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Abstract 

This paper reviews the fundamentals of conditional moment closure (CMC) methods for the prediction of turbulent reacting 

flows, with particular emphasis on combustion. It also surveys several of the applications that have been made. CMC 

methods predict the conditional averages and higher moments of quantities such as species mass fractions and enthalpy, 

conditional on the mixture fraction or reaction progress variable having a particular value. A brief introduction is given to 

generalized functions and probability density function (pdf) methods. This is followed by an exposition on the various 

methods of derivation for the CMC equation and the general characteristics of this equation and its boundary conditions. 

Simplifications that can be made in slender layer flows such as jets and plumes are outlined and examples of application of 

the technique to such flows are given. The method allows the definition of a new class of simplified reactors related to the 

well known perfectly stirred reactor and plug flow reactor: these are outlined. CMC predictions are compared to experiment 

and direct numerical simulations for flows with homogeneous turbulence. Derivation and modeling of the equations for 

conditional variances and covariances are outlined and their use in second-order CMC illustrated. Brief review is made of 

progress on application of the method to problems involving differential diffusion, multiple conditioning, sprays and 

premixed combustion.  
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1. INTRODUCTION

1.1. Background

Reacting turbulent flows present problems of important economic

consequence in many fields of science. In engineering we are interested in

predicting efficiency, heat transfer and pollutant formation in internal

combustion engines and furnaces, product yield in chemical reactors,

overpressures in gas explosions, and the rate of spread and toxic

emissions from fires. In environmental science we are concerned with rates

of chemical transformation in chimney plumes, oxidant production in

photochemical smog, and pollutant transformation and biota growth in

lakes, rivers, estuaries and coastal waters. Examples are coming into

focus in oceanography and atmospheric science, for example in the ozone
112hole problem .

The problems are made difficult because of the fact that the rates of

reaction of concern are highly nonlinear functions of temperature and

species concentrations. The turbulence in the flow engenders mixing of

nonuniformities in species and temperature, and the rates of this mixing

are usually not fast compared with the rates of reaction. As a

consequence, large spatial and temporal fluctuations occur in the scalar

quantities (composition, temperature, enthalpy, etc), and efforts to

express average rates of reaction in terms of average values of the
17scalars prove to be inadequate . The nonlinearity of the reaction rates

give rise to terms involving correlations of the fluctuations, and these

are usually as large as those involving only the average quantities. Often

the correlation terms are of the opposite sign, so that the true mean rate

of reaction can be an order of magnitude or more smaller than that

obtained from using just average values in the rate expression. This

problem is an extremely difficult addition to the already difficult

closure problem of prediction in nonreacting turbulent flows.

The problems of predicting flow and mixing of nonreacting scalars are

difficult enough. Progress has been made using several approaches. One

approach of considerable interest in engineering and applied science

involves so-called "moment closure" methods. First moments are means or

averages. Second moments are variances and covariances of the fluctuations

about the averages. Third moments are triple correlations between the

1-1



fluctuations. In moment methods the Navier-Stokes and scalar conservation

equations are used to derive equations for these moments. The exact

equations for the first moments have terms involving the second moments.

Exact equations for the second moments have terms involving the third

moments. And so on. The equations for any level of moments have terms

involving higher level moments. The system of equations is thus unclosed.

In moment closure methods, closure is obtained by modelling the higher

level moments in terms of the lower moments. First moment closure (often

called first "order" closure) solves equations for the first moments (the

averages) by expressing the second moments such as the Reynolds stresses

and scalar fluxes in terms of the averages and their gradients. Mixing

length and eddy viscosity methods are such first moment closure methods.

They are still commonly used in environmental science and in the

geophysical sciences. In engineering, much use is made of second moment

(order) closures in which the triple correlation terms are modelled in

terms of the first and second moments and their gradients. While these

models are by no means universally applicable they have proved to be very
73,143useful in predictions for a wide range of flows .

Such success in closure at the second moment level has not been

achieved for chemical reacting systems, however, due to the high

nonlinearity of the reaction rate terms. This difficulty appears not only

for the mean reaction rate term in the first moment equations for the

scalars, but also in the equations for the turbulent scalar fluxes where

correlations between the reaction rate and the scalar fluctuations are

present. Moment closure methods have met with success for only a limited
7,21range of problems where the chemistry is fast or where it is

46sufficiently simple .

General reviews of the problems of predicting turbulent reacting
27 39 81flows may be found in Chen & Kollmann , Fox , Libby & Williams and

114Pope .

1.2. Outline of CMC Methods

In the Conditional Moment Closure (CMC) methods that are the subject

of this review, the underlying hypothesis is that most of the fluctuation

in the scalar quantities of interest can often be associated with
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the fluctuation of (usually) only one key quantity. Thus in nonpremixed

problems, where there is mixing between two bodies or streams of fluid,

fuel and oxidant, say, the values of concentrations and temperature within

the mixing field depend very strongly on the local instantaneous value of

some variable, such as the mixture fraction, which describes the

stoichiometry of the mixture. The mixture fraction is a conserved scalar

and can be defined as the normalised mass fraction of an inert tracer

introduced with the fuel. If turbulent mixing occurs without significant

differential molecular diffusion, the mixture fraction gives the mass

fraction of the material in the local mixture that originated in unmixed

body of fluid denoted as fuel. The mass fraction of the local mixture

that originated from the unmixed body of fluid denoted as oxidant, is then

one minus the mixture fraction. (For further clarification of this

important concept see Refs 9, 139). The balance equation for the mixture

fraction has no chemical source term. As such, it is not subject to the

difficulties associated with reactive scalars, and its mean and variance

fields are often predicted with success by moment closure methods.

Figure 1 shows scatter plots of temperature and mass fraction of

hydroxyl radical, measured by advanced laser diagnostic methods, as a

function of the simultaneously made measurement of the mixture fraction.
85The measurements were made in a piloted nonpremixed jet flame of

methanol in air. It is seen that the temperature and OH are very strong

nonlinear functions of mixture fraction. At a given position in the flame

there are very strong fluctuations in the mixture fraction about its mean

value. There are also very strong fluctuations of temperature and OH mass

fraction about their mean values. But if we draw a curve through the

middle of this scatter plot data, the departures from this curve are much

less than the overall fluctuations. The curve is the function derived from

conditional averaging.

Conditional moments are averages, covariances, etc, made subject to a

certain condition being satisfied. In Fig. 1 the right hand side (RHS) of

the figure shows conditional average values of temperature, T, and

hydroxyl radical mass fraction, YOH, conditional on the mixture fraction,

ξ, having a prescribed value, η. We write these as <T|η> and <YOH|η>. A

more formal definition of conditional averages will be found in Section

2.1.3. In reducing the experimental data, the range of mixture fraction is

divided into something like 30 ’bins’. The data set is then sorted into

these 30 bins. Statistics are then made for each bin: the average
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temperature in the bin is taken as the conditional average for the mixture

fraction value at the centre of the range of mixture fraction for that

bin. A conditional variance of the fluctuations is taken as the variance

for the fluctuations about the conditional average for the data in that

bin. The close association that is mentioned above between reactive

scalars and the mixture fraction can be more precisely expressed in terms

of the conditional variances being small compared with the square of the

conditional mean. This roundabout way of expressing the close correlations

that are apparent in Fig. 1 is necessary since the correlations are

strongly nonlinear.

In premixed systems, it is thought that fluctuations in species mass

fractions and in temperature are often closely associated with

fluctuations in the reaction progress variable. This reaction progress

variable is best defined in terms of the H O mass fraction in the mixture
2

such that it has a value of zero in the unburnt fluid and a value of unity

in the fully reacted mixture. Methods for premixed systems are not well

advanced as yet, and in most of what follows we will confine ourselves to

nonpremixed systems.

In earlier work, conditional averaging was done subject to the

condition of whether the flow was turbulent or nonturbulent. This is
27sometimes termed zone conditional averaging. Chen & Kollmann outline

this approach in comparison with the conditional averaging used here.

In CMC methods, equations are derived and modelled for the

conditional moments of the reactive scalars. With the modelling

assumptions usually made for simpler problems in nonpremixed

combustion, the CMC equation for the conditional average <Yi|η> of the

mass fraction of species i is

2∂<Y i|η> ∂ <Y i|η>
-------------------------------------] + <v|η>⋅∇<Yi|η> - <N|η>[------------------------------------------] = <Wi|η> (1.1)

2∂t ∂η

In this equation t is time, v is velocity, Wi is the rate of formation of

species i per unit mass of the mixture and N is the scalar dissipation

N ≡ D ∇ξ⋅∇ξ

where D is the molecular diffusivity, assumed equal for all species. In

deriving this equation, important modelling assumptions are made and these
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are discussed in some detail later. A similar equation is derived for the

conditional average enthalpy. These equations have unclosed source terms

involving the conditional average of the species reaction rate and of the

net radiant transfer. CMC methods usually make the assumption that

closure for these terms can be made at the first conditional moment level.

This is often possible for the conditional reaction rates since the

fluctuations about the conditional averages are small and the conditional

covariances can be neglected; but for some cases the closure is best done

at the second moment level. It should be noted that the CMC equation,

itself, is valid for large fluctuations about the conditional mean

(conditional variance). Relatively small values of the conditional

variances shown on Figure 1 indicate that the conditional expectations

represent a good choice for the model variables. This property, however,

is not assumed in CMC derivations. The physical basis of CMC lies on

different grounds which are discussed in Section 3. The modelling of the

conditional average velocity, <v|η>, and conditional average scalar

dissipation, <N|η>, is usually accomplished from information already

existing on the velocity and mixing fields. In homogeneous flows and

turbulent shear layers, special simplifications are possible. It is

important that the conditional average scalar dissipation used is

consistent with that appearing in the transport equation for the pdf of

the mixture fraction. These modelling issues are discussed later.

Solution of the CMC equations usually proceeds in parallel with

appropriate modelling for the velocity and mixture fraction fields. CMC

can be used with any type of approach to the modelling of the flow and

mixing, from simple entrainment models to large eddy simulation. Even

experimental data can be used. If second order closure methods are used,

the mixing is expressed in terms of the mean and variance (usually
6,37density-weighted, i.e. Favre averaged ) of the mixture fraction. To

obtain the mean density, which is needed for the flow/mixing calculation,

the conditional mean density obtained from the CMC solution is weighted by

the mixture fraction pdf. A presumed form for the pdf is assumed and this

is scaled to fit the required mean and variance. In computing

unconditionally averaged results for the species and temperature, the

conditional averaged values obtained from the CMC calculation are also

weighted by this pdf. For simplicity, the theoretical development

presented here works in terms of conventional pdfs rather than Favre pdfs
6,7,9,47which are usually more convenient in flows with heat release.
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Where appropriate, indications are given for transcription of formulae in

terms of Favre pdfs.
9Bilger outlines experimental data on the shapes of mixture fraction

pdfs in various types of flows. In modeling, two different presumed forms

are commonly used for the mixture fraction pdf: the clipped Gaussian form

shown in Fig. 2 and the beta function form shown in Fig. 3 Of part i cular

note is the behaviour near η= 0 and 1, the unmixed fluid states. In many

two-stream mixing problems there are places in the flow where patches of

essentially unmixed fuel and/or oxidiser are intermittently present. If

these are treated as completely uncontaminated by the other stream fluid

then the mixture fraction pdf will have delta functions at η = 0 and 1.

Alternatively, it can be argued on the basis of the form of the convection

diffusion equation, that these patches must be everywhere contaminated by

the other stream, even if the levels will be insignificantly small. This

viewpoint leads to pdfs which are continuous near η = 0 and 1. We shall

refer to these as smooth pdfs and the others as intermittent pdfs.

It is noted here that in classical turbulent flows, such as jets

wakes and boundary layers, these ’unmixed’ patches of fluid are assumed to

be non-vortical and hence non-turbulent. It has become usual to treat the

interface between turbulent and non-turbulent fluid to be the same as that

between unmixed or uncontaminated fluid and fluid that is partially mixed

with 0 < η < 1, even though this question has not been satisfactorily

investigated. In most practical systems the unmixed streams will be

turbulent to some extent and the analogy between turbulence and mixing

does not apply. We will not labour ths issue here and will often refer to

the partially mixed fluid as the turbulent fluid as has been the

convention.

The formulae describing the clipped Gaussian form are as follows.

& *P(η) = γ1δ(η) + 1 - γ1 - γ2 Pt(η) + γ2δ(1-η) (1.2)
7 8

Pt(η) = G(η)/Ig 0 ≤ η ≤ 1 (1.3)

where
21 & (η -ξg) *G(η) ≡ [---------------------------------------] exp - [-----------------------------] (1.4)

1/2 7 2 8σg(2π) 2σg

and
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1

iIg = G(η)dη (1.5)
j
0

Here δ(x) represents the Dirac delta function centered at x = 0, and γ1

and γ2 are the strengths of these delta functions in the unmixed fluids

corresponding to ξ = 0 and ξ = 1, respectively. Pt(η) is the pdf of the

turbulent fluid which has a Gaussian form as shown with free parameters ξg

and σg which are the mean and standard deviation of the unclipped Gaussian

but are not simple moments of the clipped Gaussian Pt(η). They can be

related to the mean and variance of the mixture fraction by taking

appropriate moments of P(η), with γ1 and γ2 being regarded as free

parameters, or, as is often assumed, having values corresponding to the

clipped tails of the distribution

0 ∞
i iγ1 = G(η)dη; γ2 = G(η)dη (1.6)
j j

-∞ 1

For jets far downstream from the potential core, γ2 ≈ 0 and an alternative
52proceedure is to use an empirical correlation for γ1.

The beta function distribution is given by

r-1 s-1η (1-η)P(η) =[-------------------------------------------------]; 0 ≤ η ≤ 1 (1.7)
I b

where
1

i r-1 s-1 Γ ( r)Γ(s)Ib ≡ η (1-η) dη = [----------------------------------] (1.8)
j Γ(r+s)
0

and Γ(x) is the Gamma function. The parameters r and s are directly
2related to the mixture fraction mean, <ξ>, and variance, <ξ′ >, by

& 1 -<ξ> * 1 - <ξ>r = <ξ> <ξ> [----------------------------] - 1 ; s = r[-----------------------------] (1.9)
7 2 8 <ξ><ξ ′ >

They are positive quantities, since

& 2 * & *0 < <ξ′ > < <ξ>(1 - <ξ>) (1.10)
7 8 7 8
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except for when P(η) is composed entirely of delta functions at η = 0 and

1. This positive nature of r and s ensures that P(η) is integrable even

though P(η) may have "spikes", i.e. P(η) L ∞ as η L 0 if 0 < r < 1 and/or

η L 1 if 0 < s < 1. Such spikes are physically and mathematically

different to the delta functions of strength γ1 and γ2 associated with

intermittent pdfs such as the clipped Gaussian just described.

Of some importance to the theoretical development in the early

Sections of this review is the fundamentally different character of these

pdf forms at their upper and lower bounds. As detailed above, the clipped

Gaussian form assumes that statistics in scalar space are intermittent in

character at the upper and lower bounds and the pdf has delta function

components at these bounds. The beta function pdf, on the other hand, has

no such description of the intermittent nature of the outer edges of

turbulent flows. In such regions the pdf asymptotes to infinity at the

corresponding bound. These and other characteristics of the bounds of the

pdf are examined with some care in the development that follows.
10,12,54CMC methods were developed independently by each of us . As

such, they are still quite new, and their potential and limitations have

not yet been fully established. They have been applied to predictions of
12,25,77,123,124,125experimental reacting flows with considerable success.

They have also been examined using data bases generated by direct
91,99,133numerical simulation also with considerable success. They appear

to have significant advantages over other advanced methods of prediction

of turbulent reacting flows such as the stationary laminar flamelet
71,109methods (SLFM) , Monte Carlo simulation of the joint probability

113 53density function (MC/jpdf) and linear eddy modelling .
91,125,130Direct comparisons with CMC are only now becoming available . The

advantages are in the more rigorous basis for the modelling and in reduced

computational cost (except for SLFM). CMC methods are, however,

only validated at this time for flows without significant local extinction

or reignition phenomena present. Second-order conditional moment closure

methods and double conditional averaging methods are being developed to

address these types of problems.

1.3 Outline of This Review

In this review we seek to set out in a tutorial way the fundamentals
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of CMC methods, present some of the practical matters involved in

computing solutions and show some of the results that have been obtained.

We start from the premise that the reader has a basic familiarity with

turbulence theory, such as is available in the books by Tennekes &
135 115Lumley or Pope , and with the theory of combustion and turbulent

139combustion such as is available in the book by Turns . Readers concerned

primarily with applications of CMC may wish to skim Sections 2 and 3 and

begin close study at Section 4 where the main features of the CMC equation

and its application are discussed.

The development of CMC theory requires mathematical tools not often

available to graduate students. Accordingly, in Section 2 we outline the

fundamentals of probability density function (pdf) methods and their basis

in the theory of generalized functions. We show how these are used

to derive the transport equation for the joint pdf of two scalars which is

one basis for the derivation of the CMC equation. We consider also the

transport equation for the pdf of the mixture fraction, which is an

adjoint equation to the CMC equation, and which may be used to determine

the conditional average scalar dissipation, an important quantity in the

CMC equation. The boundary conditions to be used in integrating this

mixture fraction pdf equation are considered in some detail for various

pdf shapes. For those readers not wishing to follow the derivations in

detail, a summary of the main results is given at the end of the Section.

The various methods of deriving the first-order CMC equation (for the

conditional averages) are presented in Section 3 including an outline of

the primary closure hypotheses used in closing the unclosed convection and

diffusion terms in the equation. The CMC equation for enthalpy is

presented separately. Closure for the conditional average reaction rate

and the source terms that appear in the enthalpy equation is discussed.

The role of Favre averaging in CMC is outlined. A more detailed discussion

of the closure hypotheses from the point of view of Markov process theory

and local similarity follows. The Section concludes with a summary of the

main results obtained.

The main features of the CMC equation are elucidated in Section 4,

including modeling of conditional velocity and conditional dissipation,

and of its relation to the fast chemistry limit and to SLFM.

Simplifications that appear in homogeneous problems are outlined. The

specification of boundary conditions is also elucidated.

Special simplifications are available in turbulent shear layers and
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other turbulent slender layer flows. Asymptotic analysis indicates that

the structure of the CMC equations in shear layers is quite different from

traditional boundary layer equations for conventional means. In Section 5,

it is shown that the cross-stream variation of conditional averages of

reactive scalars is small and can be neglected in the first order.

Integration of the CMC and pdf transport equations across the layer

eliminates terms involving the cross-stream component of the conditional

velocity. The conditional dissipation, averaged across the flow, can be

obtained from the pdf transport equation of the mixture fraction; and the

boundary conditions needed for this are considered in some detail for both

intermittent and smooth pdfs. Solutions obtainable in self-similar flows

are presented. For flows which are only quasi-self-similar, algorithms are

presented which ease the computation of the conditional scalar

dissipation. Results for CMC computations in jet flames, reacting scalar

mixing layers, and plumes are shown in comparison with experimental data.

The use of CMC in defining novel simple reactor concepts is reviewed

in Section 6. The Incompletely Stirred Reactor (ISR) is a generalisation

of the well-known Perfectly Stirred Reactor (PSR) and the Dilution Flow

Reactor (DFR) is a generalisation of the well-known Plug Flow Reactor

(PFR). For definitions of the PSR and PFR see Ref. 139 In the PSR all

scalars are uniform within the reactor and equal to the exit values. In

our generalisation of this, the ISR, the inlet is not fully premixed and

mixture fraction may be non-uniform within the reactor; but the condition

of uniformity is assumed for the conditional averages of the reactive

scalars. The ISR may prove to be a useful model for nonpremixed reactors

such as gas turbine primary zones in which there is strong recirculation

and for which the chemical time scales are of the same order as the mixing

time scales. In the Plug Flow Reactor (PFR) composition is assumed

uniform across the flow: in its DFR counterpart this uniformity is not

required for the mixture fraction but is assumed for the conditional

averages of reactive scalars. The DFR may prove to be a useful model for

nonpremixed reactors such as gas turbine dilution zones and NOx reburn

zones in furnaces. These concepts are introduced in Section 6 even though

their regimes of validity are as yet not well defined.

A number of studies have been made of the validity of CMC methods

using Direct Numerical Simulations (DNS) as the data base. These have

been made in flows with decaying homogeneous turbulent flow fields,

usually, but not always with homogeneously distributed scalar fields.
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Results are shown in Section 7 from a number of studies with simple and

complex chemistry. The Section opens with presentation of CMC predictions

of experimental results in chemical reactors with quasi-homogeneous

turbulence.

Derivation of the equations for the conditional variances and

covariances in nonpremixed systems is presented in Section 8. The

consequences of large fluctuation or intermittency in the scalar

dissipation are discussed. Results of predictions for the reacting scalar

mixing layer are shown against the experimental data. The use of these

predictions in second order conditional moment closure is outlined.

In Section 9, progress on the use of conditional moment methods in a

number of problems, which require more intricate choice of conditioning

variables, are discussed. These include the use of averaging with multiple

conditions for multi-stream mixing problems, CMC for premixed combustion

and for sprays, the incorporation of differential diffusion effects into

the CMC method and a brief discussion on the applications of conditional

methods to Lagrangian modelling.

Conclusions and recommendations are summarised in Section 10.

1-11



2. PDF METHODS IN TURBULENT FLOWS

A feature of CMC modeling is the rigorous basis for the formulation

of the CMC equations and the transparency of the modeling that is done.

For this to be demonstrated it is necessary to use mathematical tools that

are often not available to workers in this field. Accordingly, in this

Section, we review some basic facts related to pdfs and conditional

expectations. We consider also the formalism of generalized functions

(such as the delta function) which provides a very effective and

relatively simple technique for deriving the governing equations for pdfs

and conditional moments in turbulent flows. We introduce formulae and

methods which will be used later in the derivation of the conditional

moment equations. The transport equation for the pdf of the conserved

scalar or mixture fraction is important as it is essentially an adjoint

equation to the CMC equation and can be used to obtain the conditional

scalar dissipation. This is done by integrating it in mixture fraction

space. Questions arise as to the nature of the boundary conditions to be

applied at η = 0 and 1, and how these depend on the structure assumed for

the pdf at these bounds - whether smooth or intermittent.

For those readers not wishing to read this Section in detail, a

summary of the main results needed in ensuing sections is given at the
113end. For those readers wishing to explore this material further, Pope

gives a more comprehensive review of pdf methods in turbulent combustion,
83 20while Lighthil l and Bracewell give more information on generalized

functions.

2.1. Pdfs and Conditional Expectations

2.1.1. Pdfs and generalized functions

In turbulent flows, values of the velocity components and scalars

such as concentrations and temperature are stochastic, fluctuating

variables. Important properties of stochastic variables can be

characterized by their probabilities. We prefer the term "stochastic

variable" to the more commonly used "random variable", since in

turbulence the variables of interest are continuous in space and time and

do not have the characteristics of white noise. The cumulative
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probability P(Y<Z) of a stochastic variable Y is the probability of an

event occurring which has Y<Z, where Z is the sample space variable for Y,

that is, a particular value in the range of Y. The cumulative probability

P(Y<Z) is a monotonic function of Z. The cumulative probability P(Y<Z)

tends to 0 as ZL-∞ and P(Y<Z) tends to 1 as ZL+∞. The probability density

function (pdf) P is the derivative of the corresponding cumulative

probability

dP (Y<Z)P(Z) ≡ [---------------------------------------] (2.1)
dZ

The probability of Z1≤Y<Z2 is given by P(Y<Z2) - P(Y<Z1) and, if the

derivative in Eq.(2.1) exists as a usual derivative, the product P ΔZ

specifies the probability of the event Z≤Y<Z+ΔZ for any small ΔZ. The

relationship of the functions P(Y<Z) and P(Z) is shown in Fig. 4 and

Fig. 5 Thi s f i gures illustrate the case of finite Z2-Z1 (Fig. 4 ) and

the case of ΔZ ≡ Z2-Z1 L 0 (Fig. 5 ).

Another basic concept for a stochastic variable is its expectation.

Expectations are also called mean values and are the limit of average

values for large number realizations of the flow. An expectation is the

result of averaging which is usually denoted by angular brackets.

Probability density functions and expectations are closely related to each

other. The mean or expected value of Y, <Y> is given by

+∞ +∞
i i<Y> = Z P(Z) dZ = Z dP(Y<Z) (2.2)
j j

-∞ -∞

The expectation of any deterministic function, F(Y), which depends on the

stochastic variable Y is given by

+∞ +∞
i i<F(Y)> = F(Z) P(Z) dZ = F(Z) dP(Y<Z) (2.3)
j j

-∞ -∞

Here averaging is understood as so-called ensemble averaging. Let us

imagine that an experiment is duplicated in na many different places under

identical conditions and values Yk=Y(x,t) (k=1,2,...na) are measured in

these experiments for given x and t. Yk represents the value of the

stochastic value Y in the kth realization. The ensemble mean value is
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-1determined by <Y> = na ∑ Yk. The value of na must be very large. In
k

practice other ways of determining average values may be more convenient.

Under certain conditions time averaging can be used. In this paper,

however, we imply that averaging means ensemble averaging.

Equation (2.1) can be transformed so that the cumulative probability

is expressed in terms of expectations

Z +∞
i ° ° i ° ° °P(Y<Z) = P(Z ) dZ = H(Z-Z ) P(Z ) dZ = <H(Z-Y)> (2.4)
j j

-∞ -∞

where H is the Heaviside function: H(Z)=0 for Z≤0 and H(Z)=1 for Z>0.

Differentiating Eq.(2.4) with respect to Z and taking into account that
°P(Z ) does not depend on Z we obtain the identity

+∞
i ° ° °P(Z) = δ(Z-Z ) P(Z ) dZ = <δ(Z-Y)> (2.5)
j

-∞

which is very convenient representation of the pdf. Here δ is Dirac’s

delta function which has been introduced as the derivative of the

Heaviside function δ=dH/dZ (δ(Z) is zero everywhere except at Z=0 where

the delta function is infinite). This derivative does not exist as a

usual derivative since H is a discontinuous function. The delta function

is a so-called generalized function, and it has a more precise formal

definition than that just introduced.

The formal definition of the delta function specifies how it affects

ordinary functions. Equation (2.5) is not suitable as a strict definition

of P because: 1) P is not an arbitrary function and we have used Eq.(2.5)

to determine the properties of P rather than to introduce the delta

function; and 2) P(Y<Z) can be a discontinuous function of Z and this

means that the pdf function P introduced by Eq.(2.1) can itself involve

delta functions. The delta function can be strictly defined by describing

its properties: the function which affects any function F(Z) (which
83belongs to the certain class of "good" functions ) such that

+∞
iF(Z) δ(Z) dZ = F(0) (2.6)
j

-∞
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is the delta function. In general, this definition depends on what we

understand as the class of "good" functions. Normally these functions F

must be smooth enough and rapidly tend to zero as ZL±∞. We assume here

that the function F is continuous and has as many derivatives as required.

According to the definition in Eq.(2.6), the delta function is an even

function δ(-Z) = δ(Z). Generalized functions, fg, are defined by

describing their properties under integration. This means the

specification of: 1) the variable over which the product fgF is to be

integrated; and 2) the result of the integration for any arbitrary

function F which belongs to the class of good functions.

With this more formal definition we can now prove that Eq.(2.5) is

the property of the delta function introduced by Eq.(2.6). Equation (2.6)

defines the delta function located at Z=0. This definition can be extended

to involve the delta function located at Z=Z0

+∞ +∞
i i ° ° °F(Z0) = F(Z+Z0) δ(Z) dZ = F(Z ) δ(Z -Z0) dZ (2.7)
j j

-∞ -∞

This equation can be formally derived from Eq.(2.6) by substituting
°F0(Z)≡F(Z+Z0) for F(Z) and introducing the new variable Z =Z+Z0. It is

easy to see that the new function F0 also belongs to the class of good

functions.
°After formal substitution of Y for Z0 and Z for Z , Eq.(2.7) is

averaged over Y

+∞ +∞
i i<F(Y)> = < F(Z) δ(Z-Y) dZ > = F(Z) <δ(Z-Y)> dZ (2.8)
j j

-∞ -∞

Since Eq.(2.8) is valid for any F(Z), upon comparing Eq.(2.8) and Eq.(2.3)

we obtain P(Z) = <δ(Z-Y)> which is Eq.(2.5). Equation (2.5) is the basic

equation which is used to derive the governing equation for the pdf, P(Z).

The governing equation is derived first for ψ=δ(Z-Y) and then averaged.

This technique is not the only one possible. Sometimes the characteristic

function Φ(λ)≡<exp(iλY)>, which is the Fourier transform of the pdf, is
72used for derivation of the pdf equations . While Φ(λ) has the advantage

of being an analytical function, derivations using Φ(λ) usually require

more steps.
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2.1.2. Joint pdfs

In this section we generalize the single-variable probability

functions introduced in the previous section to the case of n stochastic

variables Yi and their joint pdf. The joint cumulative probability P(Y<Z)

of a set of stochastic variables Yi (i=1,2,...n) is the probability that

Y1<Z1, Y2<Z2, ..., Yn<Zn are jointly valid. The joint pdf

P(Z)≡P(Z1,...,Zn) and the average value of a deterministic function F(Y)

are given by

n∂ P ( Y<Z)P(Z) ≡[--------------------------------------------------------------------] (2.9)
∂Z1∂Z 1 . . .∂Zn

i<F(Y)> = F(Z) P(Z) dZ1dZ2...dZn (2.10)
j
∞

Here, and further on, the integral is taken over all possible values of Z.

If P is an ordinary function and ΔZ is small, the product

P(Z) ΔZ1ΔZ2...ΔZn of the joint pdf P and the volume of the box with center

Z and sides ΔZ specifies the probability of Y being in this box. If the

joint pdf is the product of the one-variable pdfs

P(Z) = P(Z1) P(Z2) ... P(Zn), the stochastic variables Yi are

statistically independent. We do not introduce any special notation for

the joint pdf. The number of the stochastic variables is specified by the

number of arguments Zi in P. Surface and contour plots o f a Gaussian

two-variable joint pdf are shown in Figs 6 and 7

Joint cumulative probabilities and joint pdfs can also be introduced

using the functions H and δ

P(Y<Z) = <H(Z1-Y1) H(Z2-Y2) ... H(Zn-Yn)> (2.11)

P(Z) = <ψ>; ψ ≡ δ(Z1-Y1) δ(Z2-Y2) ... δ(Zn-Yn) (2.12)

where the new function ψ is introduced for convenience. This function ψ is

called the fine-grained pdf. Equations (2.9) and (2.12) are similar to

Eqs.(2.1) and (2.5) for a single stochastic variable.
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2.1.3. Conditional pdfs and conditional expectations

Now we turn to consideration of conditional pdfs and conditional

expectations. Conditional pdfs and conditional expectations are the pdfs

and expectations determined for certain selected realizations among the

ensemble of all realizations of the flow. The criterion for selection of

these realizations is the fulfillment of a particular condition which is

specified. The conditional cumulative probability P(A|B) is the cumulative

probability of the event A determined for these realizations which meet

the condition appearing on the right-hand side of the vertical bar (that

is for these realizations for which statement B is valid). For example, if

the event A can be specified as Y1<Z1 and the condition B can be specified

as Y2<Z2 the corresponding conditional probability can be written as
108

P( Y1<Z1 | Y2<Z2 ). According to Bayes theorem , the joint probability

of two events A and B both occurring, P(A,B), can be decomposed into

P(A,B) = P(A|B) P(B) (2.13)

The conditional pdf P(Z1|B) is the probability density for Y1 being

at the value Z1 for those realizations which meet the condition appearing

on the right-hand side of the vertical bar. In general, the condition B

should have a non-zero probability. If B represents a condition which

never occurs, P(Z1|B) cannot be determined. If the condition B is

specified as Y2=Z2, this means that Z2-ΔZ≤Y2<Z2+ΔZ for sufficiently small

ΔZ (note that the probability of Y2=Z2 may be zero). We consider here two

stochastic variables Yi, i=1,2. Their joint probability function P(Z1,Z2)

can be also decomposed into the product of the pdf of Z2 multiplied by the

pdf of Y1 conditional on Y2=Z2

P(Z) ≡ P(Z1,Z2) = P(Z1|Y2=Z2) P(Z2) (2.14)

Equation (2.14) determines the conditional pdf P(Z1|Y2=Z2). If the

variables Z1 and Z2 are statistically independent then P(Z1,Z2) =

P(Z1)P(Z2) and P(Z1|Y2=Z2) = P(Z1).

