Eq. (2.49). It is seen that M, remains finite at
large Reynolds numbers and hence ey will aso remain finite. It is the
source term that generates differential diffusion. At moderate and high
Reynolds number the other terms in ey are negligible, as before, and Eq.
(9.11) may be written

Pg g * Pr<v[n>VQ =

2
py<W|N> + py DL N, g Q 4 pn[gL . 1] Mng% e, (917)
m

It is apparent that, if differential diffusion effects are to tend to zero

at high Reynolds number, the term e, must be such as to counteract the
effects of egs at high Reynolds number. Closure for ey is first examined
for nonreacting homogeneous flow.

9.1.2. Closure for nonreacting homogeneous flow

Kronenburg and Bilger® consider the mixing of two nonreactive
scalars with mass fractions, normalized by their maximum values, Y, and
Yg, and initial conditions such that they are essentially separated so
that while Y, + Yg = 1 everywhere, Ya=1, Yg=0 or Ya=0, Yg=1 over most of
the field. The mixture fraction, &, and differential diffusion, z are
defined

E=(1+Ya- Ya)2 (9.18)

N
I

(1 - Ya - Yo)2 (9.19)



For species diffusivities Dy and Dg the balance equations for § and z in
uniform property flow are

% + [v-vg] - DVE = -dvz (9.20)
92 4 [v-Vz] - DVz = -dV% 9.21)

where D; = (Da + Dg)/2 and d = (Da - Dg)/2. It is seen that the mixture
fraction has a differential diffusion source term, but this is found to be
of little significance.

The conditional average Q, of z, Q=<z|n> has a balance equation
similar to Eq. (9.17) , and for homogeneous turbulence and scalars this
may be written

9Q = Dv N> 32(292 - d<VE|n> + d<Vizn> + e (9.22)
In this equation -d<V2§|n> is the source term for differential  diffusion
corresponding to eqg; in EqQ.(9.14). It will remain significant at high
Reynolds numbers. A model for ey is required which will give the right
behaviour for Q..

Kronenburg and Bilger® carried out direct numerical simulations of
this problem using a pseudo-spectral code. A typical result for z as a
scatterplot against £ and Q, against 1 is shown in Fig. 45 In this
simulation Sc, = 1 and Scg = 0.5. It is seen that while the conditional
variance of z is quite large, Q, is of the same order of magnitude, being
positive for low values of n and negative at high values. The shape of
Q.(2) mirrors that of M, which has an "N"-like shape for this flow. (It is
noted that for homogeneous turbulence with a Gaussian mixture fraction
pdf, N, is independent of n so that N, = <N> ’; and from Eq.(9.16) it is
seen that M, will be a straight line going through zero at n = <¢> and
having a slope of -<N>/<(§")2>.)

From the DNS data it was found that e, has the shape of Q, and a rate
proportional to the reciprocal of the Kolmogorov time scale, 1. The
model recommended for e, is

A'DB
D¢

*_Q (9.23)

_ D
eY—-O.4‘ e




With this model for ey, EQ.(9.22) gives good predictions of Q, over the
range of DNS investigated including variations in <€> and Sc,, Scg. The
model also predicts that Q, - 0 as the Reynolds number becomes large.
Nilsen & Kosay'®have carried out DNS studies at higher Reynolds numbers
and confirm this modelling for ey.

Yeung & Pope™’ studied differential diffusion in decaying isotropic
turbulence using DNS. They report results for the correlation coefficient,
pag, for the two species. This is found to decay towards zero. As shown by
Kronenburg and Bilger®, the correlation coefficient contains no
information about the conditional average differential diffusion and

pas] = 1 - 2[<(2')2>/<(é'>2>]2 (9.24)

where z' = z - Q,. The correlation coefficient is thus more a measure of
the conditional variance. We note that if the conditional variance is
very small, A and B could be nearly perfectly correlated but still show a
large amount of differential diffusion with Q, # 0. For closure of the
chemica source terms it is apparent that the conditional average of the
differential diffusion is the quantity of primary importance.

9.1.3. Closure for reacting flow

Nilsen & Kosaly’®have used DNS to study differential diffusion in
homogeneous turbulence with a single step irreversible reaction with
differing Schmidt numbers for the reactants. They present a model for the
differential diffusion which neglects the contribution from e, discussed
in the previous section, but they require the modelling of a conserved
scalar with an intermediate Schmidt number. Very recent results ® '™
at Sydney University indicate that good predictions are obtained if the
above model for ey is used for those species that have a non-unity Lewis
number.

9.2. CMC with Multiple Conditions

Previously, we mainly considered combustion occurring in a turbulent
flow resulted from mixing of two streams. stream of fuel and and stream of
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oxidizer. This two-stream mixing process is characterized by one scalar
value - the mixture fraction. There are, however, some practical cases
when one mixture fraction variable is not sufficient. These cases are
referred to as cases with multi-stream  mixing. For example, mixing of
three separate streams of fuel, oxidizer and an inert gas should be
characterized by two independent conserved scalars. Some features of
three-stream mixing are considered by Junegja and Pope48. More complicated
mixing schemes may need more than two scalars. In terms of the conditional
methods advanced in the present review, this requires consideration of
conditional expectations with severa different conditioning variables.