The conditional expectation <Y2|B> is the average of Y2 over the

sub-ensemble of these realizations which meet the condition appearing on
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the right-hand side of the vertical bar. If the condition B is specified

as Y2=Z2, this has the same meaning as in Eq.(2.14). The conditional

expectation is determined by
+∞
i Z1P(Z1 ,Z2)dZ1+∞ j

i -∞<Y1|Y2=Z2> = Z1P(Z1|Y2=Z2) dZ1 = ------------------------------------------------------------------------------] (2.15)
j P(Z2)-∞

The conditional expectation is a function of the variable Z2 which

specifies the condition of averaging. We may use the brief notation

<Y1|Z2> which means exactly the same as <Y1|Y2=Z2>. The conditional

averages and conditional pdfs are shown in Fig. 8 for the case of a

"banana" pdf. This figure illustrates the differences between P(Z2|Y1=a)

and P(Z2|Y1=b) for conditional pdfs and between <Y1|Z2> and <Y2|Z1> for

conditional expectations. The following properties of the conditional

expectations are derived from Eq.(2.15). The conventional (unconditional)

mean value is given by the integral

+∞
i<Y1> = <Y1|Y2=Z2> P(Z2) dZ2 (2.16)
j

-∞

If variables Y1 and Y2 are statistically independent the conditional

expectation <Y1|Y2=Z2> does not depend on Z2 and coincides with the

unconditional expectation <Y1>. For any deterministic function F(Y2) which

does not depend on Y1, the conditional expectation of the product Y1F is

given by

<Y1F(Y2)|Y2=Z2> = <Y1|Y2=Z2> F(Z2) (2.17)

If Y1 is a deterministic function of Y2 (that is Y1=F(Y2)) then, according

to Eq.(2.17), the conditional expectation is the function, itself:

<F(Z2)|Y2=Z2>=F(Z2).

Using the formalism of the delta function the conditional

expectations can be also expressed as

<Y1|Y2=Z2> P(Z2) = <Y1 δ(Z2-Y2)> (2.18)

In order to prove this equation we multiply Eq.(2.18) by any good function
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F(Z2) and integrate over Z2. The left-hand and right-hand sides of

Eq.(2.18) then take the forms

+∞ +∞
i iF(Z2) <Y1|Y2=Z2> P(Z2) dZ2 = <Y1F(Z2)|Y2=Z2> P(Z2) dZ2 = <Y1F(Y2)>j j

-∞ -∞

+∞ +∞
i iF(Z2) <Y1 δ(Z2-Y2)> dZ2 = < Y1 F(Z2) δ(Z2-Y2) dZ2 > = <Y1F(Y2)>j j

-∞ -∞

Here, in the second equation, Y1 does not depend on Z2 and Y1 is put

outside the integration sign. Since both sides of Eq.(2.18) are thus found

to be identical for any arbitrary function F, this proves Eq.(2.18).

Equation (2.18) is often used in pdf derivations. This equation is more

general than Eq.(2.5) since Eq.(2.5) can be obtained by substituting Y1=1

into Eq.(2.18). Equation (2.18) can be generalized for multiple conditions

<Y0|Y=Z> P(Z) = <Y0 ψ> (2.19)

where ψ is specified in Eq.(2.12) Y=(Y1,...,Yn), Z=(Z1,...,Zn) and Y0 is

not included in the set (Y1,...,Yn).

2.2. Differentiating Generalized Functions and Pdfs

In this section we show how to differentiate generalized functions

and then we apply this technique for the derivation of some identities

which involve pdfs and conditional expectations. These identities will be

used later when we consider the governing equation for the joint pdf.

2.2.1. Generalized derivative

We consider here functions or generalized functions for which normal

derivatives do not exist. If the derivative of the function f exists, we

can write for any good function F
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+∞ +∞ +∞+∞
i & * i iF(Z)f ′(Z)dZ = Ff - F′(Z)f(Z)dZ = - F′(Z)f(Z)dZ (2.20)
j 7 8 j j

- ∞-∞ -∞ -∞

Equation (2.20) results from integration by parts and taking into account

that the good function F rapidly tends to zero as ZL±∞. If, on the other

hand, the derivative f ′≡df/dZ does not exist as a normal

"non-generalized" derivative, this equation becomes the definition of the

generalized derivative. This derivative is a generalized function which

has properties specified by Eq.(2.20). For example, let f be the Heaviside

function: f(Z)=H(Z). Equation (2.20) takes the form

+∞ +∞ +∞ +∞
i i i & *F(Z)H′(Z)dZ = - F′(Z)H(Z)dZ = - F′(Z)dZ = - F(Z) = F(0)
j j j 7 8

0-∞ -∞ 0

This equation coincides with the definition of the delta function in

Eq.(2.6) which proves that δ(Z)=H′(Z)≡dH/dZ. The derivative of the delta

function δ′≡dδ/dZ is also a generalized function and it is defined by the

equation

+∞ +∞
i iF(Z) δ′(Z) dZ = - F′(Z) δ(Z) dZ = -F′(0) (2.21)
j j

-∞ -∞

(n) n nThe higher derivatives of the delta function δ ≡d δ/dZ are introduced

in a similar way

+∞ +∞
& n *

i (n) n i (n) n d FF(Z) δ (Z) dZ = (-1) F (Z) δ(Z) dZ = (-1) |------------------| (2.22)
j j n

7dZ 8-∞ -∞ Z=0

We should emphasize here, that if f ′ is a generalized function, Eq.(2.20)

looks like a mere integration by parts, but it actually represents the

definition of f ′. If f ′ happens to be a ordinary function, Eq.(2.20) is

still valid and represents simple integration by parts. This gives a

simple rule for checking any equation which may involve generalized

differentiation: multiply this equation by a good function F and formally

integrate it by parts so that all generalized derivatives are excluded.

Let us consider a few examples of identities which will be utilized
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later. We will use formal differentiation by parts to prove that

& *d & * ∂ dY & *
[--------]δ Z - Y(t) = - -----------]|[-----------]δ Z - Y(t) | (2.23)dt 7 8 ∂Z d t 7 8

7 8

where Y is a function of the variable t. Equation (2.23) is multiplied by

a good function F(Z) and integrated over Z, with the left-hand side

becoming
+∞ +∞
i id & * d & * dF(Y(t)) dY
|F(Z)[--------]δ Z - Y(t) dZ = [-------- |F(Z) δ Z - Y(t) dZ = [--------------------------------------] = F′(Y)[-----------dt 7 8 dt 7 8 d t d t
j j

-∞ -∞

and this is identical to the right-hand side since the integrated by parts

+∞ +∞
i & * id dY & * dY & *dF ( Z) dY- |F(Z)-----------]|[-----------]δ Z-Y(t) |dZ = |[-----------]δ Z-Y(t) ---------------------------- dZ = [-----------]F′(Y)dZ d t 7 8 d t 7 8 dZ d t
j 7 8 j

-∞ -∞

This proves Eq.(2.23). We note that Y does not depend on Z in Eq.(2.23)

so that dY/dt can be taken outside of the differentiation sign ∂/∂Z. The

form of the equation, as it is written in Eq.(2.23), is usually more

convenient for our purposes.

We note that it is quite convenient to operate with the delta

function as if it was an ordinary (non-generalized) function. In many

cases this yields correct results. A sounder viewpoint is that any

equation involving the delta function implies that this equation is valid

when applied to a good function F.

The rules for operating with multiple delta functions are similar to

the rules discussed above. We consider the variables Yi (i=1,...n) which

depend on time, t. The time derivative of the fine-grained pdf,ψ,

specified in Eq.(2.12) is given by

n

dψ a+ ∂ & dY i * ∂ & dY i *[------------] = - [-----------] [-----------] ψ ≡ - [-----------] ψ[-----------] (2.24)d t b= ∂Z i 7 d t 8 ∂Z i 7 d t 8

i =1

Equation (2.23) is applied in Eq.(2.24) to each of the delta functions in

the product ψ. The summation convention over repeated dummy indexes is

2-10



applied here and further on (that is, the summation sign "∑" is omitted).

Equation (2.24) can be checked by multiplying Eq.(2.24) by the good

function F(Z) and integrating over Z

i dψ d i dF(Y(t)) ∂F dY iF(Z) ------------ dZ1...dZn = -------- F(Z) ψ dZ1...dZn = [----------------------------------------] = [------------][-----------]
j d t dt j d t d t∂Y i∞ ∞

i ∂ & dY i * i dY i ∂ & * ∂F dY i- F(Z)[-----------] ψ [-----------] dZ1...dZn = ψ[-----------][-----------] F(Z) dZ1...dZn = [------------][-----------]
j ∂Z i 7 d t 8 j d t ∂Z i 7 8 d t∂Y i∞ ∞

The first step uses the multidimensional form of Eq.(2.21) and the last

integral in this equation is formally integrated by parts. These

mathematical transformations are similar to the proof of Eq.(2.23). If the

Yi depend not only on time t but also on coordinates x≡(x1,x2,x3), partial

derivatives should be substituted for the ordinary derivatives in

Eq.(2.24)

∂ψ ∂ & ∂Y i *------------] = - [-----------] ψ[-----------] (2.25)∂ t ∂Z i 7 ∂ t 8

Let us consider the differentiation of the product fsψ, where

fs=fs(t) is assumed to be a smooth function and ψ is as specified in

Eq.(2.12). The differentiation rules are similar to the differentiation of

ordinary functions

dψf s dψ df s[---------------] = fs[------------] + ψ[--------] (2.26)dt d t dt

This equation is tested as usual: the left-hand side of Eq.(2.26) is

multiplied by F(Z) and integrated over Z

i dψf s d i d & *F(Z) ---------------] dZ1...dZn = [-----] F(Z)ψfsdZ1...dZn = [-------- F(Y(t)) fs(t)j dt dt j dt 7 8
∞ ∞

while after similar operations the right-hand side takes the form

i & dψ df s* d iF(Z) fs[------------]+ψ[--------] dZ1...dZn = fs[-----] F(Z)ψ dZ1...dZn +
j 7 d t dt 8 dt j
∞ ∞

df s i dF(Y(t)) df s (t)+ --------] F(Z)ψ dZ1...dZn = fs[---------------------------------------] + F(Y(t)) ------------------------dt j d t dt
∞
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It is easy to see that the both sides are equal since both F and fs are

smooth functions which can be differentiated in the usual way.

2.2.2. The gradient operator

We consider some equations which involve the gradient operator.

Variables Yi are assumed here to be dependent on the coordinates

x≡(x1,x2,x3). The gradient operator applied to ψ yields

∂ & *∇ψ = - [-----------] ψ ∇Yi (2.27)∂Z i 7 8

This equation is a vector equation with components that are specified by

the derivatives ∂/∂x1, ∂/∂x2, ∂/∂x3. Each of these components is similar

to Eq.(2.25). Let us consider the derivatives of higher order which

result from the divergence operator being applied to Eq.(2.27). We use

the vector analog of Eq.(2.26), ∇⋅(fsψ) = ψ div(fs)+fs⋅∇ψ, and also assume

that the Yi are smooth functions of the coordinates.

2 2 2
2 & ∂ψ∇Yi * ∂ψ∇ Yi ∂(∇ψ⋅∇Yi ) ∂ψ∇ Yi ∂ ψ (∇Y j ⋅ ∇Yi)∇ ψ = -∇⋅ [----------------------------] = - ---------------------------------- - -------------------------------------------] = - ---------------------------------- + ------------------------------------------------------------------]

7 ∂ Z i 8 ∂ Z i ∂ Z i ∂ Z i ∂Z i ∂Z j

Note that Eq.(2.27) is used twice and that ∇Yi does not depend on Z.

For pdf derivations we will need a slightly more complicated form of

this equation which involves the molecular diffusion term. First

Eq.(2.27) is multiplied by ρD (D is the molecular diffusion coefficient

which is assumed to be similar for all scalars Di=D; ρ is the density) and

then we take the divergence of the product. The values of ρ and D do not

depend on Zi. After some manipulation we obtain

& * ∂ & & **div ρD∇ψ = - [-----------] div ψρD∇Yi =
7 8 ∂Z i 7 7 88

2∂ & * ∂ & *- [-----------] ψ div(ρD∇Yi) + [--------------------------] ψ ρD(∇Yi⋅∇Yj) (2.28)∂Z i 7 8 ∂Z i∂Z j 7 8

This equation is an identity and does not involve any modeling of the

properties of turbulent scalar transport. If ρ and D are not constants,

the term on the left-hand side of Eq.(2.28) is more conveniently written
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as

& * & * & *div ρD∇ψ = div ∇(ψ ρD) - div ψ ∇(ρD) (2.29)
7 8 7 8 7 8

Another equation which has some similarities with Eq.(2.28) is obtained by

applying the divergence operator to ψρD∇Yi

& * & * ∂ & *div ψρD∇Yi = ψ div ρD∇Yi - -----------] ψρD(∇Yi⋅∇Yj) (2.30)
7 8 7 8 ∂Z j 7 8

Here i is any of 1,...,n if Yi is one of the variables Y1,...Yn in

Eq.(2.12) or i=0 otherwise.

2.2.3. Differentiating the joint pdf

The equations for ψ derived above can be considered as equations for

the fine-grained pdf. The variables Yi are stochastic variables which

depend on time and coordinates. Now we can derive some equations involving

the joint pdf P(Z). The simplest equation represents the time derivative

of the pdf. After averaging, Eq.(2.25) takes the form

∂P(Z) ∂ & ∂Y i *
[---------------------------] = - [-----------] <[-----------]|Y=Z> P(Z) (2.31)∂ t ∂Z i 7 ∂ t 8

Equations (2.12) and (2.19) have been taken into account in arriving at

this result.

We will need some equations which involve the gradient operator. The

technique for their derivation is similar: the equations involving the

fine-grained pdf are averaged and then Eqs.(2.12) and (2.19) are applied.

Combining Eqs.(2.28) and (2.29) we obtain after averaging

& * 2& * & *div <ρD∇ψ> = ∇ <ρD|Y=Z>P - div <∇(ρD)|Y=Z>P = (2.32)
7 8 7 8 7 8

2∂ & * ∂ & *= - [-----------] <div(ρD∇Yi)|Y=Z>P + [--------------------------] <ρD(∇Yi⋅∇Yj)|Y=Z>P∂Z i 7 8 ∂Z i∂Z j 7 8

where P = P(Z). Averaging of Eq.(2.30) yields

& *div <ρD∇Yi|Y=Z>P =
7 8
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& * ∂ & *= <div(ρD∇Yi)|Y=Z>P - -----------] <ρD(∇Yi⋅∇Yj)|Y=Z>P (2.33)
7 8 ∂Z j 7 8

Note that these equations are identities and their derivation does not use

the scalar transport equation. Equations (2.32) and (2.33) have been

derived for the case of Di=D, but a more general result with Di ≠ D can

also be obtained in a similar manner (see Section 9.1.1).

2.2.4. Differentiating conditional expectations

It is well-known that the conventional (unconditional) averaging and

differentiation can be commuted

∂Y ∂<Y>< ----------- > = -----------------] (2.34)∂ t ∂ t

This equation can normally be applied in engineering applications and we

have used it repeatedly in derivations made so far. [Mathematically,

Eq.(2.34) needs further qualification. For example, it is possible that

∂<Y>/∂t exists but ∂Y/∂t does not.] Equation (2.34) is valid for

conventional expectations but it is not necessarily valid for conditional

expectations since the condition of averaging may also be dependent on the

variable t. The equation for the differential of a conditional mean can be

derived by differentiating the product

∂ & * ∂Y 1 ∂ & ∂Y2 *
[-------- Y1 δ(Z2-Y2) = [----------- δ(Z2-Y2) - -----------] Y1[-----------] δ(Z2-Y2) (2.35)∂t7 8 ∂ t ∂Z27 ∂ t 8

The conditional mean is determined by Eq.(2.18) so that Eq.(2.35) after

averaging takes the form

∂<Y1|Y2=Z2> ∂P(Z2)[---------------------------------------------------------- P(Z2) + <Y1|Y2=Z2>[------------------------------]∂ t ∂ t

∂Y 1 ∂ & ∂Y2 *= <[----------- |Y2=Z2> P(Z2) - -----------] <Y1[-----------]|Y2=Z2> P(Z2) (2.36)∂ t ∂Z27 ∂ t 8

It is seen that there are two additional terms in Eq.(2.36) and the first

term on the left-hand side is not necessarily equal to the first term on

the right-hand side. Equation (2.36) includes Eq.(2.31) which can be

derived from Eq.(2.36) by substituting Y1=1. Equation (2.36) can be easily

generalized for conditional expectations with multiple conditions. If Y2
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does not depend on t, Eq.(2.36) takes the form

∂<Y1|Y2=Z2> ∂Y1[---------------------------------------------------------- = <[----------- |Y2=Z2> (2.37)∂ t ∂ t

When the condition of averaging does not depend on t, differentiating with

respect to t and conditional averaging can be commuted.

2.3. The Pdf Equations

In this section the joint pdf equation for a set of the scalar fields

Yi (i=1,...,n) in a turbulent flow is derived. Each of the scalars is a

function of time t and physical coordinates x and, assuming Fickian

diffusion, is governed by the scalar transport equation

∂Yi & *ρ------------- + ρv⋅∇Yi - div ρDi∇Yi = ρWi (2.38)∂ t 7 8

2.3.1. The equation for the fine grained pdf

In this section we derive the equation for the fine grained pdf ψ
which is based on the transport equation (2.38). The pdf transport

equation is then obtained by averaging of the equation for ψ.

Substituting ∂Yi/∂t determined by Eq.(2.38) into Eq.(2.25) we obtain

∂ψ ∂ & & 1 **
------------] = [-----------] ψ v⋅∇Yi - [------]div(ρDi∇Y) - Wi (2.39)∂ t ∂Z i 7 7 ρ 88

Equation (2.27) multiplied by v yields

∂ & *v⋅∇ψ = - [-----------] ψ (v⋅∇Yi) (2.40)∂Z i 7 8

Note that v does not depend on the independent sample space variable Zi.

Combining Eq.(2.39) and Eq.(2.40) we obtain

∂ψ & * ∂ & * ∂ & *ρ------------] + ρ v⋅∇ψ + [-----------] ψ div(ρDi∇Y) = - [-----------] ψ ρ Wi (2.41)∂ t 7 8 ∂Z i 7 8 ∂Z i 7 8

Density, ρ, is independent of the independent sample space variable Zi but

ρ is a stochastic function of t and x which can be stochastically
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dependent on Yi. The continuity equation

∂ρ & *
-----------] + div ρv = 0 (2.42)∂ t 7 8

multiplied by ψ and added to Eq.(2.41) transforms Eq.(2.41) into the

divergent form

∂ρψ & * ∂ & * ∂ & *
------------------] + div ρvψ + [-----------] ψ div(ρDi∇Y) = - [-----------] ρψ Wi (2.43)∂ t 7 8 ∂Z i 7 8 ∂Z i 7 8

The divergent form of the equation for ψ is more convenient for averaging.

Equation (2.43) is a transport equation for the fine grained joint pdf ψ.

This equation is not a mathematical identity. It essentially incorporates

the equations which govern scalar transport in turbulent flows. If all

diffusion coefficients are the same Di=D, Eq.(2.28) transforms Eq.(2.43)

into the form

∂ρψ & * & *
------------------] + div ρvψ - div ρD∇(ψ) +∂ t 7 8 7 8

2∂ & * ∂ & *+ [--------------------------] ψ ρD(∇Yi⋅∇Yj) = - [-----------] ψ ρ Wi (2.44)∂Z i∂Z j 7 8 ∂Z i 7 8

2.3.2. The joint pdf equation

According to Eq.(2.19) averaging of Eq.(2.43) yields the equation for

the joint pdf P(Z)

∂<ρ|Y=Z>P & * ∂ & *
-------------------------------------------------------- + div <ρv|Y=Z>P + [-----------] <div(ρDi∇Y)|Y=Z>P =

7 8 7 8∂ t ∂Z i

∂ & *= - [-----------] <ρWi|Y=Z>P (2.45)
7 8∂Z i

Equation (2.45) is not the only possible form of the joint pdf

equation. If all of the scalars have similar diffusion coefficients Di=D,

the last term on the left-hand side of Eq.(2.45) can be transformed into

the form which explicitly involves the scalar dissipation terms

D(∇Yi⋅∇Yj). This form can be obtained by substituting Eq.(2.32) into

Eq.(2.45) or by substituting Eq.(2.29) into Eq.(2.44) and averaging
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2∂<ρ|Y=Z>P & * ∂ & *
-------------------------------------------------------- + div <ρv|Y=Z>P + [--------------------------] <ρD(∇Yi⋅∇Yj)|Y=Z>P +

7 8 ∂Z i∂Z j 7 8∂ t

& * 2& * ∂ & *+ div <∇(ρD)|Y=Z>P - ∇ <ρD|Y=Z>P = - -----------] <ρWi|Y=Z>P (2.46)
7 8 7 8 7 8∂Z i

These pdf transport equations are derived using the scalar transport

equation (2.38). Equations (2.45) and (2.46) are exact equations but they

are unclosed. This means that some of the coefficients of Eqs.(2.45) and

(2.46) (these are <ρv|Y=Z>, <ρD(∇Yi⋅∇Yj)|Y=Z> and <div(ρDi∇Y)|Y=Z>) are

not known. Such unclosed equations need further modeling to transform the

equations into a closed form.

2.3.3. The case of high Reynolds numbers

If the Reynolds number, Re, is high, the last two terms on the

left-hand side of Eq.(2.46) can be neglected. These terms correspond to

macro-transport by molecular diffusion. When Re is large the kinematic

viscosity coefficient, ν, and the diffusion coefficient, D, are relatively

small (we assume here that Eq.(2.46) to have been normalized by a suitable
-1velocity, length and density so that ν~D~Re ).

We consider the limit D L 0 (that is Re L∞) in order to estimate the

dependence of some gradients and functions on D. If Re is large enough (D

is small enough), some of the functions do not depend on D while others

indicate a significant dependence on D (or ν). The instantaneous gradient
-1/2can be estimated as ∇Y ~ Y D (since Y can have different scaling, ∇Y

is proportional to Y). This estimate follows from the fact that the mean
2scalar dissipation <D(∇Y) > specifies the rate of the dissipation of the

scalar Y fluctuations. The dissipation is linked to other macro-parameters
2of turbulence and does not depend on D. That is <D(∇Y) > ~ 1 as D L 0 and

Re L∞. Here we refer to the important property of developed turbulence -

independence of its macro-characteristics from the Reynolds
98,115,135number . The diffusivity coefficient, D, and the density, ρ, are

-1/2 1/2functions of the concentrations of species so that ∇D ~ D D = D and
-1/2∇ρ ~ ρ D . The characteristic values of instantaneous gradients are

relatively large in turbulent flows due to small-scale fluctuations. The

gradients of mean values are smaller. For large Re, turbulent scalar

transport is not dependent on D. Both conditional and unconditional means
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are smooth functions of coordinates. This is reflected in estimates ∇<Y>~Y

and ∇<Y1|Y2=Z2>~Y1. (It should be emphasized that these estimates are

quite approximate and reflect only the dependence on or independence from

Re. It will be demonstrated in Sec.5 that the study of more refined

properties of some turbulent flows indicate that ∇<Y> and ∇<Y1|Y2=Z2> can

be of different orders.) The unconditional mean value of the gradient ∇Y

can be estimated by <∇Y> = ∇<Y> ~ Y. Estimation of the conditional

expectation of the gradients is not as simple as estimation of

unconditional expectations since, according to Eq.(2.36), <∇Y1|Y2=Z2> is

not necessarily equal to ∇<Y1|Y2=Z2>. The order of the conditional

expectation <∇Y1|Y2=Z2> can not exceed the order of instantaneous gradient
-1/2∇Y1 so that <∇Y1|Y2=Z2> < ∇Y1~ Y1D .~

The estimates of gradients of scalars and their functions in

turbulent flows at high Re can be summarized in the following simple rules :

1) The gradients of conditional and unconditional expectations

have dependence on D similar to the expectations themselves.

2) An unconditional expectation of a gradient is identical to the

gradient of the unconditional expectation <∇Y> = ∇<Y>.

3) A conditional expectation of the gradient of a scalar variable or
-1/2its function can increase the order of the variable or function by <D .~

We consider first the case of D=const, ρ=const. Since ∇(ρD)=0, we

need to estimate only the last term on the left-hand side of Eq.(2.46).
2 2This term can be written as ρD∇ P and estimated by ρD∇ P~ρDP. If D is

small (Re is large), this term is small and can be neglected. Let us

consider the more complicated case when ρ and D are not constants and

estimate the last two terms on the left-hand side of Eq.(2.46).

According to Rule 1, the Laplace operator applied to an averaged value
2does not increase the order so that the term ∇ (<ρD|Y=Z>P) ~ <ρD|Y=Z>P

~ ρD can be neglected. Let us estimate the next term div(<∇(ρD)|Y=Z>P).

The divergence operator is applied to the average value and so does not

increase the order of the term. Gradients inside the conditional brackets

should be estimated as explained above so that div(<∇(ρD)|Y=Z>) < ∇(ρD) ~~
1/2ρD and this is negligible at high Re. Now we retain only the most

significant terms in Eq.(2.32) so that

2∂ & * ∂ & *
[-----------] <div(ρD∇Yi)|Y=Z>P = [--------------------------] <ρD(∇Yi⋅∇Yj)|Y=Z>P (2.47)∂Z i 7 8 ∂Z i∂Z j 7 8
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This equation transforms Eq.(2.45) into the form

2∂<ρ|Y=Z>P & * ∂ & *
-------------------------------------------------------- + div <ρv|Y=Z>P + [--------------------------] <ρD(∇Yi⋅∇Yj)|Y=Z>P =

7 8 ∂Z i∂Z j 7 8∂ t

∂ & *= - [-----------] <Wiρ|Y=Z>P (2.48)
7 8∂Z i

This form of the joint pdf equation is used extensively in the derivation

of the CMC equation. This equation has n+4 independent variables and

involves the conditional expectations of velocity and dissipation tensor

D(∇Yi⋅∇Yj). These terms are unclosed. Equation (2.48) is quite universal.

It governs the probability density function of any scalar values

satisfying equations which can be written in the form of Eq.(2.38) with Di

= D.

Equation (2.47) is often used in pdf modeling. Let us also prove that

∂ & *<div(ρD∇Yi)|Y=Z>P = -----------] <ρD(∇Yi⋅∇Yj)|Y=Z>P (2.49)∂Z j 7 8

This equation is not a mere integral of Eq.(2.47). Equation (2.49) being

integrated over Zi involves the arbitrary rotational vector function αi

which obeys ∂αi/∂Zi=0 (note that vector <div(ρD∇Yi)|Y=Z>P is not uniquely

determined by its by divergence ∂(<div(ρD∇Yi)|Y=Z>P)/∂Zi). Let us estimate

the term on the left-hand side of Eq.(2.33). Similar to previous
1/2estimations we have div(<ρD∇Yi|Y=Z>P) < ρD∇Yi~ ρD . This term can be~

neglected and this proves Eq.(2.49).

2.4. The Conserved Scalar Pdf Equation and

its Boundary Conditions

In this section we consider the pdf of a conserved scalar ξ which is

not involved in chemical reactions and satisfies Eq.(2.38) with zero

source term

∂ξ & *ρ---------- + ρv⋅∇ξ - div ρD∇ξ = 0 (2.50)∂ t 7 8

In practice, ξ can be the mixture fraction defined in section 1.2. The
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sample space variable which corresponds to ξ is denoted by η. The pdf P(η)

is governed by the equation

2∂<ρ|ξ=η>P(η) & * ∂ <ρN|ξ=η>P(η)
------------------------------------------------------------------] + div <ρv|ξ=η>P(η) = - --------------------------------------------------------------------------] (2.51)∂ t 7 8 2∂η

2where N≡D(∇ξ) . This equation is a direct consequence of Eq.(2.48).

In this section we consider some conditions for the pdf P(η)

(specifically for the product <ρN|ξ=η>P(η)) at the bounds of the pdf, ηmin

and ηmax. It is assumed the conserved scalar pdf takes positive values

only inside the closed interval ηmin≤η≤ηmax. We consider here the boundary

conditions for the one-variable conserved scalar pdf only. These

conditions will be utilized later. The technique developed in this section

is, however, quite general and can be used in more complicated cases. It

is assumed in Eq.(2.51) that the Reynolds number is large. In this section

we will consistently keep this assumption and neglect macro-transport by

molecular diffusion. Investigation of the boundary conditions for pdfs in
59the case of moderate Re is considered by Klimenko and Bilger . As

outlined in Section 1.2 different types of pdfs are in current use in

turbulence modeling. Examples include clipped Gaussian pdfs (Fig. 2)

which are inherently intermittent and beta function pdfs (Fig. 3) which do

not involve delta functions at ηmin and ηmax. These types can have

different boundary conditions and need separate consideration.

Furthermore, we include the consideration of ηmin and ηmax varying in

space and time.