The CMC equations can be generalized for conditional expectations
with multiple conditions. In this section, Q is defined as
Q= <Y|§1:n1,...,§n:nn> = <Y|1_]> where n = (Mg,..Mn). The conserved
scalars § and the reactive scalar Y are governed by the eguations

pdat + p[v-vgi] . div[Dpvgi] =0, i=1..n (9.25)
P9y + p[v-VY] i div[DpVY] = Wp (9.26)

The derivations of the CMC equations with multiple conditions are similar
to the derivations of the CMC with one-variable conditions considered in
Sec.3.1 and Sec.3.2. We assume here that the conserved scalars do not
coincide with each other. Practically, such a situation, when we need more
than one conserved scalar, can appear if combustion occurs in a turbulent
flow formed by three or more streams. The example is given by an oxidizer
jet and a fue jet injected into air. In this case, the mixing
characteristics are determined by two conserved scalars. The main terms of
the CMC equation which are related to double-conditioning (§;=m; and
£,=1,) were obtained by Bilger™, except that he considered one of the
scalars to be reactive. In that case the reactive scalar was formulated

as a progress variable and the application envissged was for a
conventional 2-stream mixing problem with local extinction or ignition
events giving rise to large fluctuations about the conditiona mean.
Little further progress has been made on this problem and it will not be
considered in detail here.



9.2.1. The pdf method

The relationship of the conditional expectation Q, the joint pdf
P(Zm) (where Z is the sample space variable for Y) and the pdf P(m) is
given by EQ.(2.15)

+oo
QP() = <Y|&=n>P(1) = Jz P(Zn)dZ (9.27)

- 00

We utilize the joint pdf equation (2.48) which is valid for the case of
large Re numbers and consider this equation as the equation for P(Zn). We
put in EQ.(2.48) ni=Z,W=0 (i=1,...,n); Z=Z+1, W=W,,+;. This equation is
multiplied by Z and integrated over al Z. The terms which involve d/0Z
are integrated by parts. The result of the integration is

gT[QP(n)pn] " div[<vY|n>P(n)pn] = <W[n>PMm)py + g% (9.28)

3 = 2D(VY-VE) [>Pp - G (<NyYIn>P(p,) (9:29)

where p,=<p|n>, N;=D(VE;-VE)) is the dissipation tensor and i,j=1,...,n
here and further on. A sum is taken over repeated indices. Equation (3.4)
has n+4 independent variables: t, Xi, X, X3 and mMg,....Np.

The flux of a reactive scalar in conserved scalar space, J, IS
approximated by the diffusion approximation

h=AQ+ B G (9.30)
The arguments supporting this approximation is similar to the arguments
for EQ.(3.10) given in Sec.3. We do not assume any particular form of the
coefficients Ay and B;; but they are fully determined by a the following
constraint: if W=0 and a=const, b,=const then Y=a+h., is a solution of
Eq.(9.26) for any arbitrary velocity field. According to Eq.(2.17) this
solution corresponds to Q=atbm,. The substitution of Y=at+bg, into
Eqg.(9.29) yields

J = '[a"'bknk]gm [<Nij|ﬂ>P(ﬂ)Pn]-+ b<N; |n>P(n)p, (9.31)
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while the substitution of Q=a+bmy into Eq.(9.30) yields
J = (atbm)A + bB; (9.32)
Since Egs.(9.31) and (9.32) are valid for any arbitrary constants a and

by, the coefficients A; and B; must be determined by the corresponding
terms in EQ.(9.31). The closure for J; takes the form

J=-0Q _[<Nij|H>P(ﬂ)Pn] + <Nij|H>P(H)Png% (9.33)

ﬁm

Equation (9.28) takes the form

%[QP(n)pn] + diV[<vY|n>P(n)pn] = <W[n>PMm)p, -

- Q Inon, [<Nij|H>P(n)pn] + <Nijm>P(n)Pn3n—ing (9.34)

Equation (9.34) is the CMC equation with multiple conditions. The
aternative form of this equation

div [<v”Y” In> P(n)pn]

a 2
a% + <v|n>VQ + - <Njj|n> %%m = <W|n>(9.35)

PM)py

can be obtained by using the equation for the joint pdf P(m). The
double-prime denotes the fluctuations about the conditional mean

()"=()-<-n>.
9.2.2. The decomposition method

In this section we consider the alternative way to derive the
equation for Qmx,t)=<Y(x,t)|n>. This derivation is based on the

decomposition

Y(x,t) = QEXD.x) + Y(xt) (9.36)
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The differentiation rules for EQ.(9.36) are given by

oY _9Q ,0Q 3% , aY”

gt ~at tom ot Tt (9:37)
VY = vQ + 99 vg, + vy (9.39)

2
div(pDVY) = div(pDVQ) + g%div(pDV?;i) + pD(VE-VE) 6_8_181 ian +

, pDvgi.Vg% + div(pDVY”) (9.39)

We substitute EQs.(9.37) -(9.39) into Eqg.(9.26) and use EQ.(9.25). The
result is conditionally averaged (with the condition £(x,t)=n)

d 9° _
PigE + PVIN>VQ - pusy 1> 5T = piWn> + g + ey (940)
where
& = < div(pDVQ) + povgi.vaa%| Exh= > (9.41)
& = - < po- + p[V-VY”] : div[DpVY”] | E(x)=n > (9.42)

This equation is unclosed. In order to close this equations we consider
the identity

-[evPdns...cn, = < NP+ div[va”] ] div[DpVY”] > =

IY'p> div[<va’»>] _div[<DpVY,,>] _ div[<pv,,Y,,>] _
- Jdiv[pn<vf,y'f|n>|3(n)] dny...dn, (9.43)

which derivation is similar to derivation of EQ.(3.27). The hypothesis
which is utilized here is