In order to obtain the boundary conditions we derive the transport

equation for the function F(ξ) which is assumed to be an arbitrary good

function. By using Eq.(2.50) and chain differentiation of F(ξ) =
& *F ξ(x,t),x,t , we obtain
7 8

∂F & * & *ρ------------ + ρ v⋅∇F - div ρD∇F = ρNF′′ (2.52)∂ t 7 8 7 8

where
2∂ F(ξ) 2F′′ ≡ [------------------------------ ; N ≡ D(∇ξ)

2∂ξ

Equation (2.52) is averaged with the use of the continuity equation and

the transport by molecular diffusion div<ρD∇F> is neglected
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∂<ρF> & *
------------------------------ + div <ρvF> = - <ρNF′′> (2.53)∂ t 7 8

2.4.1. Smooth pdfs

These pdfs do not have any generalized components, e.g. delta

functions. The transport equation for <F> can be also derived from the

pdf equation. Equation (2.51) is multiplied by F(η) and integrated over

the interval η1≤η≤η2 where ηmin<η1<η2<ηmax. (Note that η and F(η) are

independent of t and x and hence F(η) can be taken inside the

derivatives.) The term on the right-hand side of Eq.(2.51) is integrated

by parts

η2 η2 & * η2
i ∂<ρ|ξ=η>FP(η) i | | i

-------------------------------------------------------------------------]dη + div <ρv|ξ=η>FP(η) dη = - F′′<ρN|ξ=η>P(η)dη -
j ∂ t j | | j
η1 η1 7 8 η1

η2 η2#∂<ρN|ξ=η>P(η) $ # $- -------------------------------------------------------------------------- F + <ρN|ξ=η>P(η)F′
3 ∂η 4 3 4η1 η1

If η1 and η2 depend on t and x, the first two integrals on the left-hand

side are transformed according to

η2 η2 η2∂ i i ∂<ρ|ξ=η>FP(η) # ∂η i $
--------] <ρ|ξ=η>FP(η)dη = -------------------------------------------------------------------------]dη + [-----------]<ρ|ξ=η>FP(η)∂t j j ∂ t 3 ∂ t 4η1η1 η1

&η2 * η2 & * η2|i | i | | # $div <ρv|ξ=η>FP(η)dη = div <ρv|ξ=η>FP(η) dη + ∇ηi⋅<ρv|ξ=η>FP(η)
|j | j | | 3 4η17η1 8 η1 7 8

where ηi is for either η1 or η2. These equations yield

η2 &η2 * η2
∂ i |i | i
--------] <ρ|ξ=η>FP(η)dη + div <ρv|ξ=η>FP(η)dη = - F′′<ρN|ξ=η>P(η)dη +∂t j |j | j

η1 7η1 8 η1

η2#&∂η i * ∂<ρN|ξ=η>P(η) $+ [-----------]<ρ|ξ=η> + ∇ηi⋅<ρv|ξ=η> P(η)F - -------------------------------------------------------------------------- F +
37∂ t 8 ∂η 4η1

2-21



η2# $+ <ρN|ξ=η>P(η)F′ (2.54)
3 4η1

Assuming η1=ηmin+ε and η2=ηmax-ε and taking the limit εL0 (or η1Lηmin

η2Lηmax for infinite ηmin and ηmax) we obtain

∂<ρF> & *
------------------------------ + div <ρvF> = - <ρNF′′> +∂ t 7 8

max max
# $ # $+ JPF + <ρN|ξ=η>P(η)F′ (2.55)
3 4 3 4

min min

where

dηm ∂<ρN|ξ=η>P(η)JP ≡ <ρ|ξ=η>P(η)[----------------- - -------------------------------------------------------------------------- (2.56)d t ∂η

dηm ∂ηm <ρv|ξ=η>
[----------------- ≡ [----------------- + [----------------------------------------------⋅∇ηmd t ∂ t <ρ|ξ=η>

∂F (η)F′ ≡ [---------------------------- ;∂η

max
# $ # $ # $ # $ & *⋅ ≡ ⋅ - ⋅ ; ⋅ ≡ l im ⋅
3 4 3 4 3 4 3 4 7 8

min max min m ηLηm

and index "m" is for either "min" or "max".

Equations (2.53) and (2.55) must be identical for any function F.

This specifies the boundary conditions required

JP L 0 as η L ηm (2.57)

<ρN|ξ=η>P(η) L 0 as η L ηm (2.58)

In deriving Eqs.(2.57) and (2.58) it has been consistently assumed that

Re L∞. In general, the question of neglecting transport by molecular

diffusion in the vicinity of ηmin and ηmax is quite problematical since

the pdf structure near these bounds may depend on D. If ηmin and ηmax are

not constants and if the transport by molecular diffusion is not
59neglected, Eq.(2.56) involves some additional terms .

2-22



As discussed in detail in Section 4, it can be quite important that

the behavior of the pdf and conditional dissipation of the conserved

scalar at the bounds of η are properly modeled. In order to assess this

behavior we use Eq.(2.54) and assume η1Lηmin and ηmin<η2<ηmax. Equation

(2.54) takes the form

η2 &η2 * η2
∂ i |i | i
--------] <ρ|ξ=η>FP(η)dη + div <ρv|ξ=η>FP(η)dη + F′′<ρN|ξ=η>P(η)dη =∂t j |j | j

m i n 7m i n 8 m i n

η2 η2# $ # $ # $ # $
= JPF + <ρN|ξ=η>P(η)F′ = JPF + <ρN|ξ=η>P(η)F′
3 4 3 4 3 4 3 4

m i n m in η2 η2

Here the boundary conditions in Eqs.(2.57) and (2.58) are taken into

account. The integrals on the left-hand side of this equation tend to zero

as η2Lηmin. If η2=η (η is close to ηmin but η≠ηmin) we suggest that these

integrals can be roughly estimated by the simple integral

η
i ° °FP(η )dη
j
min

which yields

η
i ° °FP(η )dη ~ JPF + <ρN|ξ=η>P(η)F′ as ηLηminj
min

A similar equation is valid for ηLηmax. Assuming power-law asymptotes

α βP(η) ~ |η-ηm| , <ρN|ξ=η> ~ |η-ηm| as ηLηm

where α is always greater than -1 (otherwise P(η) can not be integrated),

we obtain using Eq. (2.56)

α+1 dηm α α+β-1 α+β
|η-ηm| ~ [----------------- |η-ηm| + |η-ηm| + |η-ηm| as ηLηm (2.59)d t

Equating the power-law dependencies of the first and the second terms on

the right-hand side, since these are the largest terms, we obtain β=1,
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that is

<ρN|ξ=η> ~ |η-ηm| as η L ηm (2.60)

2.4.2. Smooth pdfs with fixed bounds

In many cases the conserved scalar pdfs are assumed to have fixed

bounds (that is ηmin and ηmax are constants). In this case the boundary

conditions (2.57) and (2.58) take the forms

∂<ρN|ξ=η>P(η)
-------------------------------------------------------------------------- L 0 as η L ηm (2.61)∂η

<ρN|ξ=η>P(η) L 0 as η L ηm (2.62)

If the pdf bounds are infinite these conditions are quite obvious. Let us

estimate β. Assuming dηm/dt=0 in Eq.(2.59) we obtain α+β-1=α+1 and

2<ρN|ξ=η> ~ |η-ηm| as η L ηm (2.63)

Note that the estimates in Eqs.(2.60) and (2.63) are rough and the exact

asymptote can involve some weaker functions of |η-ηm| (for example
7ln|η-ηm|). For the special case of a Gaussian pdf it is known that

the conditional scalar dissipation is independent of η in uniform density

nce equal to its unconditional value. Figure 9 demonstrates the

qualitative shapes of pdfs and corresponding conditional dissipation for

three different cases considered above.

2.4.3. Intermittent pdfs

Intermittency is conventionally associated with the presence or not

of vorticity fluctuations in the fluid. Here we are going to associate it

with the presence or absence of the scalar. We shall for simplicity of

language assume that the flow is like that of an initially nonturbulent

gas jet into a nonturbulent surrounding fluid. The diffusion of vorticity

into the nonturbulent fluid is assumed to be accompanied by diffusion of
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the scalar. In such intermittent flows the contaminated turbulent spots

alternate stochastically with uncontaminated nonturbulent spots. For

two-stream mixing with initial values of ξ=ηmin in first stream and ξ=ηmax

in the second stream, the intermittent pdfs involve delta functions:

P(η) = γminδ(η-ηmin) + γtPt(η) + γmaxδ(η-ηmax) (2.64)

where γmin + γt + γmax =1 and γt is called the intermittency factor. The

delta function components of the pdf correspond to the vortex-free

uncontaminated regions. In these regions the values of the conserved

scalar are constants (either ξ=ηmin or ξ=ηmax). The values of ηmin and

ηmax are constants. The component Pt is smooth and corresponds to the

fully turbulent region where ηmin<η<ηmax. The dissipation in the

vortex-free regions is zero N = 0 at η = ηm so that

<ρN|ξ=η>P(η) = γt<ρN|ξ=η>Pt(η) (2.65)

where ηm is for either ηmin or ηmax. Note that P=0 and Pt=0 for η<ηmin and

for η>ηmax.

The pdf equation (2.51) has been derived as an equation for the

expectation of the generalized function ψ and it is still valid for an

intermittent pdf. We treat Eq.(2.51) as an equation for generalized

functions P which is valid for all η (-∞<η<+∞). We multiply Eq.(2.51) by

an arbitrary good function F(η) and integrate it over all η. This yields

+∞
2∂<ρF> & * i ∂ <ρN|ξ=η>P(η)

------------------------------ + div <ρvF> = - --------------------------------------------------------------------------] F(η) dη =∂ t 7 8 j 2∂η-∞+∞
i- <ρN|ξ=η>P(η)F′′dη = <ρNF′′> (2.66)
j

-∞

There is significant difference in the derivations of Eqs.(2.55) and

(2.66). In the derivation of Eq.(2.55) the pdf equation (2.51) is treated

as an equation for ordinary function and the integral is taken over the

interval η1≤η≤η2 (where ηmin<η1<η2<ηmax) which excludes any possible

singularity at the bounds. The integral in Eq.(2.66) is taken over all η.

The product <ρN|ξ=η>P(η), as it is indicated in Eq.(2.65), does not have

any generalized component, but its second derivative could have such
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components. The modification of the integral on the right-hand side of

Eq.(2.66) seems to be an integration by parts but this modification

represents the rules of operating with generalized functions (see

Eq.(2.20)). Equation (2.66) is consistent with Eq.(2.53).

The product <ρN|ξ=η>P(η) represents an ordinary, smooth function and

we are interested in determining its limits ηLηm. The integral in

Eq.(2.66) can be modified

+∞ ηmax ηmax 2
i i i ∂ <ρN|ξ=η>P(η)<ρN|ξ=η>P(η)F′′dη = <ρN|ξ=η>P(η)F′′dη = --------------------------------------------------------------------------]F(η)dη +
j j j 2∂η-∞ ηmin ηmin

max max
# $ #∂<ρN|ξ=η>P(η) $+ <ρN|ξ=η>P(η)F′ - -------------------------------------------------------------------------- F (2.67)
3 4 3 4

min ∂η min

The notations are the same as in Eq.(2.55). We substitute Eqs.(2.64) and

(2.67) into Eq.(2.66). The function F is an arbitrary function which can

have the arbitrary values of F(ηmin), F(ηmax), F′(ηmin) and F′(ηmax). The

function F is a continuous function so that F(ηm)=[F]m. Equating the terms

which are multiplied by F′(ηmin), F′(ηmax), F(ηmin) and F(ηmax) we obtain

<ρN|ξ=η>P(η) L 0 as ηLηmin (2.68)

<ρN|ξ=η>P(η) L 0 as ηLηmax (2.69)

∂γmin<ρ|ξ=ηmin> #∂<ρN|ξ=η>P(η)$
& *

--------------------------------------------------------------------] + div γmin<ρv|ξ=ηmin> = -|----------------------------------------------------------------------]| (2.70)
7 8∂ t 3 ∂η 4min

∂γmax<ρ|ξ=ηmax> #∂<ρN|ξ=η>P(η)$
& *

---------------- -----------------------------------------------] + div γmax<ρv|ξ=ηmax> = |----------------------------------------------------------------------]| (2.71)
7 8∂ t 3 ∂η 4

max

It can be seen that the product <ρN|ξ=η>P(η) has zero limit at ηLηm but

the limit of its derivative is not necessarily zero. Kuznetsov and
72Sabelnikov carried out a similar analysis assuming that <N|ξ=η> has

non-zero limit at ηLηm. This is an additional assumption which is not

determined by the properties of Eq.(2.51). This additional assumption

results in P(η)L0 as ηLηm.

2.5 Summary of the Major Results

2-26



The techniques, which have been systematically introduced in this

section, can be used for derivation of the transport equations and

identities for various pdfs (probability density functions) in turbulent

flows. These equations are extensively used in conditional methods. The

techniques are based on manipulations with the delta function and its

derivatives. The delta function is a generalised function and often needs

special treatment. This may present some initial difficulties for

someone who does not have much experience in this field. We think,

however, that overcoming these initial difficulties should be rewarding

since the technique is powerfull and, at the same time, is relatively

simple to use in partical derivations. Here, we provide a summary of the

main results obtained in this section.

The transport equation for the multivariate scalar pdf P(Z1,Z2,...Zn)

has two equivalent forms Eq.(2.45) and Eq.(2.46). The first of these

forms is most commonly used in pdf methods. The second form, Eq.(2.46),

becomes Eq.(2.48) at high Reynolds numbers and this is the form that will

be used in the next section (see that which follows Eq.(3.3)) for deriving

the first-order CMC equation by the pdf method. It is also used in

Sections 8 and 9 for derivation of the second-moment (see

that which follows Eq.(8.6)) and doubly-conditional (see that which

follows Eq.(9.27)) CMC equations by the pdf approach. At high Reynolds

numbers the transport equation for the pdf of a single conserved scalar is

simplified into Eq.(2.51) and this is widely used in CMC methods in the

form of Eq.(3.15). It is to be noted that, in these equations, some terms

involving the diffusion coefficient, D, are neglected when the Reynolds

number is large. Simplified rules for determining which terms can be

neglected are listed in section 2.3.3. These approximations are also

involved in derivation of the closely related result of Eq.(2.49), that is

found to be very useful in modelling differential diffusion effects (see

Eq.(9.16)). The transport equation for the fine-grained joint pdf,

Eq.(2.43) is the preferred starting point for derivation of the CMC

equation in the presence of differential diffusion (see Eq.(9.3)) and is

also used in an alternative approach to deriving the first-order CMC

equation as is presented in section 3.1.2.

Basic formulae for conditional averages, Eq.(2.15) and Eq.(2.18), are

needed for the derivation of the first-order CMC equations (Eqs(3.3 and

(3.4)) and higher-order forms in Sections 8 and 9.2.1. Conditional
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averaging of functions, Eq.(2.17), is widely used in the formulation of

the decomposition approach to the derivation of the CMC equation (see that

preceding Eq.(3.20)) and in the development of primary closure hypotheses

(see Eqs(3.11) and (3.30)). It is also used in exploring the relationship

between CMC and other models such as frozen and fast chemistry (section

4.3) and flamelets (section 4.4). The warning that

differentiation and conditional averaging do not usually commute, as shown

in Eq.(2.36), is important in formulating the primary closure hypothesis

when deriving the CMC equations by the decomposition approach (see section

3.2.2). Equation (2.36) is also needed in showing the equivalence of the

primary closure hypotheses by the various approaches (see section 3.3).

Conserved-scalar pdfs used in applications can be broadly divided

into two groups: intermittent pdfs and smooth pdfs. The former involve one

or two generalized components at the bounds of the pdf which correspond to

the non-turbulent spots in a turbulent flow. As shown in section 2.4 the

most common boundary conditions for the pdf are given by <N|ξ=η>P(η) L 0

as η tends to its maximum and minimum values. In some cases, as shown in

section 2.4.2, the zero condition can be also imposed on the derivative

∂<N|ξ=η>P(η)/∂η. These boundary conditions are important in determining

the conditional scalar dissipation from the transport equation for the

conserved-scalar pdf (sections 4.1, 5.6, 6.1 and 7.2) and the closely

related question of preservation of the conservation integrals (sections

4.2, 5.4, and 5.5).
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3. THE CMC EQUATION

In this Section we consider derivations of the equation for the

conditional mean Q ≡ <Y⏐ξ=η> ≡ <Y⏐η> and the basic closure hypotheses

which lead us to the model for first-order Conditional Moment Closure

(CMC). Here the variable Y represents a reactive scalar, that is a scalar

which can be involved in chemical reactions. For simplicity, and without

loss of generality, we drop the subscript i used in Eq. (1.1). Usually,

several reactive scalars Y1,...,Yn are involved: Y represents any of them

and the CMC model can be written for each of the scalars. The variable ξ
denotes a conserved scalar for which its transport equation has zero

source term. The model considered in this section is an effective tool for

non-premixed combustion in turbulent flows with two-stream mixing (usually

fuel injected into oxidizer). The best, physically sound choice of the

conserved scalar ξ is the mixture fraction which indicates the frozen

(without chemical reactions) mass fraction of fuel in the fuel-oxidizer

mixture. In this Section the molecular diffusion coefficients are assumed

to be the same for both scalars ξ and Y. The transport equations (2.38)

can be written for ξ and Y as

∂ξ & *ρ---------- + ρv⋅∇ξ - div ρD∇ξ = 0 (3.1)∂ t 7 8

∂Y & *ρ----------- + ρv⋅∇Y - div ρD∇Y = ρW (3.2)∂ t 7 8

It is noted that, in general, W will depend on ξ and this means that Y

will not be independent of ξ and <Y?η> will differ from its unconditional

value <Y>.

There are different approaches to the derivation of the first-order
54 10,12CMC equation as independently suggested by Klimenko and Bilger .

These approaches use different mathematical methods and different

modelling assumptions but yield the same result for the CMC equation. They

give different insights into the nature of the CMC equation and into the

primary closure assumptions used in its formulation. Both approaches

should be understood to get a full appreciation of the rigour of the

formulation of the CMC equation and the transparency of the primary
54closure assumptions made. In Section 3.1 we follow Klimenko and use the

joint pdf of the reactive and conserved scalar as has been derived in
10,12Section 2. In Section 3.2 we follow Bilger and derive the equation by
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considering the reactive scalar to be decomposed into its conditional

average for the corresponding value of the mixture fraction and a

fluctuation from that. This derivation does not rely heavily on the

results of Section 2 and may be more accessible to newcomers to CMC. The

primary closure assumptions used in these derivations are compared and

discussed in Section 3.3.

In flows with heat release it is necessary to consider the energy

equation. Section 3.4 presents the first-order CMC equation for the

conditional average enthalpy.

Apart from the primary closure hypothesis, the next most important

issue for closure of the CMC equation is the closure of the conditional

average chemical raction rate term. Basic considerations regarding the

conditional average reaction rate and radiation source term are outlined

in Section 3.5. Higher-order closure using second conditional moments is

left until Section 8. The modeling of other unclosed terms is left to

Section 4.

For simplicity, conditional correlations between density and other

scalars are neglected in the main treatment of the theory. In situations

with heat release and large fluctuations about the conditional means,

these correlations could be significant. Section 3.6 outlines how

conditional Favre averaging can be used in these problems.

A broader discussion of the physical bases for the closure hypotheses

used in these approaches may be found in Section 3.7. This discussion

involves the theory of Markov processes and uses concepts which are more

complex than the simpler level of explanation adopted in Sections

3.1-3.6.

The Section closes with a summary of the major results obtained.

3.1. The Joint Pdf Method

3.1.1. The unclosed equation

The relationship of the conditional expectation Q, the joint pdf

P(Z,η) (where Z is the sample space variable for Y) and the pdf P(η) is

given by Eq.(2.15)
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+∞
iQ P(η) ≡ <Y|ξ=η> P(η) = Z P(Z,η)dZ (3.3)
j

-∞

We utilize the joint pdf equation (2.48) which is valid for the case of

large Re and consider this equation as the equation for P(Z,η). We put in

Eq.(2.48) Z=Z1, η=Z2, W=W1, W2=0, n=2 (n is the dimension of the vector

Z≡(Z1,...Zn)).

2∂<ρ|Y=Z>P & * ∂ & *
-------------------------------------------------------- + div <ρv|Y=Z>P + [--------------------------] <ρD(∇Yi⋅∇Yj)|Y=Z>P =

7 8 ∂Z i∂Z j 7 8∂ t

∂ & *= - [----------- <W1ρ|Y=Z>P
7 8∂Z1

This equation is multiplied by Z and integrated over all Z. It can be

noted that since Z is an independent variable it can be taken inside

derivatives with respect to t, x and η. The terms which involve ∂/∂Z are

integrated by parts

+∞ Z=+∞
i 2 # $∂ & * ∂ & *
|Z ---------------------- <ρD(∇Y⋅∇ξ)|Y=Z,ξ=η>P dZ = |Z----------- <ρD(∇Y⋅∇ξ)|Y=Z,ξ=η>P | -∂Z∂η7 8 ∂η7 8
j 3 4Z=-∞-∞

+∞
i∂ & * ∂ & *- ----------- | <ρD(∇Y⋅∇ξ)|Y=Z,ξ=η>P dZ = - ----------- <ρD(∇Y⋅∇ξ)|ξ=η>P∂η 7 8 ∂η7 8
j

-∞

and

+∞ Z=+∞
i 2 # $∂ & * ∂ & *
|Z-------------------- <ρD(∇Y⋅∇Y)|Y=Z,ξ=η>P dZ = |Z----------- <ρD(∇Y⋅∇Y)|Y=Z,ξ=η>P | -

27 8 ∂Z7 8
j ∂Z 3 4Z=-∞-∞

Z=+∞
# $
|<ρD(∇Y⋅∇Y)|Y=Z,ξ=η>P| = 0
3 4Z=-∞

Note that P(Z,η) L 0 as Z L ±∞. The result of the integration is
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∂ρηQP(η) & * ∂JY-------------------------------------------- + div ρη<vY|η>P(η) = ρη<W|η>P(η) + -----------] (3.4)∂ t 7 8 ∂η

where

∂ρη<NY|η>P(η)JY ≡ 2ρη<D(∇Y⋅∇ξ)|η>P(η) - -----------------------------------------------------------------------------] (3.5)∂η

2Here <⋅|η> is short for <⋅|ξ=η>; N ≡ D(∇ξ) is the dissipation of the

conserved scalar; and subscript "η" also indicates conditional averaging:

e.g. ρη ≡ <ρ|η>. Equation (2.15) is repeatedly used in the derivation of

Eq.(3.4). Note that the density fluctuations about the conditional mean

are not taken into account here. This will be discussed in Sec.3.6.

Equation (3.4) has five independent variables: t, x1, x2, x3 and η.

The physical meaning of this equation is quite obvious since there is a

certain degree of similarity with the unconditionally averaged scalar

transport equation. The second term on the left-hand side of Eq.(3.4)

corresponds to the convective terms conditional on η. The first term on

right-hand side of Eq.(3.4) represents the conditional expectation of the

reactive source term. Transport in physical space by molecular diffusion

is neglected since Re is large, but it would be incorrect to say that all

molecular diffusion effects are neglected in Eq.(3.4). The new term ∂JY/∂η
is determined by small-scale diffusion processes. The variable JY in

Eq.(3.5) specifies the net diffusive flux of the reactive scalar Y in

conserved scalar space.

3.1.2. Alternative derivation of the unclosed equation

The derivation given above for Eqs.(3.4) and (3.5) is not the only

one possible. Here we consider an alternative derivation of Eqs.(3.4) and

(3.5). In general, both techniques are equivalent but in some cases the

alternative derivation can be more convenient. First we derive the

governing equation for ϕ ≡ Yψη, where ψη ≡ δ(ξ(x,t)-η), and then average

it. The new function ϕη can be called the fine-grained density in the x-η
space. We use Eq.(2.43) as the equation for ψη (η=Z1, ξ=Y1, W1=0, n=1).

This equation is multiplied by Y and added to Eq.(3.2) multiplied by ψη

∂ρψηY & * ∂ψηYd i v(ρD∇ξ)
----- ----------------- + div ρvψηY + [------------------------------------------------------------------------- - ψηdiv(ρD∇Y) = ρψηW (3.6)∂ t 7 8 ∂η
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We use also Eqs.(2.28) and (2.30) which are written with some minor

modifications

2
& * ∂ & 2* ∂ & *div ρDY∇ψη = ---------------] ψη YρD(∇ξ) - [----------- ψη div(YDρ∇ξ) (3.7)
7 8 2 7 8 ∂η7 8∂η

2∂ & 2* ∂ & * ∂ & *= --------------------] ψη YρD(∇ξ) - [----------- ψη Y div(ρD∇ξ) - ----------- ψηρD(∇ξ⋅∇Y)
2 7 8 ∂η7 8 ∂η7 8∂η

& * & * ∂ & *div ψηρD∇Y = ψη div ρD∇Y - -----------] ψηρD(∇ξ⋅∇Y) (3.8)
7 8 7 8 ∂η 7 8

The two last terms on the left-hand side of Eq.(3.6) are modified using

Eqs.(3.7) and (3.8)

2∂ψηρY & * ∂ & 2* ∂ & *
---------------- ------ + div ρvYψη + ---------------] ψη YρD(∇ξ) - 2 ----------- ψηρD(∇ξ⋅∇Y)∂ t 7 8 2 7 8 ∂η7 8∂η

& *- div ρD∇(ψηY) = ψηρW (3.9)
7 8

Equation (3.9) is averaged with the use of Eq.(2.18). The term

div <ρD∇(ψηY)> is neglected since it is small if Re is large (see Section

2.3.3). The resulting equation is exactly the same as Eqs.(3.4) and (3.5).

3.1.3. Primary closure hypothesis

The flux of the reactive scalar in conserved scalar space, JY, is

given by Eq.(3.5). This equation is unclosed. We seek a closure for JY in

the form of a diffusion approximation

∂QJY = AQ + B[-------------] (3.10)∂η

We do not assume any particular form of the drift coefficient A and the

diffusion coefficient B but we note that formulas for these coefficients

must preserve the linear properties of turbulent scalar transport. This

means that A and B are independent of Q. The physical basis of these
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assumptions is discussed in Section 3.7 where the analogy between particle

diffusion in conserved scalar space and a Markov process is established.

There is also an analogy with conventional modeling of scalar transport in

turbulent flows, where the turbulent flux <vY> is approximated by the term

<v><Y> - Dt∇<Y>. There is, however, a significant difference: the

turbulent diffusion coefficient Dt needs further modeling, whereas the

coefficients A and B are fully determined by a necessary constraint. This

constraint is: if W=0, a=const, b=const and the initial and boundary

conditions for Y are related to those for ξ by Y=a+bξ, then Y = a+bξ is a

solution of Eq.(3.2) for any velocity field. According to Eq.(2.17) this

solution corresponds to Q=a+bη. By substituting Y=a+bξ into Eq.(3.5) and

taking into account that

∂(a+bη)<N|η>P(η)ρη ∂<N|η>P(η)ρη-------------------------------------------------------------------------------------------------] = (a+bη)[------------------------------------------------------------------] + b<N|η>P(η)ρη∂η ∂η

and that the identities <N(a+bξ)|η> = <N|η> (a+bη) and <D(∇(a+bξ)⋅∇ξ)|η> =

b<N|η> can be easily derived from Eq.(2.17), we obtain

∂ρη<N|η>P(η)JY = -(a+bη)------------------------------------------------------------------]+ bρη<N|η>P(η) (3.11)∂η

while the substitution of Q=a+bη into Eq.(3.10) yields

JY = (a+bη)A + bB (3.12)

Since Eqs. (3.11) and (3.12) are valid for any arbitrary constants a and

b, the coefficients A and B must be determined as the corresponding terms

in Eq.(3.11). The closure for JY takes the form

∂ρη<N|η>P(η) ∂QJY = - ------------------------------------------------------------------ Q + ρη<N|η>P(η)[-------------] (3.13)∂η ∂η

Since the coefficients A and B are independent of Q this closure is,

according to assumption (3.10), valid not only for Q=a+bη but also for any

arbitrary field Q. The substitution of Eq.(3.13) into Eq.(3.4) yields

∂ρηQP(η) & *
-------------------------------------------- + div ρη<vY|η>P(η) = ρη<W|η>P(η)∂ t 7 8

2 2∂ ρη<N|η>P(η) ∂ Q- ----------------------------------------------------------------------]Q + ρη<N|η>P(η)[-------------------] (3.14)
2 2∂η ∂η
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This equation is the basic CMC equation which governs the evolution of the

conditional expectation Q. It involves the conserved scalar pdf P(η) and
2some conditional expectations <N|η>≡<D(∇ξ) |η>, <vY|η> and <W|η>. The pdf

equation (2.51) is rewritten using the notation of this section

2∂ρηP(η) & * ∂ ρη<N|η>P(η)
------------------------------------ + div ρη<v|η>P(η) = - ---------------------------------------------------------------------- (3.15)∂ t 7 8 2∂η

We have put η=Z1 and W1=0 and n=1 in Eq.(2.48). The conditional

expectations <N|η>, <vY|η> and <W|η> need further modeling. This modeling

and the basic properties of the CMC equation will be considered later.

Equation (3.14) can be written in another equivalent form. Subtracting Q

times Eq.(3.15) from Eq.(3.14) we obtain

& *div ρη<v ″Y″|η>P(η)
7 8 2∂Q ∂ Q

------------- + <v|η>⋅∇Q + ----------------------------------------------------------------------------------------------------- - <N|η>[-------------------] = <W|η> (3.16)∂ t 2P(η)ρ η ∂η

where v″ ≡ v-<v|η> is the velocity fluctuation about its conditional mean.

The conserved scalar pdf equation (3.15) is essentially mathematically

adjoint to Eq.(3.16). This is not a coincidence since such linkage of the

CMC and pdf equations is necessary to preserve conservation integrals. In

CMC modeling the CMC and pdf equations must both be satisfied.

3.2. Decomposition Method

In this section we consider an alternative way of deriving the

equation for Q(η,x,t)≡<Y(x,t)|η>. The idea of this derivation is based on

the decomposition

Y(x,t) = Q(ξ(x,t),x,t) + Y″(x,t) (3.17)

where Y″ is the fluctuation with respect to the conditional mean or, more

briefly, the conditional fluctuation.

3.2.1. The unclosed equation

3-7



Let us apply conditional averaging <⋅|η> to Eq.(3.17). According to

Eq.(2.17) <Q(ξ,x,t)|η>=Q(η,x,t) so that this averaging yields <Y″|η>=0.

The function Q(ξ(x,t),x,t) is a non-random function of variables x, t and

ξ. Variable ξ is a random variable which is also function of x and t. Let

us differentiate Eq.(3.17)

∂Y ∂Q ∂Q ∂ξ ∂Y″
[-----------] = -------------] + ------------- ---------- + -----------] (3.18)∂ t ∂ t ∂η ∂ t ∂ t

∂Q∇Y = ∇Q + -------------∇ξ + ∇Y″ (3.19)∂η

We also consider the transformation of the molecular diffusion term by

decomposition (3.17)

2∂Q 2 ∂ Q ∂Qdiv(ρD∇Y) = div(ρD∇Q) + ------------- div(ρD∇ξ) + ρD(∇ξ) [-------------------] + ρD∇ξ⋅∇------------- +∂η 2 ∂η∂η
+ div(ρD∇Y″) (3.20)

We substitute Eqs.(3.18)-(3.20) into Eq.(3.2) and use Eq.(3.1). Thus we

obtain

2∂Q ∂ Q ∂QρW = ρ------------- + ρv⋅∇Q - ρN[-------------------] - div(ρD∇Q)- ρD∇ξ⋅∇------------- +∂ t 2 ∂η∂η

∂Y″ & * & *+ ρ---------------- + ρ v⋅∇Y″ - div Dρ∇Y″ (3.21)∂ t 7 8 7 8

Taking the conditional expectation of Eq.(3.21), conditional on ξ(x,t)=η,

yields

2∂Q ∂ Qρη------------- + ρη<v|η>⋅∇Q - ρη<N|η>[-------------------] = ρη<W|η> + eQ + eY (3.22)∂ t 2∂η

with

∂QeQ ≡ < div(ρD∇Q) + ρD∇ξ⋅∇------------- | ξ(x,t)=η > (3.23)∂η

∂Y″ & *eY ≡ - < ρ---------------- + ρv⋅∇Y″ - div Dρ∇Y″ | ξ(x,t)=η > (3.24)∂ t 7 8
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2Here N ≡ D(∇ξ) , ρη ≡ <ρ|η>. The conditional fluctuations of density are

neglected (see Section 3.6 for details). Equation (3.22) represents the

unclosed form of the equation for Q.

3.2.2. Primary closure hypothesis

The analysis of Section 2.3.3 indicates that the term eQ is small

when Re number is large. This term can be neglected. Now we need to

estimate the last term on the right-hand side of Eq.(3.22), eY.