&P() = - div(py<v"Y’ [n>P() (9.44)
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is the generalization of EQ.(3.28) and does not need any specific
comments. The term eg is small for large Reynolds numbers and can be
neglected (see Sec.2.3.3). Equation (9.40) takes the form

div [<v”Y” In> P(n)pn]

2
g% + <v|n>VQ + - <N;j|n> B?]_.CBDT, = <W|n>(9.45)

PM)py

9.2.3. Discussion

It is easy to see that both methods of derivation of the CMC equation
with multiple conditions yield identical equations (9.35) and (9.45). This
supports the validity of these equations. Practically, solving the CMC
equation with multiple conditions is more complicated than solving the
standard CMC equation. The conditiona dissipation tensor <N;|n> needs
further approximations which must be consistent with the equation for
P(m). The large number of independent variables represent the additional
difficulty. Equations (9.35) and (9.45) must be solved in a domain which
has a configuration that is more complicated than the interval Mmin<N<Nmax
for one-variable CMC. The paper by Junga and Pope48 analyzes generd
properties of the two-scalars pdf P(n,m,) and presents some interesting
DNS results for P(mi,ny).

9.3. CMC and Spray Combustion

In this section we consider a spray of droplets in a turbulent flow,
the effects of the evaporation of the droplets and the mixing and
combustion of the vapour. Our primary interest is in the formulation of
the CMC method taking into account the significant variations of the
concentrations of evaporated species in the inter-droplet space. In this
consideration we follow Klimenko and Bilger®™. Existing methods (see
Faeth®™*°, Bachalo') treat the problem of the mixing of the spray as a
whole arising from the penetration of the spray into the surrounding air
and from the mixing processes associated with the large scale turbulence.
The droplets themselves and the inter-droplet distances are small compared
with the integral scale of the turbulence. Evaporation from the droplets
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causes a lot of fine scale structure in the scalar field and this can be
important in the combustion process. Thus, if the spray is dilute it can
affect the structure and pollutant formation in the reaction zone of the
flame; and if the spray is less dilute it will affect formation of soot

and other pollutants such as PCAH (poly-cyclic aromatic hydrocarbons) and
NO, from fuel bound nitrogen.

9.3.1. Basics of droplet evaporation and combustion

Williams™* treats the theory of quiescent burning droplets. This can
be recast in terms of mixture fraction ¢ introduced by Bilger®. The
conditions at the surface which separates liquid and gas phases for the
sensible enthalpy h, for the mass fraction Y of the evaporating substance
and for mixture fraction are given by

(YYD = - [pD _g%s]s (9.46)
i(hehy) = - [pD g%s]s (9.47)
() = - [pD _3%5]5 (9.48)

where mepv, is the local mass flux, ng is the outer normal vector at the
droplet surface, subscript "d" corresponds to conditions inside the
droplets and subscript "s' denotes values taken at the "gas side” of the
surface (¢=fy inside the droplets and ¢=f; at the droplet surface).
Mixture fraction ¢ is defined as the mass fraction of droplet material
such that it is conserved under chemical reaction and applies in the gas
phase between the droplets (in most of the cases ¢ is introduced so that
f=1 and f;=0; where f, is the value of ¢ in the inter-droplet space before
evaporation starts). The new notation "¢" is used to distinguish the
mixture fraction from the conserved scalar & which is not affected by the
evaporation processes. The scalar transport equations determine evolution
of scaars Y, h and ¢ in the gas phase but in the case of scalar ¢ this
equation has zero source term. Differential diffusion is not considered
here and the diffusion coefficients, D, are assumed to be the same for all
components. Concentration Y=Y(hy) is the saturation concentration

9-12



corresponding to hs. In many cases, not only the boundary conditions for
Y, h and ¢ but also the scalar fields themselves have a certain degree of
similarity.

We denote by <->, the value of () averaged over the gas phase for
distances small compared to the integral length scale of the turbulence
and large compared with the inter-droplet distance, rec”® with ¢ the
number density of the droplets. At these scales we define the overal
mixture fraction (including liquid and gas) of the droplet materia as &,
and the mass fraction of liquid droplets as a4 so that E=o.fgtagfy where
og=l-0q, f=<@p>y/pg, p=<p>;. The overall densty is given by
p+:oc3pd+ocz,pg where och4nrf,c/3 is the gpecific volume occupied by the
droplets, a;:mg, ocd:ocgpd/p+ and ryq is the droplet radius. Existing
methods™ can be used to find the first and second moments of fy and oy in
the spray field. They will determine the gross burning characteristics of
the spray. The CMC eguations with condition §&=m can be also used to find
the overall evaporation characteristics. The overal mixture fraction & is
a conserved scalar whose fluctuations are determined by  turbulent
macro-transport and & is not directly affected by the evaporation
processes. Our prime interest here is, however, different: application of
the CMC equations to the inter-droplet combustion processes.

The characteristics of the inter-droplet field ¢ are determined by
the evaporation rate. The mass evaporation rate J,, of a single droplet is
given by Jy=4nrim. In order to close the problem Jy, should be expressed in
terms of the characteristics of the inter-droplet field. The mass
evaporation rate J,, of a single droplet is determined by the Nusselt
number **

Nu = 2rgm - Im B= fsfz (9.49)

p1D1In(1+B) 21rgp 1 D1IN(1+B) fo-fs

where f, is a constant which is discussed in Sec.9.3.3. Index 'l is
related to the values taken in the inter-droplet space, at sufficient
distance from each individual droplet.If droplets are non-inertial and
density and diffusivity are constants then Nu=2. For inertial droplets the
Nu number can be estimated as Nu=2(1+0.3Re}?).
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9.3.2. Formulation of the CMC mode

Fluctuations of the reactive species can arise from two main causes.
1) turbulent macro-transport and 2) inter-droplet micro-processes. In
general, averages with double conditioning Q=<Y|&=n,p=f> should be used
here. The variations of & are related to the turbulent macro-transport and
the variations of ¢ are related to inter-droplet micro-processes. We are
most interested, however, in the description of the inter-droplet
processes. In order to exclude the macro-fluctuations from  our
consideration we investigate the case of homogeneous turbulence with
E=const. The conditional expectation Q is introduced here as
Q=<Y;| p=f>=<Y;|f> where index "i" corresponds to different species.