The conditional fluctuations Y″ have been introduced such that

<Y″|η> = 0. Hence <Y″> = 0. It follows from Eq.(2.36) that <Y″|η> = 0

does not necessarily mean that <∇Y″|η> = 0 and <∂Y″/∂t|η> = 0. We can,

however, conclude that the unconditional averages of such derivatives are

zero: <∇Y″> = ∇<Y″> = 0 and <∂Y″/∂t> = ∂<Y″>/∂t = 0. This means that

i<∇Y″|η>P(η)dη = 0 (3.25)
j

i<∂Y″/∂t|η>P(η)dη = 0 (3.26)
j

where the integrals are taken over all η. Terms such as <∇Y″|η> are not

zero but, according to (3.25) and (3.26) their integral contribution is

zero. Let us determine the unconditional average value of eY

i ∂ρY″ & * & *- eYP(η)dη = <[-----------------] + div ρvY″ - div ρD∇Y″ >
j ∂ t 7 8 7 8

∂<ρY″> & * & * & *= ----------------------------------] + div <ρvY″> - div <ρD∇Y″> = div <ρv″Y″>∂ t 7 8 7 8 7 8

&i * i & *= div ρη<v″Y″|η>P(η)dη = div ρη<v″Y″|η>P(η) dη (3.27)
7j 8 j 7 8

Some details in this derivation of Eq.(3.27) need comment. The continuity

equation multiplied by Y″, that is

&∂ρ *
-----------] + div(ρv) Y″ = 0

7∂ t 8

has been conditionally averaged and added to Eq.(3.24). The conditional

fluctuations of density ρ and diffusivity D are neglected so that <ρY″|η>

= ρη<Y″|η> = 0; hence <ρY″>=0. The diffusion term is transformed as
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<ρD∇Y″> = ∇<ρDY″> - <Y″(∇ρD)> = 0. The velocity is decomposed as

v=<v|η>+v″. Note that conditional fluctuations are different from

unconditional fluctuations so that <v″Y″>≠<v′Y′> where v=<v>+v′ and

Y=<Y>+Y′.
The basic closure hypothesis employed in the decomposition approach

is that

& *eYP(η) = - div ρη<v″Y″|η>P(η) (3.28)
7 8

The equality of the integrals in Eq.(3.27) is being assumed to be valid

for the conditional expectations inside the integrals. This is, of course,

not generally true. Here we emphasize that this assumption will not

bring any error in the unconditional averages since integration over the

range of η, as in Eqs(3.25)-(3.27), eliminates any error. With the

modelling of Eq.(3.28) the resulting equation takes the form

& *div ρη<v ″Y″|η>P(η)
7 8 2∂Q ∂ Q

------------- + <v|η>⋅∇Q + ----------------------------------------------------------------------------------------------------- - <N|η>[-------------------] = <W|η> (3.29)∂ t 2P(η)ρ η ∂η

This is the same as Eq.(3.16).

The second and third terms on the left-hand side of Eq.(3.29) are

convective terms. The third term corresponds to transport by the

conditional fluctuations. The last term on the left-hand side of Eq.(3.29)

corresponds to diffusion in conserved scalar phase space. This term is

determined by dissipation processes. Note that this term cannot be

neglected even if Re is large. The term on the right-hand side of (3.29)

is the conditional expectation of the chemical source term.

3.3. Comparing the Primary Closure Hypotheses

54In this section we first examine the Klimenko closure hypothesis of
10,12Eq.(3.13) using Bilger’s decomposition Y=Q+Y″. Taking into account

Eqs.(2.17) and (3.19) we may rewrite Eq.(3.5) in the form

∂Q ∂<N|η>P(η)ρηQJY ≡ 2<N|η>P(η)ρη[-------------] - --------------------------------------------------------------------------] +∂η ∂η
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∂<NY″|η>P(η)ρη2<D(∇(Y″)⋅∇ξ)|η>P(η)ρη - ------------------------------------------------------------------------------] (3.30)∂η

The term D∇Q⋅∇ξ has been neglected in Eq.(3.30) using the high Re

assumption of Section 2.3.3. Using Eq.(3.30) we can rewrite the closure

assumption of Eq.(3.13) in the form

∂<NY″|η>P(η)ρη2<D(∇(Y″)⋅∇ξ)|η>P(η)ρη - ------------------------------------------------------------------------------] = 0 (3.31)∂η

Since only ∂JY/∂η appears in the CMC equation, the right-hand side of

Eq.(3.31) could in fact be a non-zero constant. From this it appears that

lack of correlation between Y and N would be a sufficient condition for

the closure to be valid. Such a condition may, however, be too strict.

Indeed, in consideration of the balance equation for the second

conditional moments (Sections 8.2, 8.3) this term is seen as being an

important component of the major source of conditional fluctuations.

Next, let us compare in general the results obtained in Sec.3.1 and

Sec.3.2. First we note that Eqs.(3.16) and (3.29) are exactly the same. We

can also expect that the unclosed forms of the equation for Q in

Eqs.(3.4)-(3.5) and in Eqs.(3.22)-(3.24) must be equivalent since both

forms are derived from the scalar transport equations (3.1) and (3.2).

This equivalence is not obvious but it can be demonstrated by using

Eqs.(2.36) and (3.30). The primary closure hypotheses (3.10) and (3.28)

seem to be quite different, but they arise from equations which are

equivalent and result in identical CMC equations (3.16) and (3.29), and

hence they must be the same. They must also be the same as that in Eq.

(3.31). Clarification of these issues and of the question of what

conditions are necessary and sufficient for the closure to be valid are

matters of ongoing research. Some further discussion of the latter issue

may be found in Section 3.7.

3.4. Enthalpy Equation in CMC

The enthalpy h of a mixture of different species is a function of

concentrations of the species Yi and temperature T which is given by the

equation
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T

s & i *h = h(Y1,...,Yn,T) = Yi (h0)i + (Cp)idT (3.32)
t 7 j 8
i T0

where (h0)i is the enthalpy of formation and (Cp)i is the specific heat

at constant pressure.

For the case of identical diffusion coefficients and low Mach number,

the governing equation for the enthalpy takes the form

∂h & * & * ∂pρ---------- + ρ v⋅∇h - div Dρ∇h = [----------] - WRρ (3.33)∂ t 7 8 7 8 ∂ t

where WR is the heat loss rate per unit mass due to radiation. The
47pressure derivative ∂p/∂t is often neglected in combustion modelling .

In unsteady systems, such as combustion in a diesel engine, this term is,

however, usually important. The form of Eq.(3.33) is quite similar to

Eq.(3.2). Hence the CMC equation for Qh ≡ <h|η> is given by

& *div ρη<v ″h″|η>P(η)
7 8∂Q h-------------] + <v|η>⋅∇Qh + ----------------------------------------------------------------------------------------------------- =∂ t P (η)ρ η

2∂ Q h 1 ∂p<N|η>-------------------] + <[------][----------]|η> - <WR|η> (3.34)
2 ρ ∂ t∂η

This equation is similar to Eqs.(3.16) and (3.29) and does not need

special consideration of its properties.

3.5. Note on Averaging of the Source Terms

Solving the conventionally averaged scalar transport equations

requires a closure for the average values of the source terms <Wi>. In
10,12,13this section we follow the analysis of Bilger . The chemical source

terms for one-step irreversible reactions

A + B L Products
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are given by the equation

W = ρk YAYB; (3.35)

β & *k = A0 T exp -Ta/ T (3.36)
7 8

where k is the rate constant, A0 is the frequency factor, β is the

temperature exponent, and Ta is the activation temperature. It is quite

obvious that W is not a linear function of its arguments. In the general

case the reaction rate is a non-linear function of the species mass

fractions, Y1,...Yn, and the temperature T. Temperature can be determined

from Eq.(3.32) as a function of h and Y1,...Yn. Thus finally we can write

Wi = Wi(Y,h) where Y≡(Y1,...,Yn) and the reaction rate is a non-linear

function of its arguments. When Wi are not linear functions of Yj, the

unconditional average values of Wi are not functions of the unconditional

averages of the mass fractions and enthalpy <Wi(Y,h)> ≠ Wi(<Y>,<h>). The

size of the error depends on the size of the fluctuations in the scalars

Yi and h. In real combustion processes the source terms are usually

strongly non-linear functions of their arguments and the scalar

fluctuations are large so that use of the approximation <Wi(Y,h)> =

Wi(<Y>,<h>) would cause very large errors. This problem is well-known in

combustion science as the problem of averaging the reaction rates. This is

a simple mathematical explanation of what is in reality a complex physical

problem. For multistep kinetics the reaction rate for a given species

often has positive and negative terms which are of similar magnitude.
18Borghi has shown that it is not possible to obtain closure by modelling

the second or even higher order correlations.

In conditional modeling we need to determine the conditional

expectation of the source terms <Wi|η>. This in itself does not seem to

make problem of averaging easier since <Wi> is determined by <Wi|η> and

the pdf, P(η). The CMC model, however, provides more information for

averaging the source terms because the conditional expectations Qi≡<Yi|η>

are much more detailed characteristics of the reactive scalar fields than

the unconditional expectations <Yi>. Also, in many cases conditional

fluctuations are of smaller order than unconditional fluctuations Y″ « Y′
i i

where Y″≡Yi-Qi, Y′≡Yi-<Yi>. The conserved scalar ξ representing the
i i
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mixture fraction gives a measure of the stoichiometry of the mixture and

so usually characterizes well the chemical structure of the mixture. The

inequality Y″ « Y′ will be considered in Section 5 where we consider CMC
i i

in turbulent shear flows and in Section 8 where the equation for the
2conditional variance Gi≡<(Y″) |η> is derived. We emphasize here that the

i

intensities of conditional fluctuations depend not only on the

configuration of the turbulent flow but also on the nature of the chemical

reactions. We would not expect, for example, the conditional fluctuations

to be small in zones where combustion is close to extinction. In many

cases the conditional fluctuations Y″ can be neglected so that
i

<Wi(Y,h)|η> ≈ <Wi(Q,Qh)|η> = Wi(Q, Qh) (3.37)

where Q≡(Q1,...,Qn). This can be seen for the simple case of Eq.(3.35) by

making a Taylor series expansion for the reaction rate around the

conditional means of the reactive scalars and conditionally averaging the

result. To second order accuracy we obtain

& <Y ″ Y ″ |η>
| A B<W|η> ≈ <ρ|η> k(QT) QAQB 1 + [---------------------------------------------] +
| QAQB
7

<Y ″ T ″ |η> <Y ″ T ″ |η>
& T a *& A B *+ β + [------------] [---------------------------------------------] + [-------------- -------------------------] +
7 QT 87 QAQT QB QT 8

*
2 2

& 2(β -1)Ta T a * <( T ″) |η> |
1/2 β(β-1) + [---------------------------------------] + [------------] [------------------------------------------] (3.38)
7 QT 2 8 2 |QT QT 8

where
β & *k(QT) = A0 QT exp -Ta/ QT , QT ≡ <T|η> and T" ≡ T - QT.

7 8

Correlations with density fluctuations are neglected in this derivation.

They will not be involved if density weighted conditional averaging is

used as is shown in the next Subsection. It can be seen from Eq.(3.38)

that the errors in making a first order closure will be small if the

conditional variances of species mass fractions and temperature are

sufficiently small compared with the square of their conditional means. In
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saying this we note that the conditional correlation coefficients are

bounded between -1 and +1. Eq.(3.38) can be used to evaluate the adequacy

of first moment closures. It is to be noted that where β and Ta/QT are

much larger than unity the requirement for smallness of the conditional

temperature variance becomes particularly stringent. In these cases it may

be necessary to make a second order closure for the conditional reaction

rate. This can be done using Eq.(3.38) and solutions of appropriately

modelled equations for the conditional variances and covariances as are

developed in Section 8.

Let us consider closure for the source terms in Eq.(3.34). Closure

for the conditional average of the radiation source term that appears last

on the right-hand side of Eq.(3.34) follows the same considerations as

those given above for the reaction rate. For systems which are

optically thin, WR is a function of the composition and enthalpy and

first-order closure estimates the conditional average <WR|η> by using

the conditional averages in this function similar to Eq.(3.37). Estimates

of the error involved in such first-order closure can be made using A

Taylor series expansion similar to that Eq.(3.38). The second term on the

right-hand side of Eq.(3.34) is related to rapid global expansion or

compression in the combustor such as that occurring due to piston motion

in a diesel engine. Its conditional average can be reasonably

approximated by using the conventional average for the rate of pressure

rise so that

1 ∂p -1 ∂p<[------][----------]|η> ≈ <ρ|η> <[----------]> (3.39)ρ ∂ t ∂ t

Indeed for the diesel engine example, it will be probably be sufficient to

take the rate of rise of the average pressure across the whole clearance

volume.

3.6. Note on Conditional Favre Averaging

In the derivations of the CMC equation we repeatedly neglected the

conditional fluctuations of density as if ρ were a deterministic function

of η. For example <Yρ⏐η> = Qρη. This is a reasonable assumption since the

density fluctuations with respect to its conditional mean are often not
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very significant in non-premixed systems which are not near extinction.

(This corresponds to relatively small conditional fluctuations of chemical
10species and temperature.). We can, however, follow Bilger and discard

this assumption by introducing conditional Favre averaging: we put

<⋅|η> ≡ <⋅ρ|ξ = η>/ρη instead of <⋅|η> ≡ <⋅|ξ = η> where ρη ≡ <ρ|ξ = η>.

This corresponds to new definitions of the conditional mean

Q ≡ <Yρ|ξ = η>/ρη and the conditional fluctuations Y″ ≡ Y-Q. Note that

<Y″|η> ≡ <Y″ρ|ξ = η>/ρη = 0 but the unweighted conditional average

<Y″|ξ = η> is not necessarily zero. The equations derived in Sec.3 are

still valid with the new definitions but their derivations do not require

neglecting the conditional fluctuations of the density.

3.7. The Physical Basis of CMC

We consider here some physical ideas and hypotheses which provide a

basis for the primary closure involved in CMC as has been developed in
54,56Sections 3.1 - 3.3. This discussion mainly follows Klimenko and it

is particularly related to the closure hypothesis in Eq. (3.10). Note that

the constraints associated with these ideas are sufficient but not

necessary for the derivation of the CMC. The CMC equations can be derived

in different ways using different versions of the primary closure

hypothesis. The concepts considered in this section are, probably, most

complicated and the section can be omitted at first reading.

3.7.1 Diffusion approximations and the analogy with a Markov process

The focus here is the applicability of the diffusion analogy

approximation for JY. We compare the diffusion approximation in Eq.(3.10)

and the diffusion approximation of the turbulent scalar flux

<v′Y′>=-Dt∇<Y> (3.40)

where v′ ≡ v-<v>, Y′ ≡ Y-<Y>. In the case of a homogeneous velocity field,

constant density and W=0, considered here as a most simple example of

using Eq.(3.40), the average scalar transport equation takes the form
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∂<Y> & *
[-----------------] = div Dt∇<Y> (3.41)∂ t 7 8

31Following Corrsin , let us assume that the scalar Y is the number density

of an enormously large set of infinitesimal particles, which do not affect

the flow. A sample particle is chosen with uniform probability for all

particles. Its coordinates are marked by subscript index "p". The

physical coordinate along a certain direction is denoted in this section

as X and the corresponding component of the velocity is denoted by V. We

consider the case when all particles are initially located at X=X0 The
134main result of Taylor’s turbulent diffusion theory is the relation

2between mean square deviation of the sample particle position <(ΔXp) >

(where ΔXp ≡ Xp-X0) and the correlation Kv=<Vp(t1)⋅Vp(t2)> of the

corresponding component of the particle velocity. It is that

t t 1
2 i i<(ΔXp) > = 2 Kv(t1,t2)dt2dt1 (3.42)

j j
t 0 t 0

If the particle motion can be assumed to be steady-state during the period

of time under consideration, the velocity correlation depends only on the

time difference Kv=Kv(Δt), Δt=t2-t1. Differentiating Eq.(3.42) twice with

respect to t, we obtain

t
2d 2 i d

------------- <(ΔXp) > = 2Kv(0) + 2 --------Kv(t2-t)dt2= 2Kv(t-t0) (3.43)
2 j dtdt t 0

In terms of the mean concentration, <Y>, the mean square deviation (or

dispersion) is determined by

i 2 3(X-X 0 ) <Y>dx
j

2 ∞<(ΔXp) > = [---------------------------------------------------------------------------------] (3.44)
i 3<Y>dx
j
∞

since all particles will, on average, behave similarly. Assuming constant
2turbulent diffusion coefficient Dt, we multiply Eq.(3.41) by (X-X0) and

2integrate it over all X. This yields linear dependence of <(ΔXp) > in time

and, according to Eq.(3.43), the particle velocities should be
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uncorrelated Kv(Δt)=0. This is true only for values Δt greater than the

turbulence integral time scale τL. It is quite obvious that the diffusion

approximation (3.40) with a constant Dt fails to describe the processes

with characteristic time scale less then τL. This means that the turbulent

diffusion coefficient must be chosen differently for different initial

conditions imposed on Y even if the velocity fields are the same. This

deprives Eq.(3.40) of any useful information since Eq.(3.40) can be

considered in the one-dimensional case as being merely the definition of

the turbulent diffusion coefficient Dt ≡ -<V′Y′>/(∂<Y>/∂X), V′ ≡ V-<V> (We

leave aside the possibility of there being negative values for Dt.)

Our purpose now is to analyze the diffusion approximation of JY in

Eq.(3.10). Let us introduce a new variable ξp that is the particle

coordinate in conserved scalar space. The value of ξp is specified as the

instantaneous value ξ in the close vicinity of our chosen small particle.

The value ξp, itself, and its derivative ξ′ ≡ dξp/dt are random functions
p

of time. We assume that at initial time t0 the particle has a coordinate

ξ0 in the conserved scalar space. The deviation from the initial position

is designated as Δξp=ξp(t)-ξ0. Within time scale of the inertial range of

the turbulence we assume that the particle motions are statistically

uniform in time: <ξ′(t1)⋅ξ′(t2)>=Kξ(t2-t1). We shall determine the
p p

2relation between mean square deviation in conserved scalar space <(Δξp) >
63 102and time Δt=t-t0. According to the theory of Kolmogorov and Oboukhov ,

in time intervals belonging to the inertial interval this relation is

determined by the mean dissipation of turbulent energy <εd> and the mean
2scalar dissipation <N> where N ≡ Dξ(∇ξ) . It requires the following form

of the relation

2<(Δξp) > = const <N> Δt; (3.45)

Using (3.43) we easily obtain

21 d 2Kξ = ----- ------------- <(Δξp) > = 0 (3.46)2 2dt

This means that increments of the particle position inside the inertial

time interval are uncorrelated. Note that if ξ0 is fixed but not randomly

chosen with probability P(η), conditional averaging <⋅|ξ=ξ0> should be
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substituted here for unconditional averaging <⋅>.

Let us consider the qualitative behaviour of correlation Kξ(Δt) in

the full range of the variable Δt. We assume that the Peclet number, Pe,

calculated from the conserved scalar molecular diffusivity, Dξ, is of the

same order as the Re number calculated from the kinematic viscosity. The

integral of function Kξ(Δt) determines the diffusion coefficient in

conserved scalar space. The correlation Kξ contains a component related to

the molecular Brownian motion of the particle. The characteristic time of

this correlation is the interval between the molecular interactions. As

such time is very small this component is shown in Fig. 10 as a

delta-function. Therefore this component is not discussed further in this

section so that the particle we consider becomes a fluid particle. Its

motion in conserved scalar space is given by the equation

2ξ′= div(Dξρ∇ξ)/ρ ≈ Dξ∇ ξ; ξ′ ≡ dξp/dt
p p

This equation represents the Lagrangian time derivative of ξ. The value of
2Dξ∇ ξ which involves derivatives of the second order is determined by the

turbulent fluctuations of smallest scales. Thus the order of ξ′ can be
p

expressed using the corresponding Kolmogorov scales. These scales are: the

length scale xK, the time scale τK and the conserved scalar scale ξK.
2Taking into account that <N>~ ξK/τK, we obtain

2 2 -1/2Kξ(0) ~ ξK/τK ~ <N>/τK ; τK ~ τLRe (3.47)

where Re is the turbulence Reynolds number. But in times longer than τK

the correlation Kξ(Δt) tends to zero according to Eq.(3.46) (Fig. 10 solid

line). It is necessary to emphasize that correlation Kξ(Δt) can have

component K′~<N>/τL with the typical correlation time Δt~τL (Fig. 10
ξ

dotted line). The component K′ does not interfere with Eqs.(3.45) and
ξ

(3.46) in the main order. The particle motion in conserved scalar space

is determined by the universal small-scale turbulent processes. According
63 5to the Kolmogorov theory (see also Batchelor ), such processes are

stochastically independent of non-universal large-scale turbulent motions.

In our case it means, that process ξp(t) at time τK« Δt « τL can be

considered as a Markov process with independent increments. This statement

with some continuity assumptions leads us to the conclusion of the local

analogy between Brownian and conserved scalar space motion. This
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103hypothesis shows similarities with the Oboukhov’s hypothesis of a

Markov-process properties of particle motions in the velocity space. It

would be too optimistic to assume that the motion of a particle in

conserved scalar space is mathematically identical to the Brownian motion

but we can reasonably expect that the diffusion approximation in Eq.(3.10)

which corresponds to a Markov diffusion process is much better than the

diffusion approximation in Eq.(3.40). The coefficients A and B in

Eq.(3.10) are expected to be dependent on the velocity and conserved

scalar fields but independent of the reactive scalar field (the scalar Y

can affect the coefficients A and B only by affecting density). This

preserves the linear properties of the turbulent transport in Eqs.(3.2)

and (3.4) for the Markov-process assumptions.
55Klimenko demonstrated that the assumption of Markov-process

properties for particle diffusion in conserved scalar space corresponds to
63 64the original version of the Kolmogorov theory. Kolmogorov’s

refinements to the theory may result in a significant deviation of the

local transitional pdfs from a Gaussian shape. This seems to be

insignificant for the first moment (Q≡<Y|η>) closure, but corrections for

second moment closure may be needed.

Chemical reactions cause the appearance and disappearance of the

particles. The analysis of this section can be applied to reactive

particles, provided that the characteristic chemical time, which can be

also called the characteristic time of particle "life", is much greater

than Kolmogorov time scale τK. We emphasize that we do not draw here a

final conclusion about the the limits of the CMC applicability and these

matters will be discussed further in the paper.

3.7.2. Hypothesis of local similarity

The hypothesis of local similarity of scalar fields is not a needed

assumption in the derivation of the CMC equations but it yields some

additional insights. Here we consider the case when either chemical

reactions do not occur or they are too weak to affect the small-scale

structure of the scalar fields.

If Y=a+bξ and W=0 in the large scales, this linear dependence would

be preserved in the small-scale fluctuations. Any small-scale

perturbations of a+bξ would quickly disappear. So, if it appears that
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there is dependence between Y and ξ somewhere in a large-scale region of

the turbulent flow, this dependence will be preserved in this region at

smaller scales. The kinetic energy and scalar fluctuations are transferred

form large scales to small scales. Once dependence between Y and ξ appears

at any stage of this transport, it will be preserved at further stages.

The local similarity of scalar fields is understood as the general

tendency of the scalar gradients ∇Y and ∇ξ to become more and more aligned

even if the large-scale gradients of the scalars are not aligned. Hence

inside a relatively small region one scalar would be a function of another

scalar Y=fY(ξ) and this random function is and determined by larger

fluctuations. The implementation of this local similarity of scalar fields

and of the independence of large-scale and small-scale fluctuations yields

<NY|η> = <N|η><Y|η> (3.48)

∂<Y|η><D(∇Y⋅∇ξ)|η> = <N|η> ----------------------------------] (3.49)∂η

We emphasize here that Eqs.(3.48) and (3.49) are sufficient but not

necessary for derivation of Eq.(3.31). The assumptions (3.48) and (3.49)

are given here since they represent a self-consistent logic. The CMC

equation actually requires Eq.(3.31), or more precisely this equation but

with a constant on the RHS (but not Eqs.(3.48) and (3.49)) to be valid.

3.8 Summary of the Major Results

In this Section we have presented the derivation of the main CMC

equation with the result given by Eqs (3.14), (3.16) and (3.29). The

results in Eqs (3.29) and (3.16) are identical and are linked to Eq.(3.14)

by the high Reynolds number form of the transport equation for the joint

pdf of the mixture fraction, Eq.(3.15). These two forms of the first-order

CMC equation are widely used in Sections 4 to 7 that deal with its

application. They gover n the spatial and temporal evolution of the

conditional expectation <Yi⏐ξ=η> of reactive scalars Yi conditioned on a

fixed value η of the conserved scalar ξ. The CMC equation has the

additional independent variable η and several terms in this equation need

further modelling. Closure for the chemical source term is considered in

section 3.5 and general issues of closure of the other unclosed terms are

covered in Section 4. Simplified versions of CMC and further closures will
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be considered in Sections 5, 6 and 7.

The enthalpy equation which is needed to find the temperature is

considered separately in Section 3.4. In this section the CMC equation is

formulated for the enthalpy and the major terms of this equation are

similar to those in Eqs. (3.16) and (3.29).

Conditional expectations of the chemical source terms are present

in the CMC equations. The most simple approximation for these conditional

expectations is obtained in Eq.(3.37) by neglecting the conditional

fluctuations Y″. In other words, a first-order conditional moment closure

is made for the chemical source terms in the first-order CMC equation.

Higher-order closure for these terms is considered in more detail in

Section 8. It should be noted that this approximation does take into

account the most significant components of the conventional fluctuations,

Y′, from the unconditional average and thus has higher precision than the

conventional pseudo-laminar approximations which neglect the effects of Y′
entirely.

Conditional fluctuations of density have been generally neglected

in the derivations of the CMC equations. This assumption can be avoided by

introducing conditional Favre averaging as is discussed in Section 3.6.

The CMC equations are derived here by two alternative techniques: the

pdf method and the decomposition method. The decomposition method may be

preferred by readers who are familiar with the fast chemistry and the

flamelet models. The pdf method, as it follows from its title, provides

the link with the traditional pdf techniques. It is important to emphasise

that the basic CMC equations (3.14), (3.16), and (3.29)involve certain

basic assumptions - primary closure hypotheses. Although both derivations

yield exactly the same result, the assumptions involved in both

derivations are not identical, at least from the philosophical point of

view. The pdf derivation is based on a new physical concept - diffusion in

conserved scalar space, which is presented in Section 3.7. This concept is

directly supported by the Kolmogorov theory of turbulence and can not be

found in CMC predecessors - the fast chemistry and the flamelet models.

This concept explains why CMC is valid for slow and moderate chemistry and

reaction zones which are broad compared with the Kolmogorov length scale.

At the same time CMC is still valid for fast chemistry and, with certain

reservations, for thin reaction zones. It should be emphasised that the

decomposition method does not impose the restriction which is required by

the concept of diffusion in conserved scalar space where it was assumed
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that the chemical transformation time exceeds the Kolmogorov time scale,

τK. That is why our intention is to inform the reader about different

approaches to CMC. If the reader is concerned with practical applications

rather then fundamental properties of turbulence, he or she may wish to

skip Section 3.7 and focus on comparison of CMC and the fast chemistry and

the flamelet models forgetting for a while about their fundamental

differences. Such comparative analysis of the models is given in the next

section.
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4. MAIN FEATURES OF THE CMC EQUATION

In Section 3, different methods of deriving the CMC equation and

formulations for the primary closure hypothesis have been presented. They

result in the same first-order CMC equation for the conditional averages Q

= <Y⏐η>, where the subscript i used in eq. (1.1) has been dropped without

loss of generality (see the beginning of Section 3.) From Eqs.(3.14),

(3.16) and (3.29) we see that the CMC equation has two equivalent forms

∂QP(η)ρη & *
----------------------------------------] + div <vY|η>P(η)ρη = <W|η>P(η)ρη +∂ t 7 8

& *∂ ∂Q ∂<N|η>P(η)ρη+ [-----------]|<N|η>P(η)ρη[-------------] - ------------------------------------------------------------------]Q| (4.1)∂η ∂η ∂η
7 8

& *div <v ″Y″|η>P(η)ρη7 8 2∂Q ∂ Q
------------- + <v|η>⋅∇Q + ----------------------------------------------------------------------------------------------------- - <N|η>[-------------------] = <W|η> (4.2)∂ t 2P(η)ρ η ∂η

The second of these is the more general form of Eq. (1.1) in the present

notation. The transformation of Eq.(4.1) into Eq.(4.2) and Eq.(4.2) into

Eq.(4.1) can be easily made by using the conserved scalar pdf equation

(3.15)

2∂P(η)ρη & * ∂ <N|η>P(η)ρη--------------------------------] + div <v|η>P(η)ρη = - ---------------------------------------------------------------------- (4.3)∂ t 7 8 2∂η

First-order closure for the conditional average reaction rate in

terms of the conditional average species mass fractions and enthalpy has

been presented in Section 3.5. Here we are concerned with models for

closing the remaining unclosed terms in the CMC equation, investigation of

its general properties and the nature of the boundary conditions

applicable.

As outlined in Section 1.2, solution of the CMC equation usually

proceeds in parallel with some method for solution of the velocity and

mixture fraction fields. Information from these solutions is needed for

modeling P(η), <v⏐η> and other unclosed terms in the CMC equations. In

Section 4.1 we outline methods for doing this in the general case.
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The CMC equation, (4.1) or (4.2), needs to be solved in a way that is

consistent with the pdf transport equation (4.3). In the normal

procedure this means that models used for the conditional average

dissipation, <N|η>, should show consistency with the given pdf field in

terms of Eq. (4.3). As is shown in Section 4.2, this is necessary to

preserve conservation integrals. It is found, however, that errors in

<N|η> are only significant where they occur in reaction zones. The

conservation integrals also give some constraints on the boundary

conditions for Q.

The form of the CMC equation of (4.2) has certain similarities with

turbulent combustion models applicable in the fast chemistry limit
6,7 109,22(FCL) and to laminar flamelet modeling . The relationship of CMC

methods to these other modelling approaches is of some interest. The

relationship to the frozen and fast chemistry limits is explored in

Sections 4.3, and to laminar flamelet models in Section 4.4.

Solution of the CMC equation requires specification of the correct

initial and boundary conditions for the flow under consideration. In

mixing layers with non-reactive fuel and oxidant streams there is little

problem with specification of boundary conditions at η = 0 and 1. There

are many subtleties to be considered, however, when the unmixed streams

are reacting or when, as in jets wakes and real combustors, the

probability of unmixed fluid of one or both streams becomes very small.

For example, far downstream in a jet diffusion flame there is little

probability of there being fluid with ξ = 1 and questions arise as to

whether applying a boundary condition at η = 1 is meaningful or valid.

These questions are most simply addressed by considering time-dependent

homogeneous turbulent flows. In Section 4.5 some results are obtained for

the case of homogeneous turbulence which may be of general applicability.

In Section 4.6 we summarize the nature of CMC modeling for first order

closure.

Equations (4.1)-(4.3) involve five independent variables t, x1, x2,

x3, and η. Numerical solution of the equations is greatly eased when the

dimensionality of the problem can be significantly reduced. In Sections 5

and 6 we consider the cases when the general CMC equations can be

simplified and transformed into forms which can be easily used in

practical applications. In Section 7, the even simpler case of homogeneous

turbulence is considered.
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4.1. Possible Closures of the Remaining Unclosed Terms

in the General CMC Equations

Conserved scalar pdf modelling is relatively well-explored area in
113combustion theory . We assume that the function P(η) is known throughout

the field and with time. In current practice, a presumed form of the
9,27,47pdf (such as a clipped Gaussian or beta function) will often be

used and P(η) obtained from solutions for the mean and variance of the

conserved scalar; these being obtained from numerical integration of their

modelled transport equations. In fact, any form of detailed information on

the velocity and mixing field is acceptable, e.g. experimental

measurements or output from large eddy simulations.

Where Favre averaging is used for calculating the velocity and mixing

fields, it is usually more convenient to work in terms of the Favre pdf,
~P(η), which is related to the conventional pdf, P(η), by

~ρηP(η) = <ρ>P (η) (4.4)

where <ρ> is the unconditionally averaged density. Eq.(4.4) may be used to

convert Eqs (4.1)-(4.3) to the Favre pdf form.