The CMC eguations in homogeneous turbulence can be written here as
usual (see EQ.(4.30))

2
Qi _ <N|f> ai'z + <W|f> (9.50)
t Jf

2
9 = oNjf> S 4wyt (9.51)
ot of?

where Q=<Y;|f>, Q=<h|f>, NED(V(p)z, W, and W, are the chemical source
terms which do not include the mass exchange due to evaporation. The
boundary conditions for Egs.(9.50) and (9.51) can be written as

f=f M)a-Qi - 99 ’ q — _ 9Qn . Q=Ydhy) (9.52)
fa-fs o f fg - fs of
=fo:  Q=(Yo,  Qn=ho (9.53)

where q is the evaporation enthalpy o=hshy; (Y))g Specifies conditions
inside the droplets: (Y;)¢=Yqs=1 for the evaporating substance and (;)4=0
for others. The index "0" in Eq.(9.53) corresponds to the conditions in
the inter-droplet space before evaporation and reactions start. Boundary
conditions (9.52) are obtained from EQs.(9.46)-(9.48). In general, f5 is
unknown function of time so EQs.(9.50) and (9.51) are to be solved in the
time-dependent domain fy(t)>f>f,. Function f(t) is determined by the
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saturation condition Q<=Y<(hs) for evaporating substance.

As usua, equations (9.50) and (9.51) ae to be solved in
conjunction with the pdf eguation

IP(f)ps , 9°<N|F>P(f)p;
ot of?

=0 (9.54)

where P(fpr = 0gd(f-fy)pa + ogPy(fpr, p=<p|f> and P(f) is the pdf of o.
The Delta-function in the pdf P(f) is related to the conditions inside
droplets. Equation (9.54) is vaid only in the gas phase fy(t)>f>f, where
the pdf is smooth P(f):oc;Pg(f). Modeling of <N|f> is required to close
Egs. (9.50) and (9.51). If P(f) is given, <N|f> can be caculated from
(9.54) with proper boundary conditions for <N|f> P(f) (see Sec.2.4). The
pdf P(f) and the dissipation <N|f> have certain distinctive features which
require special consideration. Modeling of P; and <N|f> is considered in
the next section.

9.3.3. The mixture fraction pdf and dissipation in sprays

In this sections we consider specific features of Nfs<D(V(p)2|q>:f>
and P=P(f) which are related to the spray micro-structure. The new
notations Ny and P; are used here for the conditional dissipation and the
pdf of the mixture fraction ¢. The mixture fraction ¢ was introduced in
Sec.9.3 as the mass fraction of the droplet material such that it is
conserved under chemical reaction. Here, we consider the micro-structure
of the mixture fraction field which is related to discrete nature of the
evaporation sources. Various types of spray micro-structure can be
identified. These are considered in two main classes: those in which the
droplets are essentially non-inertial  with no motion relative to the
fluid; and those in which the droplets are inertial and move relative to
the surrounding fluid. Several regimes exist within each of these classes.
Information on the pdfs and scalar dissipation is obtained using
dimensional analysis, asymptotic matching methods and existing analytical
solutions.

Figure 46 shows schematically two classes of the micro-structure of
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the spray. In Fig. 46(a) the inertial time scae for the droplets 14
(equations determining t4 are discussed later) is small compared with the
Kolmogorov time scale rK:(v/et)ﬂz, where g, is averaged dissipation of
energy and v is kinematic viscosity coefficient. The droplets have lost
their initial momentum from the spray nozzle and now are moving with
essentially no relative motion to the gas phase. Evaporation from the
droplets causes the scalar field to be spherically symmetric close to the
droplets. In Fig. 46(b) the inertia of the droplets causes motion relative

to the gas phase as the gas phase accelerates due to fine scale turbulent
motion. This will occur® when t>1¢. The wakes of the droplets cause a lot
of fine scale structure in the scalar field.

In the absence of the discrete sources of the evaporating gas - the
droplets - the small scale structure of the turbulent scalar field is
determined by two parameters. scalar dissipation and  viscosity
(diffusivity). In the theory of small-scale turbulence, the required
characteristics of the scalar field are determined by the analysis of the
dimensions involved (that is by applying the I1-theorem). In the presence
of the evaporating droplets the structure of the turbulent scalar field is
more complicated and may involve several different asymptotic zones. The
basic principles of the anaysis remain the same: finding the determining
parameters for each zone and then using the TIlI-theorem to determine the
shape of the functions <N|f> and P(f) that we are interested in. It should
not be forgotten that <N|f> and P(f) are also linked by Eq.(9.54).

1) Non-inertial Droplets

Here, we consider the droplets which do not have any significant
velocity relatively to the continuous phase (Fig. 46(a)). For a single
droplet under stagnant conditions the solution f(r) is well-known'. The
function f(r) determines also the pdf P; and the conditional scalar
dissipation N; (Section A in Tab. 3). At distances of a few times larger
than ry the Stefan flow can be neglected and the scalar f transport is
determined by diffusion. Since r. is normally much smaller than turbulence
integral macroscale L, we apply here the logic of Kolmogorove?’ theory of
small-scale turbulence. The diffusion asymptote (Section A+ in Tab. 3) has
two determining parameters for f-f,; diffusion coefficient D; and the
diffuson component of the flux Ji=Jy(fs-f2)/p1  (where Jm:4nr§r'n is the
mass evaporation rate of the droplet; f, specifies effective conditions
for f at a large distance from the droplet; D=D,, p=p; for r»ry; effects
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related to Sc£1l or Przl are not considered). The determining parameters
are framed in the table. If droplet is surrounded by a turbulent flow, the
dissipation of turbulent energy € should also be included into the list

of determining parameters for scales of order of or larger than Kolmogorov
length scale & since the scalar field f is affected by turbulence and &

IS a determining parameter for the small scale turbulence. (We assume that
the Stefan flows do not destroy small-scale structure of turbulence but
the global expansion due to the Stefan flows must be, of course, taken
into consideration. Normally, & is at least few times larger than rg.)
Equations for Py and N; predicted by the Il-theorem are included in Sec.B,
Tab. 3. The Kolmogorov Scale Zone is asymptotically matched with the Near
Zone for rq«r«ty. This specifies constant (2r)° in Sec.B-, Tab. 3.
Constant A; in Sec.B+ remains unknown.

At the distances ~ r=c?? (where c is the number density of the
droplets) the scalar field f is not determined by a single droplet. There
are two cases case 1. i<r. and case 2. {>r. (strictly speaking é«r. and
io»re) considered in Sec.C, Tab. 3. The determining parameters for
equations in Sec.C are: the diffusion component of the collective
evaporation rate Wi=W,,(f-f2)/p1 (where W, is collective mass evaporation
rate per unit volume); concentration c; dissipation of the turbulent
energy & (in the case 1) and diffusion coefficient D, (in the case 2).
These parameters yield equations for value f° with the dimension of f. If
droplets are different, then the values of J; are different for different
groups of the droplets cJ;=W;. The mean value of B over all droplets is
unity. The pdfs considered in Sec.A,B are conditioned on J,. If al of the
droplets are similar then f=1 and J;=Wy/c. In generd, it is plausible to
estimate: f'=(<¢’>y-<@>2)">=const-f°, but we should note here that in
some cases the asymptote of the pdf P; has the tail with non-integrable
second moment and f° determines the dispersion only for the core part of
the pdf. The core parts of P; and Ny (Sec.C, Tab. 3) are asymptotically
matched with the equations of Sec.B (case 1) or with the equations of
Sec.A (case 2). In the Inter-droplet Zone the density does not vary p=p;
and we assume that f=<@p>/p;=<@>y (<@>, is determined by the core part of
the pdf).

The shapes of the functions P,i, N,i, Pz and Nz are not determined by
IT-theorem or by asymptotical matching, but we approximate PE and N,i by
assuming that B- equations are valid for r<g, f>f(¢x) and B+ equations
are vaid for r>g, f<f(4). This gives an approximate value of
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Alz(4n)'”7 (we assume here that ¢,=0). The scalar field f in inter-droplet
space is a superposition of the scalar fields generated at least by a few

of the droplets located in the vicinity of the physica point under
consideration. If sources J; of these droplets are approximately of
similar intensity (or similar order of intensity) then, according to the
central limit theorem, we expect the pdf P; to be Gaussian. This is not
valid for small distances r«r. when f is determined by one of the
droplets. So we can assume that the pdf has a Gaussian core and an
adjoined power function specified in Sec.C1- or Sec.C2-. The values of ¢
and ¢, are expected to be universal constants. Constant ¢, is linked with
the dispersion of the Gaussian core of the pdf.

ii) Inertial Droplets

If the characteristic relaxation time 14 is greater than the
Kolmogorov time scale ¢, the droplets move relatively to the continuous
phase’. The heat and mass transport occur in the wakelike structures
(Fig. 46(b)) which have determining parameters different from parameters
considered in previous section.

For further estimations we consider the case when tq belongs to the
inertial interval range (this is valid in most of the practica cases).

The relative velocity of a droplet can be estimated™ as Wi=Aemy
(A,=const). Let us assume first that <ty is determined by the Stokes
equation T=Te=2rips(9pv). A droplet has a relative motion if
1<(tg/te)=(rd/%)’pd/p. The Reynolds number for the droplet motions is
introduced as Re=2rqug/v=(r4d&)’(pdp)">. If Reg>1 the Stokes equation
overestimates 13 and uy. In this case 1ty should be corrected
1=T4(1+0.15Re}®") . After elementary transformations we  obtain
Rey=Rey(1+0.15Re1®")"? so0 the Reynolds number Rey; is a function of
Rey which is formally calculated from Reg=2rqug/v,

In the case of moving droplets it is more difficult to find
analytica formulas for the Near Zone (Sec.A, Tab. 4), but the far
asymptote of the Near Zone (Sec.A+, Tab. 4) is usualy a laminar wake with
the scalar f intensity S;=J:/uy which is then entrained and expanded by
turbulence. Functions P; and N; are found by integrating over the wake
sectors with given value of f. The estimations and matching procedures for
other zones are similar to ones carried out in the previous section,
except that f° can not be determined from dimension analysis and it is
found by matching with zones B+ or A+. We note also that characteristic

126
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droplet relaxation length r=tqu=tgUy IS Normally much larger than r.