The linear approximation for the conditional expectation of velocity

is given by

<v ′ ξ′> & *<v|η> = <v> + [-------------------------------] η - <ξ> (4.5)
2 7 8< (ξ ′ ) >

with a similar form applicable to Favre averaging. This simple

approximation is supported by some experimental data summarized in Ref. 72

It is known to be exact if the velocity and conserved scalar are jointly

Gaussian, but this condition is not necessary for Eq. (4.5) to be an

adequate approximation. The unconditional covariance <v′ξ′> is usually

available from the modelling used for this quantity in the balance

equation for the mean mixture fraction.

The conditional expectation of the scalar dissipation can be found

from Eq.(4.3) with the use of the boundary conditions for the product
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<N|η>P(η) established in Section 2.4. With the use of Eq. (4.5) and

appropriate integration by parts the double integrals can be reduced to

single integrals so that we obtain

∂I1(η)<N|η>P(η) =[------------------------] + <v>⋅∇I1(η) +∂t

-1 & 2 *+ <ρ> ∇⋅ <ρ><v′ξ′>I2(η)/<ξ′ > (4.6)
7 8

where
1

i ° n ° °In(η) = (η -η) P(η )dη (4.7)
j
η

These formulae are readily converted to Favre pdfs through the use of Eq.
2(4.4). For a given presumed form of the pdf, In(η) = In(η;<ξ>,<ξ′ >) so

that look-up tables can be precomputed. The conditional expectation of

the scalar dissipation <N|η> determined in this way is in agreement with

the pdf equation.

As yet no experience has been gained in CMC modelling in

multi-dimensional systems. The "brute force" approach outlined above may

prove to be too cumbersome or result in negative values of <N|η> being

obtained through numerical error. As will be presented later, errors in
2 2the estimation of <N|η> are only significant for values of η where ∂ Q/∂η

is high which is usually where η ≈ ηs, the stoichiometric value of the

mixture fraction. Usually, values of the unconditional scalar dissipation,

<N>, will be available from the flow and mixing calculation. Sufficient

accuracy may be achievable through the modelling

& 2 *<N|η> = <N> FN η;<ξ>,<ξ′ > (4.8)
7 8

with the function FN being determined from limited surveys of the flow

using Eqs (4.6), (4.7) above, or from experimental data. Some experimental
45,49,92data is available for flows without heat release while Starner et

128al give some results obtained in turbulent jet diffusion flames.

Closure for the term <v″Y″|η> can be formulated by analogy with

Eq.(3.40)

<v″Y″|η> = -Dt∇Q (4.9)
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Since the diffusion approximation (3.40) is commonly adopted, Eq.(4.9)

seems to be a plausible approximation. With the use of Eq. (4.9) the

common transport equation for <Y> is obtained by integrating Eq. (4.1)

over η space; Eq. (3.40) being incorporated in it. It should be noted that

such a transport equation is not well established for reactive scalars.

For the limiting case of premixed combustion it is known that the gradient

transport assumption (3.40) can be seriously in error with the

diffusivities often being negative. We are not aware of any experimental

data that directly confirms or disapproves Eq.(4.9) for nonpremixed

systems. Suffice it to say that this modelling should be treated with

caution. In many nonpremixed flame situations gradients of Q are quite

small. Eq. (4.9) can be used to give an estimate of the magnitude of this

term: it will often be found to be entirely negligible. Exceptions will

occur where strong gradients in Q are expected as in stabilization

regions, such as in a lifted turbulent jet diffusion flame.

The closure of the conditional average chemical reaction rate and

radiation loss source terms is discussed in Section 3.5. With the

approximations (3.37), (4.5), (4.9) and proper boundary conditions for Q

(outlined later in Section 4.6) Eq.(4.2) can be solved. In many cases, as

discussed in Sections 5 and 6, we can use the CMC model in a simplified

form and avoid the additional assumptions (4.5) and (4.9).

4.2. Conservation Integrals

The conditional expectation Q≡<Y|η> is a much more detailed

characteristic of the reactive scalar field than the unconditional

expectation <Y>. The transport equation for <Y> can be obtained by

integrating the CMC equation (4.1) over all η (The conserved scalar pdf

P(η) is bounded by values ηmin and ηmax). The CMC equations are fully
54,59,60consistent with different types of conserved scalar pdf as is

shown in this section.

4.2.1. Smooth pdfs with fixed bounds

Here we consider conserved scalar pdfs which do not have any
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generalized function components, such as delta functions at ηmin and ηmax.

The beta function described in Eq.(1.6) and Fig. 3 is an example of this

type of pdf. The pdf bounds ηmin and ηmax are assumed to be constant. We

integrate Eq.(4.1) over the interval η1≤η≤η2 where ηmin<η1<η2<ηmax.

Assuming η1=ηmin+ε and η2=ηmax-ε and taking the limit εL0 (η1Lηmin

η2Lηmax) we obtain

∂<Yρ> & *
-----------------------] + div <vYρ> - <Wρ> =∂ t 7 8

max
# ∂Q ∂<N|η>P(η)ρη $= <N|η>P(η)ρη------------- - ------------------------------------------------------------------ Q = 0 (4.10)
3 ∂η ∂η 4

min

The notation used here is that introduced in Eq.(2.56). We have also used

the boundary conditions given in Eqs.(2.61) and (2.62). Equation (4.10) is

consistent with the average scalar transport equation. Because of the high

Reynolds number assumption, transport by molecular diffusion is neglected

in the CMC and pdf equations so that the corresponding term does not

appear in Eq.(4.10) Note that Eq.(4.10)is valid for any arbitrary values

of [Q]min, [Q]max, [∂Q/∂η]min and [∂Q/∂η]max. Thus, in the case of smooth

pdfs, the boundary conditions are not determined by the conservation

integral. The boundaries represent a special point of Eq.(4.2) since

Eq.(2.63) indicates that <N|η>L0 as ηLηm. Hence the boundary values of Q

are restricted by Eq.(4.2) itself, so that

& *
# div <v ″Y″|η>P(η)ρη $

7 8
|∂Q |
------------- + <v|η>⋅∇Q + ----------------------------------------------------------------------------------------------------- - <W|η> = 0 (4.11)
|∂ t |P(η)ρ η3 4m

This shows that if the boundary fluid is reacting there must be

corresponding temporal and spatial variations in the boundary values for

Q.

4.2.2. Intermittent pdfs

The intermittent pdfs specified in Eq.(2.64)) involve delta functions

at η=ηmin and η=ηmax which correspond to the uncontaminated, vortex-free

regions of a turbulent flow and ηmin and ηmax are constants. The clipped

Gaussian pdf described in Eqs (1.3)-(1.5) and Fig. 2 is an example of this
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type of pdf. Equation (4.10) is not completely valid for an intermittent

pdf. The integration over η1≤η≤η2 where η1=ηmin+ε, η2=ηmax-ε and εL0 does

not involve the delta functions at η=ηmin and η=ηmax. Hence the integral

of Eq.(4.1) should be written as

∂<Yρ|t>γ t & *
-------------------------------------------] + div <vYρ|t>γt - <Wρ|t>γt =∂ t 7 8

max max
# ∂Q$ #∂<N|η>P(η)ρη $= <N|η>P(η)ρη------------- - ------------------------------------------------------------------ Q (4.12)
3 ∂η4 3 ∂η 4

min min

where the condition t represents being in the turbulent region

ηmin<ξ<ηmax and γt is the intermittency factor (see Eq.(2.64)). The

boundary conditions in Eq.(2.68)-(2.71) indicate that the first term on

the RHS of Eq.(4.12) is zero and that the second term can have a non-zero

value. This corresponds to the entraiment of the scalar Y from the

uncontaminated, vortex-free regions (where Y=Ymin, Y=Ymax) into the

contaminated, turbulent region.

It is reasonable to assume that the conditional expectation Q does

not have any discontinuity at the vortex-free/turbulent bounds

# $ & *Q ≡ l im Q = Ym (4.13)
3 4 7 8

m ηLηm

We remind the reader that index "m" is used for either of the indexes

"min" or "max". In order to demonstrate the conservation properties we
°need to consider a scalar Y which takes zero values in the vortex-free

regions so that entraiment from these regions does not involve
° °entrainment of Y . We introduce Y by the equation

- Ym a x Ym i n°Y = Y + a(ξ-ηmin) +b(ξ-ηmax); a =[----------------------------------------------; b =[---------------------------------------------- (4.14)ηmax -ηm i n ηm a x -ηmin

° ° °The scalar Y satisfies Eq.(3.2) hence Q ≡<Y |η> satisfies Eq.(4.1). Since
°Y is a linear combination of Y and ξ, it is sufficient to demonstrate the

°conservative properties for Y . The conservative properties of the
°conserved scalar are preserved by the pdf equation (4.3). Since Ym=0 it

° °is obvious that [Q ]m=0 and <FY |t>γt=<FY> for any F. Equation (4.12)

takes the form
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°∂<Y ρ> & ° *
--------------------------------- + div <vY ρ> - <Wρ> =∂ t 7 8

° max max
# ∂Q $ #∂<N|η>P(η)ρη °$= <N|η>P(η)ρη-------------] - ------------------------------------------------------------------ Q = 0 (4.15)
3 ∂η 4 3 ∂η 4

min min

This proves that the CMC equation preserves the conservation integrals for

the intermittent pdfs provided the boundary conditions in Eq.(4.13) are

satisfied. At the same time Eq. (4.15) can be also considered as the proof

of the boundary conditions in Eq.(4.13)

4.2.3. Errors arising from the conditional scalar dissipation

It has been emphasised earlier that the modeled values used for the

conditional average of the scalar dissipation, <N|η> in integrating the

CMC equation (4.2) must be fully consistent with the pdf field so that the

pdf transport equation and the boundary conditions (2.61), (2.62) are

satisfied. Otherwise, errors will arise in the predictions for Q and in

particular conservation integrals will not be satisfied. Here we seek to

clarify the nature of the errors involved.

Let us assume that the actual conditional average scalar dissipation

used in solving Eq. (4.2) is <N|η> + ΔN(η), where <N|η> is the correct

value that satisfies Eq. (4.3) and the boundary conditions (2.61),(2.62)

or (2.68)-(2.71) for the given pdf field and ΔN(η) is the error. It is

easy to show that the conservation integrals of Eqs (4.10) and (4.15) will

leave an error term <EN> on the RHS where
ηmax 2
i ∂ Q<EN> = ρηΔN(η)P(η)[-------------------]dη (4.16)
j 2∂ηηmin

We will call this the "false chemical source term". This is because it

leaves unchanged combinations of species that form conserved scalars, Z,

provided those conserved scalars have initial and boundary conditions that

satisfy the normal requirement that they are linear functions of η. Thus
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ηmax 2
i ∂ Z<EN,Z> = ρηΔN(η)P(η)[-----------------]dη (4.17)
j 2∂ηηmin

where

s s sZ ≡ μiYi = μiQi and μiρWi = 0
t t t
i i i

(Note that the symbolc use of Z here is different to that in Section 2.)

This shows that, as far as the conservation of <Y> for any species is

concerned, any error introduced by error in <N|η> will be accompanied by

complimentary errors in other species from which a conserved scalar can be

defined. There should thus be no evidence of the error arising from this

source in element and other conserved scalar balances.

For many nonpremixed systems most species react only in a narrow

region in conserved scalar space around stoichiometric, and it is only
2 2there that there are significant second derivatives, ∂ Q/∂η . It is seen,

then, that it is only there, that is around stoichiometric, that the

errors in the conditional average of the scalar dissipation, ΔN(η), need

to be small to ensure conservation of <Y>. For reactant and product

species, there is usually a monotonic change in gradient ∂Q/∂η around

stoichiometric and the error can then be estimated as

+
& * # ∂Q $<EN> ≈ ρη ΔN(η)P(η) [-------------] (4.18)
7 8 3 ∂η 4ηs -

where the subscripts "+" and "-" refer to the gradients on the high and

low η side of stoichiometric, η = ηs.

For the unconditional average enthalpy there will be a corresponding

false radiation source term, <EN,h>

ηmax
2

i ∂ Q h<EN,h> = ρη ΔN(η)P(η)[-------------------] dη (4.19)
j 2∂ηηmin

Here there is no corresponding conserved scalar. Radiation losses ensure
2 2that ∂ Qh/∂η is positive for a broad range of η around stoichiometric and

positive values of the error ΔN(η) in this region will result in an

overprediction of enthalpy and hence temperature.
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4.3. Frozen and Fast Chemistry Limits

The frozen limit corresponds to the situation when chemical reactions

do not occur (that is fuel and oxidizer are mixed in turbulent flow but do

not react). In this case a reactive scalar is a linear function of the

conserved scalar, Y=a+bξ, which corresponds to Q=a+bη. The constants a and

b are determined by the values of reactive scalar before mixing.

Condition Y=a+bξ has been used in the derivation of the CMC equation in

Section 3.1.2. Hence the CMC model must be consistent with Y=a+bξ. This

can be checked directly by substituting Q=a+bη, Y″=0 and <W|η>=0 into

Eq.(4.2). The identity obtained demonstrates that the CMC model is

consistent with the frozen limit.

We consider next the case of fast chemical reaction which is opposite

to the case just considered. When chemistry is fast, the reactive scalars

tends to their equilibrium values: YLYe(ξ) as DaL∞, where the Damkohler

number is defined as Da=τL/τc, τL being the integral time scale of

turbulence and τc a characteristic chemical time scale. The equilibrium

concentration Ye is then a function of the mixture fraction, ξ, and
7following Bilger we obtain

2∂ Ye-N [-------------------] = W (4.20)
2∂ξ

This applies instantaneously at every point in the field. In order to make

comparison with CMC we obtain the conditionally averaged version of this

equation. Taking in to account that Ye is a deterministic function of ξ,

we apply Eq.(2.17). This yields <Ye(ξ)|η>=Ye(η). We obtain

2∂ Ye-<N|η> [--------------------] = <W|η> (4.21)
2∂η

This equation can be derived from Eq.(4.2) by taking the limit QLYe(η) and

Y″L0. The CMC model is thus consistent with the fast chemistry limit

(FCL). The solution of the CMC equation will automatically tend to this
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limit when the Da number is sufficiently large.

It was concluded in Section 3.5.2 that the CMC model is correct when

it describes processes with τc greater than the Kolmogorov scale τK.

In the limit of fast chemistry, τc«τK, we have just shown that the fast

chemistry limit is absolutely correctly described by the CMC model. The

validity of CMC in between these limits is still an open question.

4.4. Laminar Flamelet Model

The stationary laminar flamelet model (SLFM), for which different
71 109versions have been suggested by Kuznetsov and Peters , can be written

in the form

2∂ Y-Ns[----------------] = W(Y) (4.22)
2∂ξ

In spite of having quite a similar form to Eq.(4.20), these models have

differences which are outlined further here. For a recent review of SLFM
22see Bray & Peters .

FCL is a global model which covers all (or maybe a significant part

of) the turbulent field. SLFM is a local model which specifies reaction

processes inside very thin reaction zones. Strictly, SLFM is only

applicable when the thickness of the reaction zone lz is much smaller than
2the Kolmogorov length scale lK. The conserved scalar dissipation D(∇ξ)

inside the reaction zone is then uniform and is denoted by Ns. Unlike N in

Eq.(4.20) where N can vary markedly throughout the reaction zone, Ns in

Eq.(4.22) is effectively a random parameter. In FCL Ye(ξ) is given. In

SLFM Y is to be determined as the solution of Eq.(4.22). This solution

requires boundary conditions at the bounds of the reaction zone ξ=ηs-ηz

and ξ=ηs+ηz where ξ=ηs is stoichiometric surface determining the location

the reaction zone and 2ηz is the width of the reaction zone in conserved

scalar space. These conditions are usually specified as the equilibrium

conditions

Y=Ye at ξ=ηs-ηz and Y=Ye at ξ=ηs+ηz (4.23)

The solution of Eq.(4.22) Y=Y(ξ,Ns) is thus a function of the

instantaneous values of the conserved scalar and the instantaneous value
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of the scalar dissipation at stoichiometric. SLFM implicitly requires

large Da number to have conditions in Eq.(4.23) fulfilled. In practice

then, Eq.(4.22) can be solved in the interval ηmin≤ξ≤ηmax with the

boundary conditions

Y=Ymin at ξ=ηmin and Y=Ymax at ξ=ηmax (4.24)

The solution at the outer edges of the reaction zone is normally very

close to Ye. Well inside the reaction zone the deviations are larger since
2 2the derivative ∂ Ye/∂ξ is usually large at ξ=ηs. In SLFM a flamelet

library is generated for a range of Ns, Y(ξ,Ns), and unconditional

averages can then be obtained by weighting this by the joint pdf of ξ and

Ns.

The CMC model has some similarities with the SLFM model but these

models are not identical. If we conditionally average Eq.(4.22) we cannot
2 2split the correlation <Ns∂ Y/∂ξ |η> since Y depends on Ns. We can

demonstrate, however, that CMC, FCL and SLFM are in agreement integrally

in the reaction zone. We integrate Eq.(4.22) between the limits ξ=ηs-ηz

and ξ=ηs+ηz and utilize the boundary conditions (4.23)

η s +ηzηs+ηz ηs+ηz# ∂Y $ # ∂Y e$ iNs [-----------] = Ns [-----------] = - W dξ (4.25)
3 ∂ξ 4 3 ∂ξ 4 jηs -ηz ηs -ηz η s -ηz

Conditional averaging of Eq.(4.25) yields

η s +ηzηs+ηz# ∂Y e$ i-<N|ηs> [-----------] = <W|η>dη (4.26)
3 ∂η 4 jηs -ηz η s -ηz

Equation (4.26) coincides with the integral of Eq.(4.21) over the interval

ηs-ηz ≤ η ≤ ηs+ηz. These equations are in agreement with the limit of the

CMC equation at DaL∞. Note that inside the reaction zone, as it assumed in

SLFM, <N|η>=<N|ηs>.

If the reaction zone is wider than the Kolmogorov length scale, the

scalar disipation will vary significantly and randomly through the reaction

zone so that strictly SLFM modelling is no longer applicable. In practice

the dissipation averaged across the reaction zone Nz is often used instead
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72of Ns in Eq.(4.22) as suggested by Kuznetsov & Sabelnikov . Often the

value of Nz is also assumed to be a constant. The fluctuations of Nz are

significantly smaller than the fluctuations of Ns. In many practical

applications SLFM is used in the form

2∂ Y-<N|ηs>[----------------] = W(Y) (4.27)
2∂ξ

that is the fluctuations of N are neglected (sometimes it is also assumed

that <N|ηs>=<N> in Eq.(4.27)). Conditional averaging of Eq.(4.27) yields

2∂ Q-<N|ηs> [-------------------] = <W|η> = Wη(Q) (4.28)
2∂η

The difference between this equation and Eq.(4.21) is that Q is obtained

as the solution of Eq.(4.28) and for simple one-step chemistry and finite

Damkohler number Q is close to Ye but does not coincide with Ye. For

complex chemistry, especially for hydrocarbon combustion, solutions for Q

can be markedly different from full equilibrium even at quite high

Damkohler number. This is particularly so on the rich side of

stoichiometric where peaks in CO are less than one third of those obtained

from equilibrium calculations. Such flamelet calculations give much
82improved predictions of experimental data and have led to their

widespread use in practical applications. Such success should not be

allowed to overshadow the fact that the use of Eq.(4.28) is not soundly

based.

Equation (4.28) can be also obtained from Eq.(4.2) by neglecting the

convective terms and assuming that <N|η>=<N|ηs>. It is seen that the form

of SLFM using Eq.(4.28) is a special case of the CMC model.

Various formulations of unsteady laminar flamelet models have been
111proposed. Mauss et al consider unsteady flamelets in a jet diffusion

flame in a Lagrangian manner. From the flow and mixing caculation they

deduce the variation of the average scalar dissipation with time. This is

used in an unsteady laminar counterflow flamelet caculation to get the

time- or space-dependent composition as a function of the mixture

fraction. This function is then weighted by the local pdf to get
115unconditional averages. Pitsch et al consider unsteady flamelets in

diesel engines. They introduce the concept of ’Representative Interactive
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Flamelets’ which are applied in domains "..with statistically average

similar quantities of flamelet parameters". In both of these applications

of unsteady flamelets the equations being solved are similar to the

equations that would be solved using CMC modeling. There are subtle

differences, however. In CMC the modeling assumptions are much more

transparently defined and the specification of the scalar dissipation and

conditional velocity is precise. For the diesel engine problem CMC would

retain the terms involving the spatial gradients of Q; these are neglected

in the unsteady flamelet formulation. Furthermore, in CMC the requirement

that the reaction zones be thin with respect to the Kolmogorov length

scale is not necessary.

CMC, FCL and flamelet models have many similarities and belong to a

category of non-premixed combustion models that use the concept of a

conserved scalar and its dissipation. In general it can be seen that the

CMC model is a more advanced model in which the temporal and spatial

evolution of chemical processes are taken properly into account. This

evolution is neglected in the SLFM and FC models. CMC is a more soundly

based approach than concepts of partially-premixed and unsteady flamelets

which have been proposed. The SLFM, used in the form of Eq.(4.22), can

have some advantages in consideration of local processes when fluctuations

of the conserved scalar dissipation are important. Local extinction is an

example of such processes.

Clear delineation of the regimes of validity of CMC and SLFM awaits

further investigation. For 0 < τc < τK (one strict condition for validity

of SLFM) CMC may not be valid even though it is valid at the fast

chemistry limit, τc/τK = 0. This seems likely to be so for one-step

irreversible chemistry and perhaps for multistep chemistry involving

irreversible reactions. For reversible reactions the term involving the

scalar dissipation becomes of second order at high Damkohler number, the

balance being between the forward and backward rates, and the first order

solution is that for equilibrium, i.e. FCL. In such cases the width of the

reaction zone, lz, may be broader than the Kolmogorov length scale, lK,

even though τc < τK. It seems that if this is so, both CMC and SLFM may

not be strictly valid and may not give the correct results for the

departure from the first order solution, which is given by chemical

equilibrium.

4-14



4.5. Some Further Results for Homogeneous Turbulence

Here we consider some further properties of the CMC equation which

are more complicated than the properties considered in previous sections.

In order to avoid complications we assume that the turbulence is

homogeneous but the results obtained could have more general significance.

In homogeneous turbulence with uniform and constant density

Eqs.(4.1)-(4.3) take the form

& *∂QP(η) ∂ ∂Q ∂<N|η>P(η)
----------------------------------] = <W|η>P(η) + [-----------]|<N|η>P(η)[-------------] - --------------------------------------------------------]Q| (4.29)∂ t ∂η ∂η ∂η

7 8

2∂Q ∂ Q
------------- - <N|η>[-------------------] = <W|η> (4.30)∂ t 2∂η

2∂P(η) ∂ <N|η>P(η)
-------------------------- = - ------------------------------------------------------------ (4.31)∂ t 2∂η

Eq.(4.29) is a combination of Eqs.(4.30) and (4.31) and can be easily

derived from them. If the conserved scalar pdf P(η) is specified and if

<W(ξ,Y)|η> is approximated by W(η,Q), the system of Eqs.(4.30) and (4.31)

is closed. The conditional scalar dissipation <N|η> can be determined from

Eq.(4.31). The boundary conditions determined by Eqs.(2.57) and (2.58) for

smooth pdfs or by Eqs.(2.68) and (2.69) for intermittent pdfs should be

used to integrate Eq.(4.31) twice over η. The boundary conditions in

Eqs.(2.57) and (2.58) seem to be overdetermined. In fact they are not.

The pdf is not an arbitrary function. It must satisfy certain

restrictions (for example, the normalization constraint: a pdf integral

over all η is always unity). It is possible to select any two boundary

conditions from Eqs.(2.57) and (2.58) and the other two must be fulfilled

automatically. In practice the choice should be such as to minimize

numerical integration errors. Using the boundary conditions in Eq.(2.68)

and (2.69) or in Eq.(2.62) we obtain

ηmax&η *ηm a x |
|i η i |
|| η - ηm i n | |1 || i ∂P(η) | i ∂P(η) |<N|η> = [----------------------|p ----------------------]dηdη - ----------------------------------------------]| ----------------------]dηdη| (4.32)P(η)|| j ∂ t ηmax -ηm i n | j ∂ t |
| | |
|j ηm i n j ηm i n |
7ηmin ηmi n 8

4-15



The conditional scalar dissipation determined by Eq.(4.32) is utilized to

solve Eq.(4.30) for the conditional expectation of a reactive scalar.

4.5.1. Low probability effects

The pdf P(η) is not explicitly involved in Eq.(4.30) and any η in the

interval ηmin<η<ηmax has equal significance for Eq.(4.30). Some values of

ηmin<η<ηmax may have very small probability P(η) and should not be

important. Intuitively, these ranges of η with small probability should

not affect the solution of Eq.(4.30) in the high-probability regions. On

the face of it, this seems to be a contradiction, but in fact it is not.

In order to demonstrate this we assume that the conditional scalar

dissipation is approximated by

<N|η> = <N> ≡ Na(t) (4.33)

This approximation is consistent with there being a Gaussian pdf

satisfying Eq.(4.31). The approximation in Eq.(4.33) is not an

approximation which can be always used for Eq.(4.30): it is used here as a

simple example for the demonstration of some quite general properties of
2the CMC equations. The unconditional variance θ(t)≡<(ξ′) >, ξ′≡ξ-<ξ>

115,135satisfies the equation

dθ
-----------] = - 2Na(t) (4.34)d t

We introduce a new independent variable

t
dτ i ° °----------] = Na(t) or τ = τ0 + Na(t )dt (4.35)dt j

t 0

Equations (4.30) and (4.31) then take the form

2∂Q ∂ Q <W|η>
-------------] = [------------------- - [--------------------------------] (4.36)∂ τ 2 N a∂η
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2∂P(η) ∂ P(η)
--------------------------- = - ------------------------------- (4.37)∂τ 2∂η

The variable τ can be thought of as the "diffusion time". This variable

determines the solutions of Eqs.(4.36) and (4.37). Combining Eq.(4.34) and

Eq.(4.35) we obtain

2(τ-τ0) = θ0 - θ (4.38)

where θ0 ≡ θ(t0). The conserved scalar fluctuations disappear in a

sufficiently long time interval θL0, τ-τ0 L θ0/2 as tL∞ and

P(η) L δ(η-<ξ>) as tL∞. (4.39)

Equation (4.36) is parabolic, and from the theory of such equations it is

known that any changes to Q at t=t1, η=η1 affect Q for all η at any t>t1.

In practice, however, only the limited region η1-Δη<η<η1+Δη, where

1/2Δη ~ (τ-τ1)

and τ1 ≡ τ(t1) is significantly affected. Since

θ1 - θ θ 1τ-τ1 = [-------------------------------] ≤ [------]2 2

by analogy with Eq. (4.38), this region is bounded for any t>t1

1/2Δη ≤ const⋅(θ1)

This means that the CMC equations can be solved for quite a large range of

η, but the solution in ranges of η which have a small probability P(η)

cannot significantly affect the solution in the high probability range of

η. It also means that at large times, when the range of the pdf is remote

from the initial bounds of η, solution can proceed over a much narrower

range of η with arbitrary values of <N|η> and boundary conditions for Q

being used at values of η greater than about four standard deviations from

the mean. This result is also likely to apply to high values of η in the

far downstream regions of jets and wakes, where it is cumbersome to

compute all the way to a mixture fraction of unity and the numerical
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solution of the pdf transport equation gives unreliable values for the

conditional scalar dissipation at high values of η.

4.5.2. Boundary conditions

The observations in the text immediately preceding this bring up the

question of what are the general effects of moving boundary conditions on

Q and <N|η>

The most complicated case is the case of a smooth pdf with

non-constant bounds ηmin and ηmax. This could happen for species when the

unmixed fluid is undergoing reaction or is being fed to the system with a

time varying composition. For enthalpy it might also arise from

compression or expansion of the unmixed fluid such as happens in a diesel

engine during injection and ignition. First we check if the reactive

species conservation integral is preserved in this case. Equation (4.29)

is integrated over the interval η1≤η≤η2 where ηmin<η1<η2<ηmax. The last

two terms on the right-hand side of Eq.(4.29) are integrated by parts

η2 η2 η2i ∂QP(η) ∂ i # ∂η i $
----------------------------------- dη = --------] QP(η)dη - [-----------]QP(η) =

j ∂ t ∂t j 3 ∂ t 4η1η1 η1

η2 η2i # ∂Q ∂<N|η>P(η) $= <W|η>P(η)dη + <N|η>P(η)------------- - -------------------------------------------------------- Q (4.40)
j 3 ∂η ∂η 4η1η1

where ηi is for either η1 or η2. Assuming η1=ηmin+ε and η2=ηmax-ε and

taking the limit εL0 we obtain

max∂<Y> # ∂Q ° $
-----------------] - <W> = <N|η>P(η)------------- + JPQ = 0 (4.41)∂ t 3 ∂η 4

min

where

° ∂ηm ∂<N|η>P(η)JP ≡ P(η)[----------------- - -------------------------------------------------------- (4.42)∂ t ∂η

We use here the boundary conditions in Eqs.(2.57) and (2.58) which
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°indicate that JPL0 and <N|η>P(η)L0 as ηLηm. It is easy to see that

Eq.(4.41) preserves the conservation integral for any finite values of

[Q]m and [∂Q/∂η]m. In the case of non-homogeneous turbulence and

non-constant ηmin and ηmax the conservation integral is also preserved

provided P(η)<v″Y″|η>⋅∇ηmL0 as ηLηm. This condition is usually fulfilled

in practical cases.

Preserving the reactive species conservation integral determines

boundary conditions (4.13) in the case of intermittent pdfs but it seems

from the above that in the case of smooth pdfs the boundary conditions

remain undetermined. This needs further consideration. The boundary values

[Q]min and [Q]max are restricted by the CMC equation itself since ηmin and

ηmax are special points of this equation. We introduce a new independent

variable η ≡η-ηm in Eq.(4.29). If we consider the boundary conditions at
+

ηmin then ηm=ηmin and η ≥0. If we consider the boundary conditions at ηmax+

then ηm=ηmax and η ≤0. Taking into account the differentiation chain
+

& ∂ * & ∂ * dηm ∂
--------] = --------] - [-----------] [---------------] (4.43)

7 ∂t 8 7 ∂t 8 d t ∂ηη=const η =const +
+

we obtain

∂QP(η) ∂ & ° ∂Q *
----------------------------------] - <W|η>P(η) = [-----------] JPQ + <N|η>P(η)[-------------] =∂ t ∂η 7 ∂η 8

+ +

° 2∂JP ∂<N|η>P(η) ∂Q ° ∂Q ∂ Q= --------------------] Q + --------------------------------------------------------- -------------] + JP ----------------- + <N|η>P(η)[-------------------] (4.44)∂η ∂η ∂η ∂η 2
+ + + + ∂η

+

°∂P(η) ∂JP-------------------------- = --------------------] (4.45)∂ t ∂η
+

°where JP is introduced in Eq.(4.42). We use Eq.(4.45) to cancel the first

term on the right-hand side of Eq.(4.44). According to Eqs.(2.57) and
°(2.58), JPL0 and <N|η>P(η)L0 as η L0. We assume that [Q]m≠0. This

+

assumption is not restrictive since we always can introduce a new scalar
°Y =Y+a (a=const) which conditional expectation satisfies Eq.(4.30). Hence,

in the vicinity of η =0, we can neglect the two last terms on the
+

right-hand side of Eq.(4.44)

4-19



# $
&∂Q* 1 ∂<N|η>P(η) ∂Q
| ------------- - <W|η> - ---------------------- -------------------------------------------------------- -------------]| = 0 (4.46)
7∂ t 8 P(η) ∂η ∂η

3 η + +4m+

where [⋅]m is for the limit of (⋅) at ηLηm. Taking into account that
°[JP]m=0 and using Eqs. (4.42) and (4.43) we obtain

# $ # $
&∂Q* ∂ηm ∂Q &∂Q*

| ------------- - [----------------- -------------] - <W|η>| = | ------------- - <W|η>| = 0 (4.47)
7∂ t 8 ∂ t ∂η 7∂ t 8
3 η + 4m 3 η 4m+

The derivative dQm/dt (where Qm(t)≡[Q]m) coincides with limit of the

derivative [(∂Q/∂t)η ]m. Equation (4.47) determines the boundary
+

conditions for Q at η=ηmin and η=ηmax. Note that Eq.(4.47) can be formally

derived from Eq.(4.30) by putting [<N|η>]m=0. This is in agreement with

Eqs.(2.60) and (2.63) and can be used to obtain the boundary conditions in

the case of non-homogeneous turbulence.