for droplets with tg/te»1 since ryre = (tdtw)(pdp)®°c)”® ~ 1otk

(cm is mass concentration of the dispersed phase and ((pd/p)*>cm)*~1 in
most of the practica cases). Constant A; can be estimated as
A=(4m)y 312,

iii) Remarks for Practical Applications

Tables 3 and 4 specify various possible regimes and asymptotes. It is
not easy to support all of these regimes in applications. In practice we
can use the pdf with the Gaussian core and the power tail Pi~(f-f))%. The
value of a can be taken to match the asymptote in the region which is most
important for combustion processes. The scalar dissipation N; can be found
then from the pdf equation given by Eq.(9.54). Note that NiPsps=CIn(fy-f)
is the quasi-steady-state (dP;/dt=0) solution of the pdf equation. This
solution is valid for the tall region but the time derivative is
significant for the Gaussian core.

9.4. CMC for Turbulent Premixed Combustion

In turbulent premixed systems, most of the fluctuation in temperature
and species mass fractions are associated with a reaction progress
variable. For constant pressure adiabatic systems this is best defined in
terms of the sensible enthapy, rather than the temperature or the mass
fraction of a maor species. This is because its balance equation does
not involve large contributions from variation of specific heat and it is
least affected by differential diffusion effects. Bilger’® has developed
the theory for application of CMC to premixed systems. It should be noted
from the outset that CMC is not likely to make a contribution to the
fundamental closure problem of turbulent premixed combustion -- prediction
of the fields of mean and variance of the progress variable. The
contribution that CMC can make in premixed systems is for prediction of
the effects of turbulence on the detailed chemical structure of the flame
including pollutant formation.

For species such as NO, most of the formation occurs in the
post-flame gases where the progress variable is close to wunity in an
adiabatic system. In practice, systems are not adiabatic and the post
flame gases are cooled by radiation. Bilger™ uses this to define a
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progress variable, ¢, which can give resolution of the chemistry occurring
in the post-flame gases:

C = [hs SRS, - 2h + 2hu]/Ahs (9.55)

where h is the enthalpy as defined in Eq.(3.32) and h° is its sensble
component so that

h=nh+ 2 Yi(ho) (9.56)

with (hg); the enthalpy of formation of species i. Subscript u refers to
the values in the unburnt premixture and AR® is the sensible enthalpy rise
from the value in the unburnt premixture to the adiabatic equilibrium
fully burnt value. For a system with radiation or other heat losses h
becomes less than h, and continues to decrease in the post-flame gases so
that ¢ increases above unity. All species and the temperature will then
become single-valued functions of c. Bilger® gives an example of how
species and temperature might vary with ¢ in such a system.

The balance equation for the enthalpy is given by EQ.(3.33) and this
and Egs (3.2) and (9.56) can be used to derive the balance equation for c:

Jc

2 Wi (ho)i + Wr
P gt pV-VeC - V-(pothS) =p—

= S (9.57)

AhS

The rate of pressure rise term has been neglected. With { taken as the
sample space variable for c, conditional averages Q are made for species
mass fractions conditional on c(x,t) = { and result in a modelled balance

eguation

%% + <v|§>-VQ =

<W|C> + N 32? - <Sb|§>aQ - V'(<V;\((;)|¢P(O) (9.58)

where & is defined in Eq. (9.57) and the fluctuations v" and Y' are now
about their means conditional on ¢ = . Also

N, = <aVe'Ve|C> (9.59)
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Is the conditional scalar dissipation for the progress variable, c. A
similar equation can be derived for the conditional enthalpy™®. Eq.(9.58)

is similar to the CMC equation for nonpremixed systems except that it
contains the extra term involving <&|{>. First order closure for this
term and for <W|{> may be possible.

Mantel & Bilger® have studied the effects of turbulence on N; using
the DNS data base of Trouve and Poinsot'®. They find that a high
turbulence levels N; is significantly increased above its laminar values
in the preheat zone of the flame. This DNS has a one-step irreversible
reaction and there is no effect of turbulence on <Wi|{> for unity Lewis
number. O'Young & Bilger'® have used advanced laser diagnostic methods to
measure N in turbulent premixed propane-air flames. They find that at
high turbulence levels N; is considerably decreased below its laminar
flame vaues. This seems to be associated with a decrease in OH
concentrations'® This suggests that multistep chemistry is needed to
fully understand the structure of premixed flames. DNS with the 2-step
reduced chemistry for methane of Swaminathan & Bilger'® is being
attempted in collaboration with Poinsot and his co-workers. This DNS
should allow testing of the above model for CMC in turbulent premixed
combustion.

9.5. Conditional methods and Lagrangian modelling

The techniques of deriving and closing equations for conditional
expectations, which are presented in this review, can be applied to other
conditional expectations with various conditions which are not analysed in
previous sections. Klimenko® considered Q,=<Y|v>, the value of scalar
Y conditioned on a fixed value of the velocity v, and demonstrated that
this value relates the Lagrangian phase-space density function Fi(v,x;t)
(or the Lagrangian pdf P, (v,x;t)) and the Eulerian velocity pdf Py(v;X,t)
by the equation

I:L = QvPv (960)
The conditional technique which has some similarities with CMC but
involves three conditioning variables - the velocity components - alows

one to obtain the exact equation for F_
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8_FL + aViFL + 8GiF|_ + oH