4.6 Overview

The CMC equation, (4.1) or (4.2), is to be solved over the space and

time domain of interest subject to initial and boundary conditions

appropriate for the problem being studied. Before moving on to consider

simplified forms of the equations and more advanced modelling questions it

seems appropriate to pause and review the nature of CMC modeling.

The modeling assumptions involved in deriving Eqn (4.1) and (4.2) are

that mass diffusion at the molecular level is Fickian with all Lewis

numbers unity, Reynolds numbers are moderate, at least, and that the

primary closure assumption of Section 3.3 is valid. The first two

assumptions are normal practice in turbulent combustion modelling. The

effects of differential diffusion can be incorporated into the CMC method

as is discussed in Section 9. In Section 3.7, theoretical support for the

validity of the primary closure assumption is given but ultimately

validation comes from studies involving Direct Numerical Simulation (DNS)

and successful applications of CMC in a wide range of reacting flows. This

evidence is presented in Sections 5 and 7. It is believed that the primary

closure assumption is valid for cases well removed from the the fast

chemistry limit and in flows showing quite large conditional average

fluctuations about the conditional average. Further work is needed to

establish this firmly, particularly in flows with ignition and extinction
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occurring.

Other modeling assumptions are of a secondary nature. The closure of

the conditional chemical reaction rate <W⏐η> is discussed in Section 3.5

and will often be possible at the first moment level as given by Eq.

(3.34). For this closure to be valid, conditional average fluctuations of

species mass fractions and temperature about their conditional means must

be small, particularly for reactions having high activation energies. In

Section 8 we summarise the progress made so far on modeling the

conditional average variance and covariance balance equations and with

second order closure for the chemical reaction rates. Such modeling is

helping to elucidate the conditions under which first order closure will

be valid. At this stage, no simple criteria can be recommended.

Modeling of the conditional scalar dissipation <N⏐η> is discussed in

Section 4.1 and errors associated with the poor estimation of it is

discussed in Section 4.2. This question is discussed further in Sections 5

and 7. Some flows are quite sensitive to the scalar dissipation and others

are not. The situation depends quite subtly on the flow and the chemistry

and it is not possible at this stage to recommend simple criteria. Models

for <v⏐η> and <v"Y"⏐η> are also discussed in Section 4.1. At this stage

little experience has been gained in validation of these models. It can be

noted here that modeling of the mixing at this first-order closure level

is confined to conserved scalars for both mixing at the molecular level,

as in <N⏐η>, and at the turbulent flux level, as in <v⏐η> and <v"Y"⏐η>.

Mixing of both these sorts for reactive scalars is known to be fraught

with difficulty since the chemistry can have a major influence on setting

concentration gradients and countergradient turbulent fluxes can also be
21obtained. This is most evident in turbulent premixed combustion but

will also be important in nonpremixed systems. Modeling for the molecular

mixing terms is a persistent problem with the Monte-Carlo/joint pdf
114method and the role of the chemistry in the determination of the

mixing rate has not yet been satisfactorily treated. The fact that first

order CMC only considers conserved scalars is a distinct advantage of the

method. It is noted also that conserved scalars are only needed for the

modeling of the flow and mixing field. Modeling of reactive scalar

dissipation terms does appear, however, in second order closure CMC and

this is discussed in Section 8.

In applications of CMC to individual problems care is needed in the

specification of the initial and boundary conditions for Q. Examples will
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be found in Sections 5 to 7. Often the two boundary conditions needed for

Q in η space are taken as those in the unmixed fluid at η = 0 and 1. This

is usually found to be satisfactory even though there may be a total lack

of one or both of the unmixed fluids in parts of the space time domain

being calculated. It appears that the findings in homogeneous flows of

Section 4.5 are applicable here. In such places it matters little what

values are taken for the boundary condition as its effects will not be

felt in the range of η of practical interest.

It seems, then, that CMC has a very sound basis in theory and that

the modeling assumptions made are expressible mathematically and can be

individually checked. This transparency of the modeling is a distinct

advantage for CMC over models of a more conceptual kind such as the linear
53eddy model or laminar flamelet models used beyond the scope of their

strict applicability.
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5. CMC IN TURBULENT SLENDER LAYER FLOWS

The general CMC equation (4.2) remains rather complicated for general

use. The term <v″Y″|η> is not easy to close satisfactorily and the

closure of Eq.(4.5) for <V|η> is not well established. Of more practical

concern is the large number of independent variables involved. Here we

consider some techniques that transform the general CMC equation (4.2)

into well-founded models which are much simpler and easier to use. The

techniques are applicable to turbulent shear flows and other thin layers

such as non-bouyant plumes and scalar mixing layers in homogeneous

turbulence. For such flows the CMC equations can be significantly

simplified. Many of the comparisons of CMC predictions with experiment

have been made for flows of this type using these simplifications, and

hence much of the evidence for the validity of CMC modeling rests on the

validity of these further simplifying assumptions. Accordingly, we present

in some detail here the theoretical basis for these simplifications,

practical concerns about the correct modeling of the conditional scalar

dissipation, and some comparison of predictions with experiment.
54 10,12Klimenko and Bilger suggested two different forms of the CMC

equation for these slender layer flows. At first these equations were

considered to be approximate equations based on some plausible
10,12assumptions. Bilger supported his assumptions by comparison with

57experimental measurements. Later Klimenko showed that both forms of the

simplified CMC shear flow equation are correct asymptotic limits of the

general CMC equation, having some similarities with the traditional

boundary layer analysis. The structure of the expansions is, however,

quite different from the traditional equations for conventional means in

slender layers. We start our consideration of slender layer flows from

the main results of this asymptotic analysis and in the following two
10,12sections present the "simple" method proposed by Bilger and the

54Integral method proposed by Klimenko . The Integral method is the

prferred method where assurance of accuracy is of prime importance.

The Integral method requires evaluation of a weighted integral of the

conditional average scalar dissipation across the flow. This can be

obtained from the pdf transport equation after suitable integrations

across the flow and in mixture fraction space. Once again, subtleties are

introduced for consideration of either intermittent or smooth pdfs. These

are explored in Section 5.4. The nature of the pdf boundaries are also
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important in considering the preservation of conservation integrals, as

already considered in Section 4.2 for the non-Integral case. A brief

outline of this problem together with methods for assessing the errors are

given in Section 5.5. Both of these sections can be omitted on the first

reading.

Evaluation of the conditional average scalar dissipation is not

always straight forward and small numerical inaccuracies can result in

negative values which are, of course, physically impossible. Experimental

measurements, results for self-similar flows and approximate methods that

have been used in the literature are reviewed in Section 5.6.
3Measurements in jet diffusion flames indicate that there are small

cross-stream variations in conditional average temperature, and that these

could be important in predicting nitric oxide formation. In Section 5.7

the possibility of predicting these from higher order terms in the

asymptotic expansion is outlined.

CMC predictions and comparison with experiment are presented in

Section 5.8 for a reacting scalar mixing layer, turbulent jet diffusion

flames and for round plumes in grid turbulence.

5.1. Basics of the Asymptotic Analysis

Slender layer flows are characterized by small ratio l2/l1 where l2
and l1 are transverse and longitudinal characteristic length scales. In

this section the longitudinal components are denoted by x1 and v1; the

transverse components are denoted by x2 and v2. We introduce a small
2parameter ε =l2/l1 which is common for all boundary layer asymptotic

methods. The analysis we consider here is similar to the traditional

boundary layer methods which simplify the unconditionally averaged
44Navier-Stokes and scalar transport equations in shear flows (see Hinze ).

Thus in estimates of all variables in the CMC equation we follow Hinze’s

estimates. The asymptotic analysis is quite complicated and we consider
57here only a brief review of its results. According to Klimenko and

60Klimenko & Bilger the conditional expectation Q in shear flows is given

by the series

2 & η - <ξ> *Q = Q0(x1,η) + εQ1(x1,η) + ε Q2 x1,η,[------------------------------------- + ... (5.1)
7 ε 8

60The second term in this series, Q1, can be used to obtain higher order
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corrections for the CMC shear flow equation. As follows from the

expansion (5.1) the conditional expectations, Q, are a weak function of

the transverse coordinate x2. This seems unexpected since the

unconditional mean, <Y>, is a strong function of x2; but this is predicted
10,12by the asymptotic analysis and is supported by experimental data as is

seen in Fig. 1 A n other supplementary result of the analysis is the

representation of the conserved scalar pdf in the form of the series

η′
& *a 1 i <v 2⏐η ′ >P(η′) = ---------------------------------] exp|-a2 ------------------------------------------ dη | + ... (5.2)<N|η′> j <N|η ′ >
7 80

where η′≡η-<ξ> and a1, a2 do not depend on η′. The asymptotic analysis

shows that a2»1 and that the pdf P(η) has a strong dependence on x2.

5.2. Simple Method

10,12Assuming that Q does not depend on x2, Bilger neglected the

transport across the flow and suggested that in turbulent shear flows Q

satisfies the equation

2
° ∂Q 0 ° ∂ Q 0U [-------------] - N [-------------------] = W(η,Q) (5.3)

2∂ x 1 ∂η

The index "0" indicating that Q0 is the main order approximation of Q. The
° °coefficients U and N are given by

° & ° * ° & ° *U = Ua x1,x2(x1,η) ; N = Na x1,x2(x1,η) ; (5.4)
7 8 7 8

° °where x2 is the solution of the equation ξa(x1,x2)=η and the new functions

introduced here are

Ua(x1,x2) ≡ <v1>; Na(x1,x2) ≡ <N>; ξa(x1,x2) ≡ <ξ>

° °The values of U and N are specified as the corresponding mean values
°taken at x2=x2 which is usually close to the most probable location of the

°isopleth ξ(t,x)=η: more precisely, at x2=x2 the mean value <ξ> coincides

with η. For jets, wakes and plumes the mean mixture fraction on the
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centreline of the flow is much less than unity in downstream regions. A
° °problem with this method is the assignment of U and N for values of η

greater than the centreline mean. The conditional expectation of the

source term is given by the approximation in Eq.(3.37). The asymptotic
57analysis indicates that Eq.(5.3) is the correct asymptotic limit of the

CMC equation as εL0 everywhere except at the centerline of the flow.

5.3. Integral Method

Assuming steady-state flow we integrate Eqs.(4.1) and (4.3) across

the flow

( ) ( )∂
[----------] {<v1Y|η>P(η)ρη} - {<W|η>P(η)ρη} =∂x 1 9 0 9 0

( )∂ ∂Q ∂<N|η>P(η)ρη= [----------- {<N|η>P(η)ρη[-------------] - ------------------------------------------------------------------]Q} =∂η ∂η ∂η
9 0

( ) 2 ( )∂ ∂Q ∂= ----------- {2<N|η>P(η)ρη[-------------]} - [-----------]{<N|η>P(η)ρηQ} (5.5)∂η ∂η 2
9 0 ∂η 9 0

( ) 2 ( )∂ ∂
[----------] {<v1|η>P(η)ρη} = - --------------- {<N|η>P(η)ρη} (5.6)∂x 1 2

9 0 ∂η 9 0

where the curly brackets denote integrals across the flow

( ) ( ) ( ) ( )
i i i

{⋅} ≡ ( ⋅ ) dx2; {⋅} ≡ ( ⋅)dx2dx3; {⋅} ≡ l im {⋅} (5.7)
j j j

9 0R 9 0R 9 0 RL∞ 9 0R
2 2 2

|x 2|≤R x 2+x 3≤R

The first formula in Eq.(5.7) is used for two-dimensional flows and the

second formula is used for three-dimensional flows. Equations (5.5) and

(5.6) are valid for any chosen η which belongs to the open interval

ηmin<η<ηmax, where ηmin and ηmax denote the pdf bounds which are assumed

to be constants. We consider the case when ξLηmin and P(η)Lδ(η-ηmin) as
2 2 2RL∞ where R≡|x2| in two-dimensional flows or R ≡x2+x3 in three-dimensional

flows. The value of ηmin which corresponds to ξ far from the turbulent

flow is a constant. The pdf P(η) rapidly tends to zero as RL∞ for any

fixed η>ηmin. Hence the integrals in Eqs.(5.5) and (5.6) are finite for
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η>ηmin. In two-dimensional flows (such as a mixing layer) another flow

configuration is possible: ξLηmin as x2L-∞ and ξLηmax as x2L+∞. In this

case (which is not specifically discussed in this paper) the bound ηmax

should be considered in a similar way to the bound ηmin. The integrals

{⋅P(η)} can take zero, finite or infinite values at η=ηmin depending on

the pdf model used.

Now we take into account that Q≈Q0 does not depend on the coordinates

across the flow and put Q0 in Eq.(5.5) outside of the integration

brackets. For example, the most restrictive term in Eq.(5.5) is modified

so that

( ) &( ) *∂ ∂Q ∂ &∂Q 0 *2 ----------- {<N|η>P(η)ρη[-------------]} = 2 -----------|{<N|η>P(η)} [-------------]ρη + O(ε) | (5.8)∂η ∂η ∂η 7∂η 8
9 0 79 0 8

The conditional expectation of the density, ρη, is considered to be a

function of η and Q0. According to the approximation of Eq.(3.37), <W|η>

can also be removed outside the integration brackets. Turbulent transport

in the longitudinal direction by conditional fluctuations is neglected so

that

<v1Y|η> ≈ <v1|η>Q0 ≈ <v1>Q0 (5.9)

This is a common assumption in turbulent shear flows. Approximation (5.9)

is supported by the asymptotic analysis. We introduce the new notation

( ) ( )
{<v1 |η>P(η)} {<N|η>P(η)}

( )
* * 9 0 * 9 0P ≡ {P(η)}; U ≡ [-------------------------------------------------------------------]; N ≡ [--------------------------------------------------------------] (5.10)

( ) ( )
9 0

{P (η ) } {P (η)}
9 0 9 0

and write Eqs.(5.5) and (5.6) in the form

* *∂ & * * * * ∂ & * * ∂Q 0 ∂N P ρη *
[----------] U Q0P ρη - W(Q0)P ρη = [----------- N P ρη[-------------] - -------------------------------------- Q0 (5.11)∂x 1 7 8 ∂η 7 ∂η ∂η 8

2∂ & * * * ∂ & * * *
[----------] U P ρη = - --------------- N P ρη (5.12)∂x 1 7 8 2 7 8∂η
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Another form of the CMC equation for shear flows is derived from

Eqs.(5.11) and (5.12)

2
* ∂Q0 * ∂ Q 0U [-----------------] - N [-------------------] = W(Q0) (5.13)∂ x 1 2∂η

Equation (5.13) is similar to Eq.(5.3) but these equations have different

formulas for their coefficients. Equation (5.3) is easier in practical

use than Eq.(5.13) since solving of Eq.(5.3) does not require any pdf

modeling. Equation (5.13) is expected to be close to correct near the

centerline and, as is proved in the next subsections, it preserves

conservation integrals. Equation (5.12) is an exact integral of the pdf

equation. Equations (5.3), (5.11) and (5.13) are approximate equations

which utilize the approximation of Q in Eq.(5.1). Equations (5.3), (5.11)

and (5.13) are valid for turbulent shear flows which are characterized by

a small ratio of the characteristic scales across and along the flow.

Equation (5.13) effectively replaces the coordinate across the flow x2 by

the new coordinates related to moving surfaces ξ=const. Diffusion in

conserved scalar space is determined by universal small-scale fluctuations

for which the conditional dissipation is the measure.

The coefficients of Eq.(5.13) are specified provided the conserved
* *scalar pdf P(η) is known. Indeed, the values of P and U can readily be

determined from Eq.(5.10) using the approximation of Eq.(5.9). The
*coefficient N cannot be determined from Eq.(5.10), however, since <N|η>

*is unknown. The best way is to determine N by integration of Eq.(5.12).

This requires the specification of the boundary conditions for the product
* *N P . These are considered next.

5.4. Boundary Conditions for the Pdf Integrals

On the face of it, determining the boundary conditions for the pdf

integrals across the flow should be similar to finding the boundary

conditions for the pdfs. This would involve the following
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( ) ( ) ( )
*l im P ≡ l im l im {P} = l im l im {P(η)} = l im { l im P(η)} (5.14)

ηLηm ηLηm RL∞ 9 0R RL∞ ηLηm9 0R RL∞ 9 ηLηm 0R

where ξLηm as RL∞. On more careful consideration, however, it appears

that Eq.(5.14) is not always valid since the interchange of the order of

the limits ηLηm and RL∞ requires special conditions. We note that the

integration {⋅}, which is an integration over an infinite interval,

involves the limit operation RL∞ as is indicated in Eq.(5.7). Normally in

engineering applications, differentiating, integrating and taking limits

are considered as interchangeable operations and we have followed this

practice elsewhere. There is, however, an exception in the case of

Eq.(5.14). Interchanging the order of the limits ηLηm and RL∞ needs

special consideration. We can demonstrate that Eq.(5.14) is valid for

intermittent pdfs but the order of the limits ηLηmin and RL∞ cannot be

interchanged for smooth pdfs. In intermittent turbulent flows the pdf is

determined by Eq.(2.64) and the intermittency factor γt (and γmax) rapidly

tend to zero as RL∞. This means that if R is large the pdf is small for

all η which belong to the open interval ηmin<η<ηmax. Almost all of the

probability is accumulated in the delta function γminδ(η-ηmin) and does

not affect the integral for ηmin<η<ηmax. Thus in numerical calculations

we can reasonably cut off our integrals somewhere at large R. The

situation with smooth pdfs is totally different. These pdfs are large at

η~<ξ> even if R is large. Since <ξ>L0 as RL∞, this does not affect the

vicinity of ηmax and the asymptotes ηLηmax of the integrals across the
*flow present no difficulties. The asymptote of the integral P of a

smooth pdf P(η) at ηLηmin is different from the asymptote of the pdf P(η)

itself. Let us consider the moment integral
ηmax

α i αMα ≡ <(ξ-ηmin) > = (η-ηmin) P(η)dη (5.15)
j

ηmin

αIt is evident that (η-ηmin) L1 as αL0 everywhere except at η=ηmin where
α α(η-ηmin) =0. This is why MαL1 as αL0 for smooth pdfs and MαLγt+γmaxηmax as

αL0 for intermittent pdfs. If α>0 is fixed, Mα rapidly tends to zero as
αRL∞ for both types of the pdfs since (ξ-ηmin) < exp(-αaR) for large R and~

constant α. The integral
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( )ηmax ηmax( ) | |
i α i α *

{Mα} = { (η-ηmin) P(η)dη } = (η-ηmin) P dη (5.16)
j j

9 0 | |ηmin ηmin9 0

exists for any α>0 but, if P(η) is smooth, {Ma}L∞ as αL0. This can be

valid only if

* 1P ~ [------------------------] as η L ηmin (5.17)η-ηmi n

The asymptote of the conditional dissipation at ηLηmin can be also

assessed. The formula relating surface to volume ratio for an isopleth
8,114ξ=const surface can be integrated across the flow to yield the

isopleth surface area per unit length in the x1 direction: it is given by
* 1/2 *Sη=(N /D) P . In planar two-dimensional flows at large distance from the

turbulent region S~const. This gives

* 2N ~ (η-ηmin) as η L ηmin (5.18)

*For the smooth pdfs the asymptote of P is always determined by Eq.(5.17)

irrespective of the asymptote of P(η) at ηLηmin, while for intermittent
*pdfs the asymptotes of P and P(η) at ηLηmin are similar. We emphasize

that Eqs.(5.17) and (5.18) are only approximate asymptotes. The asymptote
*of N at ηLηmax is similar to the asymptote for <N|η> given in Eq.(2.63)

(ηmax=const) which also mirrors Eq.(5.18).

The purpose of the rest of this section is to derive and prove the
* *boundary conditions for the product N P . This condition enables us to

* *solve Eq.(5.18) for N P

5.4.1. Intermittent pdfs

In the case of intermittent pdfs, Eqs.(2.68) and (2.69) can,

according to our previous analysis, be generalized for the integrals

across the flow so that

* *N P L 0 as η L ηm (5.19)
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5.4.2. Smooth pdfs

In order to investigate the boundary conditions for the integrals of

smooth pdfs we consider the integral of Eq.(2.53) across the flow

( ) ( )∂
-------------- {<v1ρF>} = - {<ρNF′′>} (5.20)∂x1 9 0 9 0

As stated earlier, stationary flow is assumed. The arbitrary good function

F(η) is chosen so that F(ηmin)=0 that is FL0 as RL∞. This ensures that the

integral on the left-hand side of Eq.(5.20) exists. The integral on the

right-hand side of Eq.(5.20) exists since in the flow ξLηmin and NL0 as

RL∞. We multiply Eq.(5.12) by F(η) and integrate it over the interval

η1≤η≤η2 where η1=ηmin+ε and η2=ηmax-ε and ε is small. The integral on the

right-hand side is integrated by parts. Taking the limit εL0 we obtain

( ) ( ) max∂ #∂ & * * * $ # * * $
-------------- {<v1ρF>} - {<ρNF′′>} = ----------- N P ρη F + N P ρηF′ (5.21)∂x1 3∂η7 8 4 3 4

9 0 9 0 max min

Matching Eq.(5.21) and Eq.(5.20) for arbitrary Fmax, F ′ and F ′ yields
max min

the boundary conditions for the pdf integrals across the flow

* *N P L 0 as η L ηmin (5.22)

* *N P L 0 as η L ηmax (5.23)

∂ & * **
----------- N P L 0 as η L ηmax (5.24)∂η7 8

If we assume that ηmax is a function of x1, the revised version of
62Eq.(5.24) includes some additional terms . Since F(ηmin)=0 Eq.(5.21) does

* *not specify the boundary conditions for the derivative of N P at ηLηmin.

Considering smooth pdfs with constant bounds, one might expect that

Eq.(2.61) can be generalized for the integrals across the flow to yield
* *∂(N P )/∂η L 0 as ηLηmin. This equation is not valid, however, because of

the reasons discussed above: Equations (5.17) and (5.18) yield
* *N P ~(η-ηmin) as ηLηmin and the derivative has a finite value.
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5.4.3 Summary of the boundary conditions
* *The boundary condition N P L 0 as η tends to its limiting values

ηmin and ηmax are valid for all cases considered in this section.

Integration across the flow may, however, change the rate how the product
* *N P tends to zero. Thus, certain care is required when the asymptote of

the product NηP(η) is integrated across the flow.
* *The asymptotical behavior of N and P must be taken into account

when the integration of P(η) across the flow is conducted numerically.

Practically, intermittent pdfs are safer to use since for these pdfs it is

easier to perform integration across the flow. The correct treatment of

the boundary conditions is important also for preserving the conservation

integrals.

5.5. Conservation Integrals

The integral form of the CMC equation for shear flows, Eq.
*(5.13), preserves conservation integrals provided that the values of N

*and P used are consistent with Eq.(5.12). The CMC equation should be

always used in conjunction with its adjoint equation, given here by the

integral pdf equation (5.12). The conservation integrals across the flow

are finite provided Q(ηmin)=0 where ξLηmin as RL∞. If we consider the case

of intermittent pdfs, we also require that Q(ηmax)=0 to avoid the

transport of the reactive scalar Y from the non-turbulent region at

η=ηmax. It is apparent that these integrals will not be finite for species

with Y non-zero in the outer flow. This does not restrict our
°consideration of them since we always can introduce a new scalar Y and

°its conditional expectation Q similar that used in Eq.(4.14). Integrating

Eq.(5.11) between the limits ηmin+ε and ηmax-ε and letting ε tend to zero

we obtain

( ) ( ) max max∂ # ∂ & * * *$ # * * ∂Q$
-------------- {<v1ρY>} - {<ρW>} = Q ----------- N P ρη + N P ρη[------------- = 0 (5.25)∂x1 3 ∂η7 84 3 ∂η4

9 0 9 0 min min

We have used the boundary conditions given in Eqs.(5.19), (5.22) and

(5.23). It is required that [Q]min=Q(ηmin)=0 and also, for intermittent

pdfs, that [Q]max=Q(ηmax)=0. This specifies the boundary conditions for
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the limits of Q at ηLηm. These conditions are quite obvious. For smooth

pdfs the boundary condition for Q at ηLηmax is not determined. According
*to the analysis of Sec.4.5.2 (note that [N ]max=0), this boundary

condition is given by

# * ∂Q $U [-----------------] - W(Q) = 0 (5.26)
3 ∂ x 1 4

max

5.5.1. Errors arising from inconsistent scalar dissipation

It has been emphasised that the conditional scalar dissipation used

in solving Eq.(5.13) must be fully consistent with that which satisfies

Eq.(5.12) for a given pdf field. If this is not the case then the

conservation integrals will not be satisfied. We seek here to quantify

the errors involved. The results parallel those for the general case

given in Section 4.2.3.
*Let us assume that the value of N actually used in Eq.(5.13) is

* * *N +ΔN where N is the value that satisfies Eq.(5.12). It is easy to show

that Eq.(5.25) then becomes

ηmax
( ) ( ) 2∂ i * * ∂ Q0, i *

-------------- {<v1ρYi>} - {<ρWi>} = ρη ΔN(η) P [------------------------] dη ≡ EN (5.27)∂x1 j 2
9 0 9 0 ∂ηηmin

*We will call the error, EN, the "integrated false chemistry source term".

This is because it is evident that weighting Eq. (5.27) by suitable

coefficients, μi, and summing over appropriate species to form a conserved

scalar, η*, will eliminate this term if the aforesaid boundary conditions

are satisfied. This is because all such conserved scalars should be

initially (i.e. at the upstream start of the calculation) linear functions

of η and will then accordingly remain so, since

ηmax ηmax
2 2

* i * * ∂ Q0, i i * * ∂ η*EN = μi ρη ΔN(η) P [------------------------]dη = ρη ΔN(η) P [-----------------]dη = 0 (5.28)
j 2 j 2∂η ∂ηηmin ηmin

where ξ* ≡ μiYi, η* ≡ <ξ*|η> = μiQ0,i, ρμiWi = 0 and sum is taken over
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repeated indices.

At high Damkohler number, the mass fractions of reactant and product

species tend to be linear functions of η outside of a narrow reaction zone

centred at η = ηs. For such species the error due to the false chemistry
*term, EN, is readily shown to be

+
* & * ** # ∂Q 0$EN = ρη ΔN P [-------------] (5.29)

7 8 3 ∂η 4ηs -

where the subscripts "+" and "-" signify evaluation of the slope at values

of η greater and less than ηs. For intermediate and radical species,

similar formulae can be derived if their dependence of Q0 on η is treated

piecewise linearly. Alternatively, the error can be evaluated from

Eq.(5.27)

For the enthalpy there will result a similar integrated false

radiation loss term

ηmax
2

* i * * ∂ Q0,hEN,h = ρη ΔN P [----------------------------] dη (5.30)
j 2∂ηηmin

5.6. Evaluation of the Conditional Scalar Dissipation

In this section we consider evaluation of the conditional average
*scalar dissipation integrated across the flow, N , as defined in

Eq.(5.10). For the stationary slender layer flows under consideration
*here, N can in principle be evaluated from the pdf transport equation,

integrated across the flow, Eq.(5.12). Using the boundary conditions for
* *N P at η = 0 and 1 as set out in Section 5.4, Eq.(5.12) may be integrated

by parts to yield

1
# $

* * ∂ i * *ρηN P = [----------]| ρηU P (η′)(η-η′)dη′ | =∂x j
3 4η
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1
& ~ *∂ ------~ i= ----------] {ρu P(η′,r)(η-η′)dη′} (5.31)∂x j
7 8η

~where the second version involves working with the Favre pdf, P(η),

defined in Eq.(4.4). For combusting flows density-weighted or Favre

averaging is usually used and the first and second moments of the mixture
~ ~ 2fraction, ξ and (ξ″) , are solved for in the mixing calculation. A

~ ~presumed form for P(η) is assumed so that P(η) can be evaluated at each

point across the flow and Eq.(5.31) is evaluated numerically. It should be

noted that the approximation of setting the conditional average axial

velocity component to the unconditional Favre average axial velocity
~component u = <ρv1>/<ρ> has been used - an assumption equivalent to that

*made in Eq. (5.9). We shall call evaluation of N from Eq.(5.31) the

direct method. In practice the inaccuracies in numerical integration and

differentiation can lead to significant errors, even to the extent that

unphysical negative values are obtained. It is evident that more robust

methods are needed.

For flows without heat release, self-similar mixing fields are

possible such as in the classical mixing layer, scalar mixing layer, jets

and small deficit wakes. For these flows, self similar-solutions for the
*conditional dissipation, N , result and can be evaluated without

approximation from experimental data on the pdfs. These results are of

general interest since they give examples of the effects of flow geometry
*on the form of N and allow general solutions of the CMC equation to be

obtained for various forms of the chemical source term. In the following

sections general considerations are given for self-similar flows, and

these are further simplified for jets and small-deficit wakes. Results

are then obtained for the small-deficit wake, using the experimental data
74for pdfs of LaRue and Libby .

In combustion a flow of particular interest is the turbulent jet

diffusion flame. This flow is not self similar owing to the heat release,

and often, also, due to the presence of a co-flow and/or buoyancy. A

robust method is needed for these flows. A method based on the assumption

of local self-similarity appears to be robust and accurate. It is

presented in Section 5.6.3.

In Section 5.6.4 we comment briefly on other methods for obtaining
*N .

5-13



5.6.1. Results for self-similar flows

* *In this section we consider some examples of the functions P and N
62which are consistent with Eq.(5.12), and following Klimenko et al , we

* * *concentrate on self-similar solutions. The integrals P , U and N are

functions of x1 and η. Self-similarity in the flows of interest ensures

that they can be scaled to be functions of just a normalized conserved
^scalar variable η≡η/(ηc-ηmin) where ηc is a characteristic value for the

scalar η at a particular x1. Furthermore, power-law scaling can be

expected so that

-βηηc ≡ ηRX

* ^ ^ -βuU = URU(η) X

* 2 ^ ^ -βNN = (URηR/lR)N(η) X

* r ^ ^ βpP = lRP(η) X /ηc

where X≡x1/lR,and UR, lR and ηR are reference values for velocity, length

and the scalar chosen for each particular flow. For two-dimensional

(planar) flows r=1, while for three-dimensional (axisymmetric) flows r=2.
^ ^ ^ ^The functions U, N and P are non-dimensional functions of η but not of X.

Substituting the self-similar forms into equation (5.12) we obtain

2d d
°^ ^ &^ ^ ^* &^ ^*λ UP + βη----------- ηUP + ----------- NP = 0 (5.32)^7 8 ^ 27 8dη dη

with
°βN=βu+2βη+1 ; λ ≡βp-βu

Values of βN, βu, βp, βη can be determined for each particular type of

flow and some examples are shown in Table 1. For homogeneous turbulence,
^wakes and scalar mixing layers, the value of U is a constant. The

self-similar solution for P(η) and <N|η> in homogeneous turbulence
119suggested by Sinai and Yakhot is included in (5.32) as a special case
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°λ =0.

Turbulent jets and wakes with ηmin=0 are now considered further. Let
^ ^ ^ ^us integrate (5.32) over η between the limits η>ηminand ηmax (the bounds

which correspond to ηmin and ηmax). We have

η̂m a x

i ^ ^ ^° ^ ^ ^ 1 d &^ ^*λ UPdη - ηUP -[---------- ----------- NP = 0 (5.33)
j βη ^7 8dη
η̂

° ^where λ≡λ /βη Note that in self-similar flows the variable η must be
^ ^chosen so that ηmin=0 and ηmax is either infinite or dependent on X. If

^ ^ηmax=∞, the integration constant has zero value, as the function P tends
^ ^exponentially to zero at ηL∞. In the case of a finite value of ηmax

62 ^Eq.(5.33) is still valid . Further integration between the limits η and
^ ^ ^ ^ ^ηmax, taking into account the boundary condition NPL0 at ηLηmax in

Eq.(5.23) yields

η̂m a x
^ ^NP i& ^ ^°*^ ^° ^ ^° ^°------------------- = λη + (1-λ)η U(η )P(η )dη (5.34)

j7 8β η
η̂

^The evident inequality P≥0 leads us to the conclusion that the boundary
^ ^ ^ ^condition NPL0 at ηLηmax=0 in Eq.(5.22) can be satisfied only if λ=1. This

is an eigenvalue of the problem under consideration and it is in agreement

with Table 1. Equation (5.34) takes the form

η̂m a x
^ ^NP ^i ^ ^° ^ ^° ^°------------------- = η U(η )P(η )dη (5.35)

jβ η
η̂

* *This method of obtaining N in terms of P has direct application for CMC
^ ^ ^modeling. The direct problem (that is expressing P in terms of N and U)

also has an analytical solution in this case
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η̂ ^ ^°^ U(η )^ ^ η & i^° ^°*P(η) = const ----------------------- exp -βη η ---------------------------]dη (5.36)^ ^ 7 j ^ ^° 8N (η) N(η )0

The structure of equation (5.36) has some similarities with the pdf
119solutions suggested by Sinai and Yakhot and with Eq.(5.2).

5.6.2. Results for the planar wake

Figure 11 shows results for the pdf’s in the wake of a heated circular
74cylinder as obtained by LaRue and Libby . The pdf’s have been scaled so

^that η≡ΔT/ΔTc, where ΔT is the temperature increase above that of the

external flow and ΔTc is the mean temperature excess on the centerline (it
74is assumed that Δh=CpΔT, Cp=const). The data are shown here with the

intermittent spike associated with uncontaminated external fluid omitted.

This has been subtracted according to the method of Bilger, Antonia and
15 ^° ^Sreenivasan . The symbol P (η) is used to indicate that these are the

pdf’s at a point in the wake and not those integrated across the wake as

in Eq. (5.10). The pdf’s are shown at various distances from the

centerline y normalized by the length scale for the width of the wake
1/2lc≡(xd0) where x is stream-wise distance.

^ ^Figure 12 shows values of P(η) obtained by integrating the data of

Fig. 11 across the flow. Here r=1 so that Eq.(5.10) takes the form

1/2 ∞( x d0)* 1/2 ^ ^ i ^° ^P =(xd0) P(η)/ΔTc = 2[-----------------------------------] P (η)d(y/lc) (5.37)
jΔTc 0

The reference length of the flow has been chosen as the cylinder

diameter lR=d0 although there are arguments to say that it should be CDd0,

where CD is the drag coefficient of the cylinder. The other reference

values are taken as ηR=lcΔTc/d0 and UR=Ue. It is seen that there is a peak
^ ^in P(η) for values of the scalar just less than the mean on the

centerline. A further peak is associated with fluid that is close to the

scalar value of the external flow.

*For scalars other than temperature P can be evaluated by replacing
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ΔTc by the mean value of the scalar on the centerline (zero in external
^ ^ ^ ^flow). Figure 13 shows values of N(η) obtained by integration of the P(η)

of Fig. 12 using Eq.(5.35). Since for this flow βN=2 and βη=1/2 we have

* Ue 2^ ^N = [-----------](ΔTc) N(η) (5.38)x

Once again this may be evaluated for wakes of scalars other than

temperature by using the mean value of the scalar on the centerline (zero
-1/2in external flow) in place of ΔTc. With the x dependence of this

* -2centerline mean it is seen that N ~x in a planar wake as indicated in
^ ^ *Table 1. The shape of N(η) is interesting. It indicates that N is highest

for material that has a scalar value of about half of the mean centerline

value and that material of low scalar values or high scalar values has
*much smaller N . This is consistent with the notion that material near the

extremes of concentration must have low gradients so that the bounds are

not exceeded. This is unlike the result in homogeneous turbulence with a

linear mean scalar profile where the point values of <N|η> are lowest near
45,146η equals mean and rise away from this local mean . When these <N|η>

* ^ ^profiles are integrated across the flow to give N and N(η), however, the
^result will be a much less pronounced dependence on η. It is noted that

the two-dimensional wake will not be self-similar if there is heat release

and these results will not apply directly to such a case. They do,
*however, give an indication of the form that can be expected for the N

*and P profiles in cases with heat release.

5.6.3. Method for local self similarity in jet flames

69Kronenburg et al have considered the evaluation of the scalar

dissipation from Eq.(5.31) for jet flames. They introduce a scaled value
^ ~ ~of η, η = η/ξc where ξc is the Favre averaged value of the mixture

fraction on the centreline. They show that Eq.(5.31) may be rewritten as

1
( ) ~ & *

* * ------ ~ ∂ln(ξc) ------~ i~ ° °ρηN P = {ρNηPη} = - ------------------------------- {ρuη P(η )dη } +∂x j
9 0 7 8η
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~ - 1
p ξ cp & *∂ p ------~~ i ~ ^° ^ ^° ^°+ ----------]p {ρuξc P(η )(η-η )dη } (5.39)∂x p^ j
pη 7 8

η̂

~ ^° ^In this equation P(η ) is the Favre pdf scaled to η and evaluated at the
^°dummy value η . There is no approximation involved in Eq.(5.39). In the

~region well downstream of the nozzle, ξc << 1 and there is no contribution

to the pdf integral in the second term on the right hand side from values
^° ~of η near 1/ξc. Under these conditions this last term on the RHS will be

69zero if the flow is locally self similar. This can easily be shown by

scaling the radial profiles by their centerline values and the jet half

radius: the double integration over the flow and in scaled mixture

fraction space is then for x independent functions and so this double

integral can be taken outside the x derivative. The combination of scaling

values left inside the x derivative is proportional to the total flux of

mean mixture fraction and this is essentially constant since mixture

fraction is conserved and the contribution to the total flux of the term

involving the axial turbulent flux has already been neglected (see Eqs

(5.31), (5.9) and (4.5)).

Neglecting the second term on the RHS of Eq.(5.39) gives

1
( ) ~ & *

* * ------ ~ ∂ln(ξc) ------~ i~ ° °ρηN P = {ρNηPη} = - ------------------------------- {ρuη P(η )dη } (5.40)∂x j
9 0 7 8η

*We shall call the evaluation of N using this equation the quasi-self
*similarity method. It is seen that positive values of N are guaranteed

since the mean mixture fraction on the centerline falls with increasing x.

Furthermore, the pdf integral will be easy to evaluate well downstream of

the nozzle, as there will be no peak near η = 1.
69Kronenburg et al have evaluated the accuracy of this quasi-self

similarity method for modeling a turbulent jet diffusion flame of hydrogen

in air. They find that the method is accurate for x/dj > 30, where dj is

the nozzle jet diameter. Beyond x/dj = 120 the error begins to rise and

accuracy can be improved by evaluating the second term in Eq.(5.39) as a

correction term. For x/dj < 30, the quasi-self similarity method was found

to give results at least as good as those obtainable with the direct

method.
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5.6.4. Other methods

124Smith et al modeled a turbulent jet diffusion flame of hydrogen in
*air. For N they used a locally homogeneous flow assumption essentially

41incorporating the method developed for homogeneous flows by Girimaji .
121Further details may be found in Smith . The method is robust, always

*giving positive values of N , and the errors involved are probably quite

minor for the flow studied.
*Problems involved in evaluating N by the direct method of Eq.(5.31)

can be severe when using the Beta function as the presumed form for the
69mixture fraction pdf, Eq.(1.5). Kronenburg et al use a logarithmic

transformation of the mixture fraction suggested by Swaminathan and find

that the numerical integrations involved are more robust. Unphysical
*negative values of N are still sometimes found, however.

Direct experimental measurement of conditionally averaged scalar

dissipation has been made in homogeneous turbulence with a mean scalar
45gradient by Jayesh and Warhaft and in other uniform density shear flows

49 92by Kailsanath, et al and Mi et al . Values of N(η) are reported for
128 *various positions in the flows. Starner et al report measurements of N

as a function of mixture fraction in a turbulent jet diffusion flame of

air-diluted methane. Their results are shown in Fig. 14 for x/dj = 25 at

four different jet Reynolds numbers obtained by varying the jet velocity.
~The Favre average mixture fraction on the centreline, ξc, for these data

are close to 0.69 for the two lower Reynolds numbers and to 0.63 at the

two higher Reynolds numbers. The results do not show the expected
*increase of N with jet velocity, possibly due to the effect of the coflow

*on spreading rates. The results show a much slower increase of N with η
near η = 0 than is shown for the uniform density wake data in Fig. 13 The

sudden peaks in the range η = 0.65 - 0.85 possibly arise from low number

statistics on the jet centerline.
*It may be feasible to use such experimental data to relate N to the

unconditional dissipation <N> integrated in some way across the flow. It

is not clear at this stage whether this sort of modelling would preserve

consistency with the pdf transport equation. The errors in Q may,

however, be small and worth the reduction in computational effort required
*to evaluate N from Eq.(5.31) or approximations to it.
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5.7. Corrections of Higher Order

Equations (5.3) and (5.13) are approximations which effectively use

the properties of turbulent shear flows. We may need, in some cases, to

assess the practical precision of these approximations. For this purpose,
60Klimenko and Bilger found the equation for the next term Q+≡εQ1 in

expansion (5.1). In general, this term is expected to be small. The

derivation of these corrections requires many steps and is not given here.

We present only the main results obtained in Ref. 60 This section can be

omitted at first reading. The main idea of the derivation is to retain the

terms of the next order in Eq.(5.8) and evaluate them using the asymptotic

expansions. The final equation for the corrections is given by

2
* ∂Q+ * ∂ Q+U -----------------] - N [-----------------------] =

2∂ x 1 ∂η

& 2 *2 ∂ **& ** ∂Q0 ** ∂ Q0 *= [---------------------------------------] -----------|P U ----------------- - N [----------------------- - W(η,Q0) | (5.41)
* 7 2 8P (1+αt) ∂η7 ∂ x 1 ∂η 8

where

( ) ( )
{<ξ><v 1 |η>P(η)} {<ξ><N|η>P(η)}

( )
** ** 9 0 ** 9 0P ≡ {<ξ>P(η)}; U ≡ [-------------------------------------------------------------------------------------]; N ≡ [--------------------------------------------------------------------------------]

( ) ( )
9 0

{<ξ>P (η ) } {<ξ>P (η)}
9 0 9 0

and Q0 satisfies Eq.(5.13). It is assumed in Eq.(5.41) that the

conditional flux is approximated by the diffusion approximation
2<v″Y″|η>=-Dt∂Q/∂x2, and that the value αt ≡ Dt(∂<ξ>/∂y) /<N> is assumed to

2

be constant for the purpose of this estimation. It is easy to see that if
** * ** *<v1|η> and <N|η> do not depend on x2 and x3 then U = U , N = N and the

term on the right-hand side of Eq.(5.41) is zero. In this case, the

solution of Eq.(5.41) with the boundary conditions Q+(ηmin)=0 and

Q+(ηmax)=0 is Q+=0. No correction is needed. If <v1|η> and <N|η> depend on

x2 then the term on the right-hand side of Eq.(5.41) is non-zero. Such

non-zero values of Q+ indicate certain error in the CMC shear flow
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equation. It is expected that, under normal conditions, the value of Q+ is

much smaller than Q0.
3Recent data in turbulent jet flames indicate that small variations

occur in the conditional averages of temperature and species mass

fractions across the flow. These variations should be predictable by the

term in Q2 in Eq.(5.1). At this stage, the investigation of the variations

of Q across the flow are not completed, but some progress with it is given

in Ref 60

5.8. Results for Some CMC Predictions

In this section we review some applications of CMC to turbulent shear

flows and other turbulent slender layer flows for which the methods of

Section 5 are applicable. In most cases the calculations have not been

carried out using the full rigour for the calculation of the conditional

scalar dissipation recommended here. Even so the predictions made show

generally good agreement with experimental data.

5.8.1. Reacting scalar mixing layer

Figure 15 shows a schematic of a reacting scalar mixing layer as used
16in the experiments of Bilger et al . Upstream of the turbulence grid the

streams are separated by a splitter plate and contain small amounts of

nitric oxide (stream 1) and ozone (stream 2) uniformly mixed in air. The

concentrations used were of the order of 1 part per million (ppm) on a

molar basis and so the heat release and associated density change are

negligible. For these reactants the rate of reaction is proportional to

the product of the reactant concentrations with the rate constant being
-1 -1 o0.37 ppm s at 20 C. Downstream of the grid the mean velocity U = <v1>

is uniform and constant and the turbulence is decaying, somewhat

anisotropic and uniform in its standard deviations in the cross-stream

(x2,x3) directions. Mixing of the two streams is confined to a narrow but

growing region in the x2 direction, with a characteristic thickness

l2=l2(x1) which is defined as the distance between the x2 coordinates

where the mean mixture fraction is 0.1 and 0.9. Values of l2/x1 ~ 0.3 in
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the region where measurements were made but dl2/dx1 is much lower than

this.

Figure 16 shows measurements of the conditional average Q1 = <Y1|η>

normalised by the unmixed value Y1,1 at various positions across the

layer. It is seen that in accord with the asymptotic analysis of Section

5.1, there is no significant dependence of Q1(η) on x2.

CMC modeling of the reacting scalar mixing layer has been carried
12out using somewhat crude assumptions about the conditional average of

*the scalar dissipation which amount to taking N in Eq. (5.13) independent

of η

*N = AU/x1

where A ~ 0.04 is a constant for this flow. Since there is no variation

in the mean streamwise velocity we have

*U = U

Normalization of the reactant mass fractions, Yi,

Yi
Q̂i = ----------------------------------------------------------------------------------------------]

Mi(Y1,1/M 1 + Y2,2/M2 )

where Mi is the molecular weight of species i, leads to the relation

^ ^Q2 = Q1 - η + ηs

and the normalized CMC equation

^ 2 ^∂Q1 ^ &^ * 1 ^-1 ∂ Q1[-----------------] = Q1 Q1 - η + ηs + [----]A x1 [----------------------] (5.42)^ 7 8 2 ^ 2∂ x 1 ∂ x 1

Here

Y2 , 2
ηs ≡ -------------------------------------------------------------------------------------------------]

M2(Y1,1/M 1 + Y2,2/M2 )

is the stoichiometric mixture fraction and
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x̂1 ≡ NDx1/M

where M is the mesh size of the turbulence generating grid and ND is a

Damkohler number defined

ND ≡ kMa(Y1/M1,1 + Y2/M2,2)M/U

Here Ma is the molecular weight of air and k is the rate constant.
^Eq.(5.42) has only two parameters, A and ηs and Q1 is a function of the

^ ^two independent variables x1 and η. Boundary conditions for Q1 were

taken as

^ ^Q1 = η(1 - ηs), at x1 = 0;

Q̂1 = 0, for η = 0;

and

Q̂1 = 1 - ηs, for η = 1.

Eq. (5.42) is readily integrated numerically. Figure 17 shows
^solutions obtained for A = 0.06 and ηs = 0.5. Solutions at x1 = 0 and ∞

correspond to the frozen and fast chemistry limits as discussed in Section

4.3. It is seen that the solutions always lie between these two limits

and that the fast chemistry limit is approached for high Damkohler numbers

and large distance downstream from the turbulence generating grid. At the

fast chemistry limit the solution is bilinear with the break point on the

η axis at η = ηs. Variation of the parameter ηs varies the solutions

accordingly.

The effect of the parameter A is shown in Fig. 18 where solutions for
^η = 0.5 are shown as a function of x1. A = 0 corresponds to the so-called

reaction-dominated limit obtained by neglecting the mixing term in Eq.

(5.13). At this limit there is a balance between the convective and

reactive terms in Eq. (5.13). It is seen that A = 0.03 gives a very good
16 *fit to the experimental data . This corresponds to N being equal to the

unconditional dissipation on the flow centreline estimated for this

experiment. On this basis, data from other scalar mixing layers gives

values of A as high as 0.06. It is seen that at realistic values of A the

results are substantially above that for the reaction-dominated limit. In

5-23



fact all three terms in Eq. (5.42) are of the same order for realistic

values of A.
16 ^With A = 0.03 it was stated that the solution of Eq. (5.42) at x1 =

8.9 if plotted on Fig. 16 would accurately pass through the data points
*shown. In the light of error estimates for N made in Section 5.4.3, this

seems a little surprising since no allowance was made in the predictions
* 76for the dependence of N on η. Li and Bilger carried out calculations

with a model for the scalar dissipation which incorporated a realistic

dependence of <N|η> on η and found only small variations in the results.

5.8.2. Turbulent jet diffusion flames

CMC predictions for kinetically limited combustion including radicals
69,121,123,124,125and NO formation have been carried out for turbulent jet

diffusion flames of hydrogen in air for the conditions of the scalar
2,3measurements of Barlow and Carter . Velocity measurements are also

38 125available for these conditions . CMC predictions have also been made
2,3 121for the helium-diluted hydrogen flames of Barlow and Carter and also

33for the H2-CO flame of Drake . In general the predictions agree well with

experiment. We shall present in some detail the methods and results of
124 69Smith et al , supplemented by some recent calculations , and then make

brief summaries of the results obtained in other studies.
124Smith et al solve Eq. (5.13) for species using a first-order

closure for the conditional reaction rate (Eq. 3.36) using both a "full"

mechanism (employing 8 species and 21 reactions for H2 oxidation and a

further 4 species and 5 reactions for NO formation kinetics) and a

two-step reduced mechanism that assumes partial equilibrium for the main

radicals and steady state for N atom. An equation for the conditional

average enthalpy, similar in form to Eq. (5.13) was solved using a first

order closure for the radiation source term. The instantaneous source term
72was assumed to be given by the model of Kuznetsov and Sabelnikov , see

Eq. (3.33):

4 4WR = - 4σoβH2OpH2O(T - Tb) (5.43)

with the emissivity function, βH2O, being given by
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-1 -1βH2O = 2.0E-05 - 6.4E-09 T (Pa m ) (5.44)

where T is temperature in Kelvin, subscript b refers to the background

value, pH2O is the partial pressure of H2O in atm., and σo is the Stefan

Boltzman constant. The kinetics and thermodynamic properties were handled
50using standard CHEMKIN II subroutines and conditional average

temperature was obtained from the conditional average enthalpy and

composition using these algorithms, that is, by neglecting any

contribution from conditional fluctuations. Use of this conditional

average temperature to obtain the conditional average radiation source

term by first-order closure as is done for the chemical source term in

Eq.(3.36) involves neglect of the conditional fluctuations in the

temperature. At first sight this seems to be problematical due to the

fourth-power dependence evident in Eq.(5,43). This was found to be

compensated in large measure by the temperature effects on the emissivity

given in Eq.(5.44), as is explained below.

The CMC equations were solved in parallel with a computational fluid
~dynamics (CFD) solution for the Favre-averaged velocity and mean, ξ, and

~~~~~
2variance, (ξ″ ) of the mixture fraction. A Reynolds stress turbulence

model was used and a parabolic-like equation solver used to step the

calculation in the x1 direction. The CFD code passed information on the
* *velocity and mixture fraction to the CMC subroutine where U and N were

43evaluated and Eq. (5.13) integrated using an LSODE solver for stiff

ordinary differential equations. This solver has its own step-size

control and in general many sub steps are taken in the CMC routine for

each step taken in the CFD calculation. The CMC subroutine returns the

conditional average density, ρη, to the CFD code where it is used to

calculate the unconditional average density, <ρ> at each point across the
~~~~~~ 2flow by weighting with the local pdf evaluated from ξ and (ξ″ ) assuming a

beta function form for the pdf. It is noted that since the pdf derived

from the Favre-averaged moments of the mixture fraction is a Favre pdf,
~P(η), the mean density must be obtained from

- 1
& *
i - 1 ~<ρ> = | ρη P(η) dη | (5.45)
j
7 8

The CFD code used 50 radial node points and the CMC code 50 in mixture
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fraction space, a much closer spacing being used around stoichiometric, η
= ηs = 0.0285.

Boundary conditions for the flow were those of the experiment: a jet

diameter of 3.75mm, average jet velocity of 300m/s with a profile and

turbulence kinetic energy for fully developed pipe flow at the Reynolds

number of 10,000, a coflow velocity of 1.0m/s with a turbulence level

estimated at 5%. For the CMC calculation the composition is that of air

(23% O2, balance N2 by mass fraction) at η = 0 and pure hydrogen at η = 1.

Ignition of the flow is assured by assuming that the composition is that

for adiabatic equilibrium for the first 5 diameters: results downstream

were found to be insensitive to the axial location where this transition

occurs. (Blowoff occurs if it is taken too far upstream.)

At preset intervals in x1 the code writes out the dependent variables from

both the CFD and CMC parts of the code together with unconditional

averages (conventional and Favre) of the species and temperature at

selected points across the flow. These are evaluated from

1

~ i ~Y = Q(η) P(η) dη (5.46)
j
0

1
------ ( )

i ~Y = <ρ> {Q(η)/ρη} P(η) dη (5.47)
j
9 0

0

with similar equations applying to temperature. (Conditional average

temperature is obtained from the conditional averages for enthalpy and

species via the CHEMKIN II subroutine: it is recognised that this is not

exact due to the nonlinearity involved, but the errors estimated from the

conditional fluctuation levels present in the experimental data are less

than 1%.) The code also puts out profiles of the velocity and turbulence

field and integral checks for momentum and flow rate of mixture fraction.

Of first interest in the results, always, is the quality of the

prediction of the velocity and mixing fields. Since this flame is close

to equilibrium and mean density is the only coupling that occurs from the

CMC that can affect the CFD, one can expect that any deficiencies arise

from inadequacies in the turbulence model. Comparisons for the flow field
~are not available. A "flame length" to stoichiometric (where ξ on the axis
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equals ηs) of 163 diameters was predicted. The experimenters quote a

visible flame length of 180 diameters, but a flame length to
2,3stoichiometric of 128 diameters can be inferred from their data on

Favre averaged mixture fraction. Thus the turbulence model underpredicts

the rate of mixing. This should be kept in mind when the predictions for

reactive species are being considered.

Comparisons for the reactive species are best made in terms of the

predictions versus measurements for the conditional averages plotted

against mixture fraction. This is because inadequacies in the CFD

predictions will have less effect on the conditional averages than will

appear in unconditional averages plotted against radius since these will

be strongly affected by errors in the prediction of the mean and variance

of the mixture fraction. In general the predictions are excellent for the

major species and the OH radical. We will focus first on the most

difficult species to predict: nitric oxide, NO. Figure 19 shows

predictions for the conditional average of NO compared with the

experimental data at x1/lf = 0.5 and 1.0, where lf is the inferred visible

flame length in each case. Such comparisons are better than comparisons at

the same values of x1, since relative position in the flame is important.

It should be kept in mind, however, that the transit times are probably

longer in the predictions due to the longer flame length, although this

will be compensated to some extent by the velocities being higher. It is

seen that CMC gives good predictions in fuel rich mixtures in the middle

of the flame but overpredicts NO for lean and stoichiometric mixtures here

and at the end of the flame. Figure 20 shows predictions closer to the

nozzle. It is seen that NO is grossly underpredicted at lf/8 but the

tendency to overpredict has overtaken this trend by lf/4.

The CMC predictions of conditionally averaged temperature compared

with the laser measurements are very good near the end of the flame (not

shown here) being within about 30 K. Nearer the nozzle the temperatures

are significantly underpredicted as can be seen in Fig. 21 Temperature

predictions near the end of the flame are sensitive to radiant losses but

not to the kinetics or the model value for scalar dissipation: the fluid

there is close to equilibrium. Near the nozzle temperature predictions

are insensitive to radiation losses but are quite sensitive to the kinetic

rate constants for the three-body recombination reactions. Differential

diffusion effects are also probably significant. One might also expect

that near the nozzle the results would be sensitive to the conditional

5-27



average scalar dissipation, particularly as ηs is much lower than the mean
~ *ξ in the middle of the shear layer and hence the shape of N will be

particularly important. These effects are considered in more detail below.

The underprediction of temperature near the nozzle could explain the

underprediction of NO in this region. The activation temperature for the

controlling step in the formation mechanism is 38,100 K. This means that

both errors in the mean and temperature fluctuations (Eq. 3.38) will have

significant effects on the mean rate of formation of NO. At x1 = lf/8 the

peak conditional mean temperature is underpredicted by about 160 K in 2200

K (see Fig. 21): this will give a reaction rate which is low by a factor

of 4. Closer to the nozzle the error could be even larger. Figure 7 of
3Barlow and Carter indicates that the corresponding conditional rms of the

temperature fluctuations is about 100 K, and calibration measurements

indicate that little of this is shot noise associated with the low number

of Rayleigh photo-electrons gathered at high temperatures. Equation

(3.38) indicates that neglect of temperature fluctuations of this size

causes an underestimation of the reaction rate by a further factor of 1.3.

The correlation between T and O-atom fluctuations can be expected to

decrease this somewhat. In any event, it appears that the NO production

rate will be underpredicted by an amount more than sufficient to explain

the low predictions for NO concentration at x1 = lf/8.

Figure 22 shows the effect of radiation loss and main reaction

kinetics on the NO predictions. It is seen that an increase in the

radiation loss by about 25% would be needed to bring the NO down to

measured values without allowing for the residence time effect.

Fluctuations in temperature about the conditional mean could alter the

radiation loss from the first order closure used for Eqs (5.43), (5.44).

We have

2
& <T " ⏐η> <T " Y "H 2O|η> *<WR|η> ≈ WR(QT,QH2O) 1 + a1[------------------------------------] + a2[----------------------------------------------------------] (5.48)
7 2 QTQH 2O 8QT

where

a1 ≡ 2(3 - 5αQT)/(1 - αQT)

a2 ≡ (4 - 5αQT)/(1 - αQT)

and

α ≡ 3.2E-04
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For the measured temperature fluctuations these corrections are less than

one per cent, assuming that the rms/mean for the H2O fluctuations are of

the same order as the values measured for temperature.

The effects of the kinetic mechanism shown in Fig. 22 are

significant. The two-step reduced mechanism uses the same rates for the

recombination reactions but assumes that H-atom is given by the partial

equilibrium relation. This results in higher recombination rates being

predicted with higher temperatures and lower O-atom concentrations. The
124net result is higher predictions for NO. Smith et al also show

comparisons with a Monte-Carlo PDF calculation that used a two-step

kinetics model and adiabatic conditions. The predictions made for NO were

higher than for those from CMC but not by as much indicated in Fig. 22.
125Smith et al have studied this undiluted H2 flame and the

2,3helium-diluted flames of Barlow and Carter . The CFD code was tuned to

give the correct stoichiometric flame length. Much improved predictions

for NO and temperature are found for all three flames. The major cause of

improvement was inclusion of the water vapour present in the air stream, a

factor neglected in the earlier study.
69Kronenburg et al have investigated the effect of the modelling of

the conditional scalar dissipation on the results for the undiluted flame.

As expected the results in the near field are quite sensitive to the model
*used: NO predictions at x1 = lf/8 are nearly doubled when N is computed

directly from the pdf transport equation rather than using a simpler model
41based on Girmaji’s method for homogeneous turbulence. In the near field

there is a diffusive-reactive balance with the first term on the LHS of

Eq. (5.13) being much smaller. Downstream, where most of the NO is

produced, the convective and reactive terms are in balance and the results

at the end of the flame are insensitive to the model used for scalar

dissipation and even to artificial inreases in its magnitude. Kronenburg
69et al also found that increasing the rate constants for the

recombination reactions raised the predicted temperatures as expected. NO

predictions in the near field were unchanged, however, but were lowered

toward the end of the flame. It appears that the effects of reducing

O-atom levels dominate over the effects of increased temperature in the

far field but balance out in the near field. The standard rate constants

for the recombination reactions give the best predictions of OH levels

throughout the flame.

In summary, it appears that CMC predictions in the near field will be
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improved by improving the modelling of scalar dissipation, by

incorporating a second order closure for the effects of fluctuations on

the temperature, O-atom concentration and the NO formation rate, and by

modelling the effects of differential diffusion. Predictions in the far

field are now satisfactory and are not likely to be sensitive to these

refinements needed for the near field.
121Smith presents results of calculations for the H2-CO turbulent jet

33diffusion flame data of Drake . In general good agreement is obtained

although there is evidence of differential diffusion effects not
116incorporated in the modeling. Roomina also finds differential

diffusion effects to be significant in CMC predictions of jet flames of
116,117H2-CO2 mixtures and also methanol . Such effects are not found to be

116of great significance in computation of the partially premixed methane
4air diffusion flame of Barlow and Frank . Good predictions are found for

40all major species and temperature using the full GRI mechanism involving

49 species and 277 reactions. Predictions for OH are also very good. For

NO the predictions are somewhat high on the lean side but are very good

on the rich side where strong effects of the reburn kinetics for NO are

evident. These methane calculations took about 130 hours on a DEC 3000/400

work station. Shorter calculation times should be possible when

improvements have been made to the numerical methods used for solving the

stiff equations involved.

5.8.3. Round plumes in grid turbulence

Figure 23 shows schematically the set up for the experiments of Brown
23and Bilger for a reacting axisymmetric plume in grid turbulence. The

mean velocity of the flow is uniform and constant, while the turbulence

decays downstream. A point source of nitric oxide diluted to 515 ppm is

loated three grid mesh lengths downstream of the turbulence grid and

enters the flow with the same mean velocity. The main flow contains about

1 ppm of ozone. Here Γi≡Yi/Mi. The streams mix and react as they flow

downstream. Measurements were made at x1/M = 9 to 17 where the plume

spread is describable by turbulent diffusion. The plume width there is

less than 0.3x1 and so may be treated as a slender layer with the analysis

of Section 5.3 being applicable.

Conditional average statistics for this plume and CMC modelling for
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24,25the conditional mean values are presented in Brown and Bilger . It is

found that there is a small variation of the conditional averages across

the flow with a range of about ± 5% of the conditional mean of the NO

concentration. In the CMC modelling the conditional average scalar

dissipation was estimated from the experimental measurements of the

conserved scalar variance using the strategy of Section 5.2 assuming a

value of the time scale ratio (for decay of turbulence kinetic energy to

that for scalar variance) to be independent of radius. Values for η > <ξ>

on the centreline were computed from the centreline variance. Results for

a moderate Damkohler number case are shown in Fig. 24 Here Q i≡<Yi⏐η>. It

is seen that agreement is excellent. The reaction dominated limit shown is

obtained by setting <N⏐η> = 0. It was found that the predictions were

relatively insensitive to the values taken for <N|η> in the CMC equation:

changes by a factor of 2 only change the predictions by about 10%. This

means that the mixing term in Eq. (5.3) is less significant than the

convection term, particularly far downstream. In this flow the scalar

dissipation decreases with distance, x1, raised to the -3.6 power, almost as

strongly as it does in a jet.
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6. CMC FOR SIMPLIFIED TURBULENT REACTORS

Here we consider analogues of the Perfectly Stirred Reactor (PSR) and

the Plug Flow Reactor (PFR) for conditions under which the flow within the

reactor is incompletely mixed in terms of the mixture fraction. The first

of these is the Incompletely Stirred Reactor (ISR), an analogue of the

PSR, in which it is assumed that the conditional averages of the reactive

scalars are uniform within the reactor even though the mixture fraction

field is not. Its limiting case is a PSR with incompletely mixed inlets,

which is still in fact a PSR. The ISR may prove to be a useful model of

such reactors as the gas turbine primary zone in which strong

recirculation is present and the Damkohler numbers are moderate.