L= WP, + E (9.61)
ot aXi aVi aVi
where
E=Ep-E, Ep=DV(<Vc|v>P), E, = v ISCVVi[V>Py
8vi
Hi =V a<(VVi -VVj)C|V>Pv - (D+V)<VVi'VC|V>PV + <C”Si’|V>PV (962)

an

ij=123, Gj=-<dplox|u>/p and W,=<W|v> is the conditional
expectation of the particle source. The convention of summation over
repeated indices is applied. This equation is a direct consequence of the
Navier-Stokes and scalar transport equations and it is shown to be
consistent with the traditional Lagrangian models™ based on the
Markov-process assumptions whose general representation is given by

OF. , oviFL , OAF. _ 0°BijFL _

W,P, (9.63)
ot aXi ov i ov i an

where B;j and A are the diffusion and drift coefficients. The findings of
Ref. 57 involve several additional theoretical constraints which can be
effectively used in Lagrangian modelling. These results are supported by
the direct numerical simulations of Weinman and Klimenko **.
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10. CONCLUSIONS AND PERSPECTIVES

It may be concluded that CMC methods have a sound theoretica basis
and that CMC predictions of laboratory and DNS experiments give very good
agreement. The novelty of this approach brings forward a rich variety of
theoretical and modeling problems that are proving stimulating to the
growing number of workers in this field. The approach aso gives much
new  physica insight into the phenomena  of  turbulence-chemistry
Interactions.

In particular we note the following:

e The primary closure hypothesis is well defined mathematically and
appears to be valid over a wide range of conditions. Its validity
in flows with local extinctions and ignition and near the fast
chemistry limit needs further investigation.

e Workable models for closing the other unclosed terms in the CMC
equation are avallable, but further work is needed to improve
them.

e The additiona dimensionality associated with the conditioning
variable has been a deterrent to using the method in problems with
2 and 3 gpatiad dimensions. In problems with low spatia gradients
in the conditional averages it may be possible to use a much
coarser gpatia grid in the CMC caculation than that needed in
the flow solver.

e Computational costs ae moderate even with  full  chemical
mechanisms. Little work has been done on the numericad methods
used and significant improvements may be possible.

o It seems likely that the method will be able to incorporate the
effects of differential molecular diffusion.

Initially it appeared that the technique may be limited to problems
where local extinction and ignition phenomena are not significant. The
recent success of second order closure prediction of autoignition in
nonpremixed turbulent flows gives hope that the technique may be more
widely  applicable than  originally  thought. There is  much  further
development needed, however.
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FIGURE CAPTIONS

Fig. 1. Scatter plots of al data and conditiona averages conditional
on mixture fraction for the temperature and OH mass fraction in a
piloted diffuson flame of methanol a x/D;=20, U;=60m/s and
D= O, 17, o, 14; A, 11 The full curves are for a laminar
counterflow diffusion flame with a strain rate parameter a = 5
s'. Data of Masri et al®.

Fig. 2. Clipped Gaussian pdfs with various values of mean mixture
fraction (first column) and root mean square fluctuation  of
mixture fraction (second column) The delta functions a n=0,1
have strengths o, of 0.048, 0.048; 0.21, 0.0, and 0.07 , 0.0,
respectively.

Fig. 3. Beta function pdfs with the same mean and root mean sguare
fluctuation of mixture fraction as in Fig. 2 Note the different
behaviour near n=0,1 and the absence of delta functions.

Fig. 4. Probability of the event Z;<Y<Z, shown (a) using the cumulative
probability function and (b) using the pdf.

Fig. 5. Probability of the event Z<Y<Z+AZ

Fig. 6. Surface plot of a Gaussian joint pdf for two variables.
Fig. 7. Contour plot of the Gaussian joint pdf of Fig. 6.

Fig. 8. (& Contour plot of the joint pdf P(Z;Z,) ———; locus of
<Yi|Z»> ———; locus of <Y,|Z> — - —- — .
(b) Conditiona pdfs for two vaues. Z;= a and b.
Note that the peak of P(Z;|b) is higher than the peak of P(Z;|a)
even though the peak of P(Z,b) is lower than the peak of
P(Z,,a). This is because P(Z;=a) > P(Z;=b).

Fig. 9. Behaviour of conditional scalar dissipation with smooth pdfs.

(@) Unbounded Gaussian pdf; (b) Smooth pdf with fixed bounds;
() Smooth pdf with moving bounds.
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Fig.

Fig.

Fig.

Fig.

Fig.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Qualitative behaviour of the correlation function Ke.

PdfsAI% /(\n) in the wake of a heated cylinder versus An:AT/ATC for
various transverse locations, Adapted from Klimenko et al%.

Normalised pdf integral across the flow, AP/(\n), Adapted from
Klimenko et al ®

Normalised  conditional  scalar  dissipation  integral  across  the
NN
flow, N(m). Adapted from Klimenko et al ®.

Integrated  conditional scalar  dissipation, N*, measured in
turbulent jet diffuson flames of ar-diluted methane. Adapted

from Starner et al %,

Schematic diagram of the reactive scaar mixing layer. Adapted
from Bilger et al*°.

Conditional averages of reactant concentration  conditional  on
mixture fraction as measured in a reacting scalar mixing layer
with - Np= 042 and xJ/m = 21. Different symbols are used for
different points across the flow. Adapted from Bilger™.

Predictions for the conditional average reactant concentration in
a reacting scalar mixing layer as a function of m and normalized
downstream distance 91: Npx/# using Eq.(5.42) with A= 0.03, ne&
0.5. Adapted from Bilger™.

Conditional averages of reactant concentration a m= 05 in a
reacting scalar mixing layer. Curves are for predictions using
Eg. (5.42) with various values of A. Data points from experiments
of Bilger et al™® : A, Np= 042 o, Np= 26. Figure adapted from
Bilger ™.

CMC predictions (full lines) of Smith et al™ for nitric oxide
compared with laser induced fluorescene measurements (dots) of
Barlow and Carter?.

CMC predictions (full lines) of Smith et al™ for nitric oxide

R-14



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

compared with conditionally averages of measurements (connected
circles) of Barlow and Carter?.

CMC predictions (Smith et al™®) and laser measurements ( Barlow
and Carterz) of conditiona average temperature in a hydrogen jet
diffusion flame: x;=44/2 - - - predictions, -0-0-0- measurements,
X=/8 ---- predictions, -e-e-e- measurements.

Comparison of conditionally averaged NO mole fractions at X;=4
caculated from CMC models with 26 step and 2-step reduced
mechanisms, with and without radiation losses. Bold/plain lines
denote  full/reduced  mechanism  calculations whilst  solid/broken
lines denote radiative/ adiabatic calculations™*.

Schematic diagram for experimental set-up for round turbulent
reacting plume®.

Experimental results and CMC predictions in a reacting turbulent
round plume of NO into background Oz ------ conditional mean of
data, - - - CMC predictions, ... reaction dominated limit?.

Schematic of an axisymmetric combustor® Dimensions are in mm.

Mean streamlines calculated for the combustor of Fig. 25>

Contours of Favre-averaged mixture fraction, f = <p&>/<p>,
calculated for the combustor of Fig. 25*.

Contours of Favre averaged variance of mixture fraction, g =
<p&”*>|<p>, for the combustor of Fig. 25>

Core and outlet averaged pdfs for an ISR model of the
recirculation zone end of the combustor of Fig. 25>

Core-averaged conditional scalar dissipation for the ISR model *
(full  line) compared with laminar counterflow result with the
same maximum (dashed line).

Predictions for the conditional average species mass fractions in
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Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

32.

33

34.

35.

36.

37.

38.

39.

40.

41.

the recirculation zone of the combustor of Fig. 25 using the ISR
model **.

Predictions for the conditionally averaged temperature and NO
mass fraction in the recirculation zone of the combustor of
Fig. 25 using the ISR model **.

Comparison between ISR predictions with the Miller-Bowman™
(solid lines) as well as the GRI® (dotted lines) mechanisms and
measured data (symbols)” . R= 305 mm is the radius of the
confining tube.

Schematic of a Dilution Flow Reactor

Comparison of predicted and experimental results. series paralé
reaction of Li and Toor®.

Pdfs of the mixture fraction for the spatialy homogeneous
case”™:(a) <€> = 0.25; (b) <€> = 0.5.

The value of <N|n>/<N> from the DNS data (symbols) and from the
Case (b) model normalised by <N> from the DNS at times t = 0.9,
2.3, 3.7. Spatidly homogeneous case.” (a) <€> = 025 (b)
<€>=0.5.

Variation of the unconditional scalar dissipation with time™.

Time evolution of the terms on the left hand side (LHS) of the
CMC equation, Eg. 4.30, expressed as a fraction of the reaction
rate term. Spatially homogeneous case, <€> = & = 0.25. (@) Da, =
0.5, (b) Da, = 8. Results of Mdl et al®".

Predictions for normalized conditiona variance in a reacting
turbulent scaar mixing layer, Eq. (8.37), for & = 05. From Li
and Bilger ™.

Predictions for conditional variance in a reacting turbulent
scalar mixing layer compared with experiment™. (@) xJ/# = 8, (b)

Xdm = 12
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Fig. 42.

Fig. 43.

Fig. 44.

Fig. 45.

Fig. 46.

Balance of terms in the conditional variance equation for the
fuel species in  nonpremixed reaction in decaying homogeneous
turbulence™. T, refers to the ith term as it appears in Eq.
(8.38). (@) Simulation R1 with Re, = 335; (b) simulation R5 with
Re, = 50.5.

Predictions for conditional average mass fraction of NO in a
hydrogen jet diffuson flame wusing a partial second order
conditiona moment closure® . Filled symbols are the conditional
averaged experimental data of Barlow and Carter’ with the bars
indicating plus/minus two conditional standard deviations.
Triangles are predictions with first order closure and squares
for second order closure. (@) x/L, = 0125 and 05; (b) xL, =
0.75.

Predictions and DNS data for conditional average and root mean
square  fluctuation of  normalised  temperature rise, 6, for
autoignition in turbulent nonpremixed flow®. t; is a 0.64t, and
t, is a 1.41t, where 1, is the shortest time to ignition of a
uniform mixture. Ignition occurs at 2.05ty,.

Scatterplot of differentia diffusion, z, Versus mixture
fraction, &, and conditional average, Q, versus m for mixing in

decaying homogeneous turbulence®.

Qualitative  structure  of the  interdroplet  field®. €)
Non-inertial droplets; (b) inertial droplets.
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TABLE CAPTIONS
Table 1. Constants B, By, Bn, Bp for different types of flows.

Table 2. Relative eror in <YgYo> from CMC(a) and CMC(b) for al
Da, values a each time considered. Mel et a ™.

Table 3. Functions P=P(f) and NfE<D(V(p)2|(p:f> for non-inertial droplets.

Table 4. Functions P=P(f) and Nz=<D(Vg)’|e=f> for inertid droplets.
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Fig. 45. Scatterplot of differential diffusion, z, versus mixture fraction, £, and conditional average, O,, versus n for mixing in decaying
homogeneous turbulence [67].



	tit
	notat
	text
	Figs