The second is the Dilution Flow Reactor (DFR) which is an analogue of

the Plug Flow Reactor (PFR): the reactive scalars are assumed to be

uniform across the flow, as found to leading order for turbulent slender

layer flows. The DFR may prove to be a useful model for the dilution zone

of a gas turbine combustor and for NOx reburn zones of furnaces.

In both cases it is emphasised that the conditions under which such

modelling will be valid are not yet clearly defined. It can be expected,

however, that these models will be more informative for such flows than

PSR and PFR models at a modest increase in computational cost. They may

prove to be useful for parametric studies.

6.1 The Incompletely Stirred Reactor

In this section we examine the application of CMC methods to a class

of flows that define what we shall term an Incompletely Stirred Reactor

(ISR). The ISR is a generalisation of the well-known Perfectly Stirred

Reactor (PSR). In the PSR low temperature reactants enter the reactor and

immediately mix with the reacting mixture within the reactor volume. The

composition and temperature within the PSR are uniform and are the same as

in the outlet flow. The PSR concept has been a useful one and has been

used as a preliminary design tool for combustors in which the conditions

of uniformity are, in fact, far from being realised. Generalisations of

the PSR which allow for incompleteness of the mixing within the reactor

should prove to be useful additions to the armory of the combustor

designer. The Partially Stirred Reactor (PaSR) concept has been developed
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29,30from the Monte-Carlo pdf method and has been applied to premixed and
28nonpremixed systems. Plausible predictions of NO and CO emissions and

extinction and ignition phenomena are obtained that show a dependence on

mixing rates that give insights beyond what is obtained from PSR

calculations. There is no direct link, however, between the mixing rates

assumed and the flow field that exists in the combustor. The ISR concept

provides such a link for nonpremixed systems and may prove to be useful

for these reasons.

As has been described in Section 5, great simplifications are

possible in slender layer flows where it is found that there is little

variation across the flow of conditional averages of the reactive scalars,

even though there are very strong variations in the mixing field as
2represented by the cross-stream profiles of <ξ>, <ξ′ > and P(η). This

idea is here generalised to strongly recirculating flows: if the

recirculation is strong enough and other flow characteristics are

appropriate, the conditional averages of the reactive scalars could be

essentially uniform within the reactor even though the mixing field
2represented by <ξ>, <ξ′ > and P(η) is far from uniform.

Figure 25 shows a schematic of an axisymmetric combustor which may be

a suitable candidate for ISR analysis of the recirculation zone. The

figure defines the cylindrical coordinate system (x,r). A central primary

jet of partially premixed fuel and air enters without swirl along the

combustor axis. A thin annulus of secondary air enters axially at high

velocity without swirl at a large distance from the centreline but not

quite at the wall of the combustor. Figures 26 - 28 show the mean

streamlines computed for the flow together with the Favre mean, f ≡
2<ρξ>/<ρ>, and Favre variance of the mixture fraction, g ≡ <ρξ" >/<ρ>,

where ξ" ≡ ξ-f. For the partial premixture chosen for the primary jet

stream, the stoichiometric value of the mixture fraction is ηs = 0.3.

These computations have been made using a standard k-epsilon model for the
94turbulence and using a fast chemistry assumption for the combustion . The

mean flow pattern shows three toroidal vortices, with the large downstream

one being of most interest to us. It is seen that the stoichiometric

contour of mean mixture fraction goes right through the middle of this

recirculation zone. Since most of the reactions of interest to us occur

near stoichiometric, it is evident that there is no obvious reason for

there to be strong spatial variations in conditional averages of

temperature and reactive species mass fractions for values of η near
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stoichiometric. It is also seen that the incoming primary fuel-air stream

mixes with combustion products, rather than with cold secondary air and

hence should not give rise to local premixing without ignition or to local

extinction events. Furthermore, the secondary air stream mixes with

recirculated combustion products rather than with cold fuel so that there

should be no unignited pockets of mixture as occur where a ported flame is

lifted and not stabilised right at the burner lip. Conditional variances

about the conditional mean for species and temperature, at any point in

the flow may not be so large as to make a first moment closure for the

conditional reaction rates greatly inaccurate. It is obvious that the

strong variations of mixture fraction, spatial and temporal, make this

combustor far from being a PSR. It is also evident that reaction will not

be confined to a thin flame front and laminar flamelet modelling for the
9,22combustion will not be valid . This is because the width of the

reaction zone in mixture fraction space is comparable with the rms

fluctuations in the mixture fraction.

ISR modelling is not generally applicable to all recirculating flows

and indeed may only be valid for a narrow range of tightly constrained

combustor designs. Even so, this class of combustors may have practical

significance. Like the simply supported beam, ISRs may find favour with

designers for the simple reason that they are easily analysable and that

combustor geometry and flow parameters are directly linked to performance

through CFD and CMC analysis.

Various versions of the ISR concept have been presented in
94,95,96,121,122Ref. . Here we present the formal definition of an ISR and

the derivation of its governing equations. We apply the method to the

combustor illustrated in Figs. 25-28 and discuss the validity of this

application and the effects of design and operating parameters on

combustor performance.

6.1.1. Definition and governing equations

We define an incompletely stirred reactor (ISR) to be a region of

flow, bounded within simple boundaries, within which the conditional

averages of temperature and species mass fractions show little spatial

variation and the conditional variances about these conditional averages

are small. Quantification of "little" and "small" in this definition is
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such as is necessary to allow a first or second order closure for the

conditional average reaction rate terms in the CMC equations. By "simple

boundaries" we mean inlet boundaries across which fluxes of species and

enthalpy are given, walls which are non-reactive and impervious to flow

and across which heat transfer is readily evaluated, and outlet boundaries

across which fluxes of enthalpy and mixture fraction are known, or

available from CFD calculations.

For clarity of presentation we restrict ourselves to statistically

stationary flow, although unsteady ISRs are also possible. We begin with

the CMC equation of Eq. (4.1) in the the statistically stationary form

&------ ~ * ------ ~div ρ<vY|η>P(η) = ρ<W|η>P(η)
7 8

2 ------ ~ 2∂ ρ<N|η>P(η) ------ ~ ∂ Q- ------------------------------------------------------------------]Q + ρη<N|η>P(η)[-------------------] (6.1)
2 2∂η ∂η

where the last term on the RHS of Eq. (4.1) has been differentiated

through and the conversion to Favre pdfs of Eq. (4.4) has been made.

Integrating this over the ISR or "core" volume, V, and using the flux

divergence theorem leads to

i ------ ~ i ------ ~ i ------ ~ρ<vY|η>P(η)⋅dA - ρ<vY|η>P(η)⋅dA = ρ<W|η>P(η) dV
j j j
Aout Ain V

2 ------ ~ 2
i ∂ ρ<N|η>P(η) i ------ ~ ∂ Q- ------------------------------------------------------------------]Q dV + ρ<N|η>P(η)[-------------------] dV (6.2)
j 2 j 2∂η ∂η
V V

In this equation conditional correlations between the species and velocity

have been ignored, it being assumed that they are small compared with the

mean convective flux. Since, according to the definition of the ISR, all

conditional reactive scalar statistics are uniform inside the core, they

can be moved outside the integrals. We use the definitions:

* 1 i ------ ~Pb ≡ [--------] ρ<v|η>P(η)⋅dA (6.3)⋅ jm Ab

** 1 i ------~P ≡[----------------------] ρP(η) dV (6.4)
* * jρ V V
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** 1 i ------ρ ≡[-------] ρ dV (6.5)
jV V

** 1 i ------~N ≡ [-------------------------------] ρP(η)<N|η>dV (6.6)
** * * jρ P V V

⋅where m is the mass flow rate through the reactor and subscript "b" refers

to inlet or outlet. Eq. (6.2) can then be written

* *Q Pout - QinP i n =

2 2 * * * *
& ** ** ** ∂ Q ∂ P N *= τr P <W|η> + P N [-------------------] - Q[-------------------------------------] (6.7)
7 2 2 8∂η ∂η

where the residence time τr is given by

** ⋅τr = ρ V/m (6.8)

According to the previous discussion we assume in Eq.(6.7) that 1) Q does

not have significant variations within the volume V so that Q can be

placed outside the integration sign and 2) the outlet value of the

conditional expectation Q coincides with the value Q within the volume V:

Qout=Q. Integrating the Favre form of the pdf transport equation (4.3) and

using the above definitions yields

2 * * * *
* * ∂ P NPout - P i n = -τr[-------------------------------------] (6.9)

2∂η

Subtracting Q times this from Eq.(6.7) yields

2
& * * & ** ** ** ∂ Q *Q- Qin P i n = τr P <W|η> + P N [-------------------] (6.10)
7 8 7 2 8∂η

**The volume weighted conditional scalar dissipation, N may be found by

double integration of Eq. (6.9) with respect to η

6-5



η η′
** 1 i i & * * *N = - [-----------------------] Pout(η″) - P i n(η″) dη″dη′ (6.11)

** j j 7 8τ rP 0 0

Use has been made of the boundary conditions of Eqs (2.61),(2.62) and

(2.68)-(2.71), with the stationary flow assumption.

Equations (6.10) and (6.11) are the ISR equations for generalised
*inlet conditions where P in has a broad distribution indicative of partial

premixing. In this case Qin is defined

1 i ------~Qin = ----------------] ρP(η)<vY|η>⋅dA (6.12)
* jP i n Ain

**With N obtained from Eq.(6.11), Eq. (6.10) is integrated with boundary

conditions at η = 0,1 given by the inlet values, Qin, at these bounds.

Of greater interest is the case when there are two inlet streams,
*each having uniform composition and enthalpy, so that P in is comprised of

two delta functions, one at η = 0 and the other at η = 1. In this case

the ISR equations reduce to

2
** ∂ QN [-------------------] + <W|η> = 0 (6.13)

2∂η

η
** 1 # i & * * $N = [-----------------------] (1-ξa)η - η - η′ Pout(η′) dη′ (6.14)

** 3 j 7 8 4τ rP 0

In Eq.(6.14) use has been made of integration by parts in reducing the

double integral to a single integral. Also ξa is the fully mixed value of

the mixture fraction for the inlet and outlet flows

1 1
i * i *ξa = η P i ndη = η Poutdη (6.15)
j j
0 0

For flows in which there is no conduction or convective heat transfer at

the walls an equation similar to Eq. (6.13) will apply for the conditional

average of the standardized enthalpy. The source term will now be the

conditionally averaged heat transfer gain by radiation. Extra terms will

be needed for inclusion of heat transfer by convection/conduction at the
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walls.

The boundary conditions to be used in solving Eq. (6.13) are

& *Q = Qin for η = 0
7 8η=0

& *Q = Qin for η = 1 (6.16)
7 8η=1

The inlet streams may be partially premixed (uniformly) mixtures of fuel

and air. They may even be reacting as long as the Qin values are taken at

the boundary assumed in evaluating the integrals of Eqs (6.3)-(6.6).

The ISR becomes a PSR in the limit of the mixing in the core becoming
** *so strong that both P and Pout become delta functions centred at ξa.

This can be shown by substituting Eq. (6.11) in Eq. (6.10) and integrating

over mixture fraction space. Integrating the second derivative of Q by

parts yields

1
i *Y - QinP i n dη = Wτr (6.17)
j
0

where Y is the species mass fraction that is uniform throughout the

reactor and equal to its outlet value; W is its rate of formation by

chemical reaction. If the inlet stream(s) are fully premixed we obtain

the usual PSR formula:

Y - Yin = Wτr

It is evident hat a PSR does not necessarily need to have its inlet flows

fully premixed. If the mixing within the reactor is strong enough the

essential features of the PSR are present and the slightly modified

formula of Eq. (6.17) applies.

6.1.2. Application

94Mobini has modelled the head end of the combustor of Fig. 25 as an

6-7



ISR, taking the outlet area to be the plane normal to the axis as defined

by x = xmax = 0.053m. From Fig. 26 this is seen as being at the end of

the recirculation zone. This seems an appropriate place, although

strictly the turbulent flux contribution to the outlet integral should be

included for points near the axis where the axial velocity is small. The

flow and mixing calculations shown in Figs 26–28 were made with a primary

fuel-air flow rate of 0.76 g/s at an equivalence ratio of 4 with methane

as the fuel and a secondary air flow rate of 4.3 g/s. Inlet flows were at

300K and the combustor pressure is 1.0 atm.
** *Figures 29 and 30 show the core, P , and outlet, Pout, pdfs and the

**core-averaged conditional scalar dissipation, N , computed from the CFD

output assuming that the mixture fraction Favre pdf at any point in the
**flow has a beta-function form. It is seen that the core pdf, P , is

quadrimodal with spikes at η = 0,1 associated with the potential cores of

the inlet jets, a peak at η ; 0.04 associated with the recirculation zone

at the outer corner, and a main peak at η ; 0.11 associated with the outer

flow near the combustor wall which has a high radius and relatively high
**density. These latter two peaks are responsible for the bumps in the N

**profile at these values of η. The N profile has a significantly

different shape to that found for laminar counterflow flames, with the

steep gradient near η = ηs = 0.3 being of possible advantage, as discussed

later.

The ISR equation (6.13) is identical to the equation solved for

laminar counterflow flames and is solved using a standard two point
51boundary value problem solver suitable for stiff equation systems . Note

** 94that the ISR determined values of N are used, however. Mobini has

obtained solutions using the full Miller-Bowman mechanism, including all

prompt kinetics for the NO. Solutions took approximately 2hrs on a 1995

vintage advanced work station (DEC Alpha 3000-700). Figure 31 shows the

prediction obtained for conditional average values of the mass fractions

of the major species, while Fig. 32 shows predictions for the

conditionally averaged temperature and mass fraction of nitric oxide. The

residence time obtained from the volume average of the unconditional mean

density was 8.6ms. The major species and temperature are similar to those

that would be obtained for a laminar flamelet calculation with the same

value of conditional scalar dissipation at stoichiometric, except that the

peak CO is somewhat higher. The peak conditional average temperature at

2000K is well above that at which local extinctions would be expected to
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occur. The conditional average nitric oxide mass fractions are somewhat

higher than would be desired for a rich-burn quick-quench combustor and

yield an average value at exit of 41ppm. Such average values at exit can
*easily obtained by weighting by Pout

1⋅
& * m i ,out i *<Yi> ≡ [----------------------------] = Qi(η)Pout dη (6.18)
7 8out ⋅ jm 0

.where mi,out is the mass flow rate of species i at the ISR exit.
*Figure 29 shows that Pout is quite narrow, so that this quadrature is easy

to estimate by eye. It is apparent that the NO levels could be decreased

by increasing the mass flow rates of the primary and secondary streams,

bringing the ISR residence time down and decreasing the peak temperature.

The pressure loss in the secondary air stream would become severe,

however, and the CO emissions from the ISR would increase. The latter

would perhaps not be too much of a problem as the CO will continue to burn

out in the flow downstream of the ISR while little further NO will be

produced. The flow downstream of the ISR essentially meets the criteria

for slender layer flows presented in Section 5 and the methods put forward

there could be used to predict further burn out of the CO using the

Dilution Flow Reactor model presented in section 6.2. Parametric studies

of the effect of residence time and other variables have been carried
94out , but for a different system.

Unconditional averages of temperature and species mass fraction can

be estimated at every point within the combustor by weighting the

predicted conditional averages by the local pdf, P(η;x,r), obtained from

the local values of the mean and variance of the mixture fraction and the

presumed form of the pdf. Favre averages or conventional averages can be
~obtained. Usually it is the Favre pdf P(η;x,r) that is available and so

the formulae are then

1
~ i ~Yi = Qi(η)P(η;x,r) dη (6.19)

j
0

1
------

------ i - 1 ~Yi = ρ(x,r) ρη Qi(η) P(η;x,r) dη (6.20)
j
0
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94with similar formulae applying for temperature. Mobini gives contour

plots for several species and temperature obtained in this way.

Parametric studies can be made for ISRs with differing characteristics
**without resorting to CFD calculations. Since N is the only thing that

affects the chemistry for given inlet composition (see Eqs 6.13, 6.16)),

the effects of different mixing patterns and residence times can be
**explored by parametric variation of the shape of the core, P , and

*outlet, Pout, pdfs and of the residence time, τr. Consequent effects on
**core average conditional scalar dissipation, N , can be calculated from

Eq. (6.14), and solutions for Q obtained from solution of Eq. (6.13)

Emissions from the ISR can be evaluated from Eq. (6.18). As a result of

such parametric studies it should be possible to find the desirable shapes
** *of P and Pout and acceptable value of τr to meet emission goals. CFD

design studies can then be carried out in attempts to meet these desired
122 95pdf shapes and residence time. Smith and Bilger and Mobini et al have

carried out such parametric studies. General findings are that the outlet
*pdf, Pout, has little influence on the results provided it is not too

122broad in mixture fraction space . This is because the numerator for the

RHS of Eq. (6.14) has an almost triangular shape with zero values at η =
*0,1 and an apex of ξa(1-ξa) at η = ξa: broadening Pout merely rounds off

** **the corner of the apex. Narrowing P causes N to shoot up to high
**values at η values away from that where P has its peak: this is how the

ISR approaches the PSR limit.

6.1.3. Validity of ISR modelling

Criteria for determining the validity of ISR modelling are as yet not

clearly defined. For simple chemistry with an identifiable chemical time

scale, τc, a suitable criterion may be

τrc << τc << τr (6.21)

where τrc is a suitably defined recirculation time scale. In strongly

recirculating flows τrc will be a measure of the time for a fluid particle

to make one orbit of the recirculation zone, many such orbits being made,

on average, before the fluid particle exits the reaction zone. If τrc <<

τc then it can be expected that there will be little spatial variation of
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the conditional averages, Q, within the reactor volume. The requirement

that τc << τr seems appropriate to ensure that there is no likelihood of

extinction events within the reactor volume. For complex chemistry the

situation is more complicated and further analysis is needed. A full CMC

analysis of the reactor shown in Figs 25-28 is possible and should throw

much light on the requirements for validity of ISR modeling.

42Gough et al have made measurements in a combustor very similar to

that shown in Fig. 2 5 Flow conditions were slightly different than those

discussed in Section 6.1.2 due to the fact that for those conditions the

CFD predictions are inaccurate and the fuel jet penetrates the

recirculation zone. The outer annulus air velocity was increased so that

the fuel jet was no longer penetrating. Measurements made with sampling

probes and a thermocouple at the exit of the recirculation zone are

compared with revised ISR model predictions in Fig. 33. It is seen that

the predictions show quite good agreement with experiment although NO is

overpredicted somewhat and CO is underpredicted. These results give some

encouragement that the ISR model can at least be used for giving the right

trends in parametric studies. Work is in progress to verify this. The

model may also be helpful in getting starting solutions in fully-elliptic

multi-dimensional calculations.

6.2. The Dilution Flow Reactor

The Dilution Flow Reactor (DFR) is a generalisation of the well-known
139Plug Flow Reactor (PFR) . In the PFR, the flow is assumed well mixed in

a cross-stream direction so that profiles of velocity and composition are

uniform. Composition gradients in the streamwise direction are assumed to

be small so that longitudinal molecular and turbulent transport can be

neglected. The problem is steady and one-dimensional with chemical

reaction being balanced by longitudinal convection. Dilution by mass

addition can readily be added to the problem but is usually not

considered.

In the DFR, dilution of the flow is specifically catered for, as is

nonuniformity of the mixture fraction across the flow. The assumption is

made that the conditional averages of reactive scalars do not vary across
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the flow and that fluctuations about these conditional averages are small

enough for closure of the source terms to be made at the first conditional

moment level. Figure 34 shows a schematic of such a reactor. The duct may

be of varying cross-sectional area, but for simplicity it is assumed that

its centreline is straight. In the analysis that follows, the flow through

the walls of the duct is assumed to be inward and either of mixture

fraction zero or unity. In gas turbine combustors the diluent is air,

while in furnaces with NOx reburn the inflow is first fuel (not really a

diluent!) and later air. In NOx reburn systems the fuel injection

generates NH2 and other radicals that can reduce the NOx generated in the

upstream regions. The chemistry is complex and very sensitive to

stoichiometry so that incorporating the mixing effects is very important.

It is possible to derive the model for inflows at intermediate mixture

fractions, but for simplicity we will assume that the inflow is at ξ = 0

or 1.

Integrating Eq.(4.1) and (4.3) across the flow with the assumption

that Q = Q(η,x) with x =x1 (the streamwise direction) yields

* *∂ρηP U Q ⋅ ⋅
[----------------------------------------------- - m′fu(x)δ(1-η)Q - m′ox(x)δ(η)Q =∂x

* *
* ∂ # * * ∂Q ∂ρηP N Q $<W|η>ρηP + [----------------] ρηP N [-------------] - ---------------------------------------------- (6.21)∂η 3 ∂η ∂η 4

* * 2 * *∂ρηP U ⋅ ⋅ ∂ ρ ηP N
[--------------------------------------- - m′fu(x)δ(1-η) - m′ox(x)δ(η) = - ------------------------------------------- (6.22)∂x 2∂η

⋅ ⋅where m′fu(x) and m′ox(x) are the mass inflow rates per unit length in the
* * *x direction of fuel and oxidant respectively. P , U and N are averages

computed across the flow as in Eq.(5.10). Subtracting Q times Eq.(6.22)
*from Eq.(6.21) and dividing by ρηP yields

2
* ∂Q * ∂ QU [-------------] = <W|η> + N [-------------------] (6.23)∂ x 2∂η

which is essentially the same as Eq.(5.13). Integrating Eq.(6.22) by parts

yields
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1
* * ∂ i ° * * ° ⋅ρηP N = [----------] (η -η)ρηP U dη + (1-η)m′fu(x) (6.24)∂x j

η

*If a full CFD prediction for the flow and mixing field is available, U
*and N can be obtained from Eqs(5.10) and (6.24), respectively.

Equation.(4.5) should probably be used for obtaining the conditional

velocity in the axial direction since there will be regions of low

velocity in the wakes of the jet inflows. In parametric studies more
* *approximate estimates for U and N will probably suffice.

In the above it has been assumed that the walls are nonreactive.

There will be a corresponding equation for the conditional average

standardized enthalpy with a radiation source term. Additional terms will

appear for the effects of conductive/convective heat transfer at the wall

and for variations in temperature with x of the "diluents".
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7. CMC IN HOMOGENEOUS FLOWS

As noted in Section 4.5 the CMC equations are considerably simplified

in cases where the flow and mixing can be taken as being homogeneous. Such

flows are approximated experimentally by the flow behind a turbulence

generating grid. Scalar mixing in such flows has been studied extensively
136for temperature in air by Warhaft and others (see Tong and Warhaft , for

entry into this literature). Reacting experiments have been carried out

in a tubular reactor by Toor and others and these have been modelled by
127Southwell . This work is briefly reviewed in Section 7.1. Homogeneous

turbulent flows are particularly amenable to direct numerical simulation

(DNS), the pseudo-spectral method being applicable where density and

transport properties are constant. We review results obtained for simple

one-step chemistry in Section 7.2 and for multi-step kinetics in Section

7.3.

7.1. Turbulent Mixing Reactors

127Southwell has modelled the experimental data of Vassilatos and
140 80Toor and Li and Toor using CMC. In the Vassilatos and Toor

experiments the reactor consisted of one hundred parallel jets issuing

from hypodermic tubing closely set together. The two reactants issue

alternately from the jets. The turbulence generated is approximately

homogeneous in the cross-stream direction and the rate of decay is such

that it is essentially homogeneous in the flow direction. Dilute sodium

hydroxide was one reactant and the speed of the reaction was varied by

using acetic acid (very slow), dissolved carbon dioxide (quite fast) and

hydrochloric acid (very fast) as the other reactant. Mixing data for this
118reactor is available from Shenoy and Toor and the variance of the

mixture fraction fluctuations was fit by piecewise power law functions of

the distance downstream. These functions were used to deduce the

unconditional scalar dissipation. In the CMC modelling the conditional

average scalar dissipation was assumed to be equal to the unconditional

value. The predictions showed good agreement with the experimental

results, the unconditional average of fractional conversion to product

being slightly underpredicted in the slow case, and slightly overpredicted

in the quite fast case. The very fast case was indistinguishable from

7-1



full equilibrium. More accurate modelling of the conditional scalar

dissipation may improve predictions for the quite fast case.
80In the experiments of Li and Toor the reactor was similar to the

above, but only had 14 jets. Mixing data for this reactor were obtained
79 120from Li and Singh and the mixture fraction variance was found to be

quite strongly dependent on Reynolds number: once again piecewise power

law fits were made to this data and the unconditional dissipation of

mixture fraction was obtained by differentiation. In the CMC modelling

the conditional scalar dissipation was once again taken as the

unconditional value. The reactants were 1-naphthol (A) and diazotised

sulfanilic acid (B) to produce two dyestuffs R and S through the

series-parallel reactions

A + B [-----L R (7.1)

R + B [-----L S (7.2)

The first of these reactions is quite fast and the second reaction is much

slower. Measurements were made only at the reactor exit. Figure 35 shows

results obtained with the CMC modelling using the average value of the

rate constants that have been published for the first reaction. Also shown

are the predictions with the mechanistic Four-Environment Slow model of
34Dutta and Tarbel l , the most accurate of the unconditional moment

closures methods used by chemical engineers. It is seen that the CMC

predictions are good. They probably can be improved with improvements to

the model for the conditional average scalar dissipation.

7.2. DNS with One-Step Chemistry

Direct numerical simulations with nonpremixed reactants with a single
90,91irreversible chemical step have been studied by Mell et al

133 89 75Swaminathan and Mahalingam , and Mell . Lee and Pope consider a

reversible one-step reaction with features corresponding to a high

activation energy in the reaction rate. Their main interest is in

predictions of extinction, and here CMC does poorly as can be expected

since only a first moment closure is considered for the conditional

average reaction rate. In general all the other comparisons with DNS show
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CMC to make very good predictions for unconditional averages of reactant

concentrations provided that the conditional average of the scalar

dissipation for the mixture fraction is modelled adequately.

In principle, DNS allow us to examine in every detail the closure

assumptions made in CMC modelling. The limitation is that the simulations

are only available for fairly low turbulence Reynolds numbers and in most
65cases to low and moderate Damkohler number. Kosaly has stated that

CMC is exact at the limit of zero turbulence Reynolds number (no

convection). We have not been able to find a satisfactory proof for this.

If it is true, questions of validity at high Reynolds number must be

addressed by other means. For reasons that will become apparent, we look

first at the issues of correctly modelling the conditional average scalar

dissipation. We then examine what should be the primary question - the

validity of the fundamental closure hypotheses for the basic CMC equation,

as have been summarised in Section 3.3. We then address issues concerned

with the limitations of first order closure of the conditional average

chemical reaction rate term.

7.2.1. Correctly modelling conditional scalar dissipation

91Mell et al carried out DNS in homogeneous turbulence with an

initial turbulence Reynolds number based on the Taylor microscale Reλ = 35

and for a simple equimolar reaction without any temperature dependence of

reaction rate. DNS calculations were made for two values of the mean

mixture fraction, <ξ>, which was also the stoichiometric value, ξs,

namely, <ξ> = ξs = 0.25 and 0.5. For each of these cases, three different

initial Damkohler numbers, Da0, were computed, Da0 = 0.5, 2 and 8. In the

CMC modelling two different models were used for the conditional average

scalar dissipation:

Case (a): <N|η>t = <N>t (7.3)

Case (b): <N|η>t = <N|η=0.5>tF1(η) (7.4)
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where the function F1(η) is obtained from counterflow laminar flame

modelling as

& 2*
& -1 *F1(η) = exp|- 2 erf (2η-1) | (7.5)
7 8

7 8

The values of <N>t and <N|η=0.5>t on the RHS of Eq. (7.3) and (7.4),

respectively, were obtained from the DNS. The modelling of Eq. (7.4),
26(7.5) is also obtained as the result of Kraichnan’s amplitude mapping

105closure (AMC) and solutions for the initial stage of mixing .

The unconditional average of the product of the reactant species mass

fractions, <YAYB>, gives a sensitive overall measure of the goodness of

the CMC modelling, since this is proportional to the mean reaction rate

and will have consequent effects on the unconditional averages of the
91species mass fractions. Table 2 from Mell et al shows the errors

arising in the CMC predictions for this statistic obtained from

1
i<YAYB>CMC = QA(η) QB(η) P(η) dη (7.6)
j
0

with P(η) taken from the DNS. The error is reported relative to the DNS

value. Time is normalised by the initial eddy turnover time, l0/u′, where
0

l0 is the initial integral length scale of the velocity field and u′ is
0

the initial value of the rms velocity component fluctuations. It is seen

that the errors arising from the use of the unconditional dissipation,

Case (a), are large, particularly near the beginning of the experiment and

when the Damkohler number, Da0, is high. Results are much better for the

counterflow model, Case (b), particularly where <ξ> = ξs = 0.5 and Da0 is

not high.

These errors in the CMC predictions can almost entirely be attributed

to errors in the modelling of <N|η>. As shown in Section 4.2.3 errors in

<N|η>, ΔN(η), result in a false chemical source term, <EN>, which in the

present context may be evaluated as

1
2

-1 i ∂ Q<EN> = Da0 ΔN(η) P(η)[-------------------] dη (7.7)
j 2∂η0
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This false reaction rate term is essentially identical to the error in
2 2<YAYB>. The second derivative ∂ Q/∂η peaks strongly at η = ξs and errors

at this location in η space are of most importance although this is

modified by the values of P(η) in this region. The strength of the peak

at a given time strongly increases with Damkohler number, since the fluid

is then more highly reacted and closer to the equilibrium chemistry limit

where the second derivative becomes infinite. Figures 36-39 show the

pdfs, <N|η>/<N>, <N> and the fraction of the reaction rate balanced by the

transient and diffusive terms. Figure 38 also shows the modelling for

<N|η> used in Case (b). Note that the modelling for Case (a) is inherent

in the normalisation used: <N|η>/<N>. It is seen that the modelling of

Case (a) involves very large errors in <N|η>, particularly at early times.

From this information and Eq. (7.7), it is possible to make an approximate

check on the errors involved in using the modelling of Case (a) for <N|η>.

A more accurate check is obtained by referring to the Case (b) results

where the modelling for Case (b) is accurate. It is seen that the correct

modelling of <N|η> accounts for essentially all of the error, except for

Da0 = 8, where errors of up to 5% remain unaccounted for by this means.
91Mell et al propose that the modelling of <N|η> by the counterflow or AMC

model could be improved for the <ξ> = ηs = 0.25 case by matching at η =

0.25 rather than at η = 0.5 as is done in Eq. (7.4).
133Swaminathan and Mahalingam have also examined the effects of

modelling for the conditional average scalar dissipation on CMC

predictions. They compared results using the AMC model of Eq. (7.4),
41(7.5) with those using the model developed by Girimaji based on the use

of a beta function pdf for the mixture fraction. This model yields

& * I (η)<N|η>t = -2<N>t<ξ> 1-<ξ> [-------------------------------] (7.8)
7 8 4σ P(η)

2where σ is the mixture fraction variance and I(η) is given by

η
i&

& ° *I(η) ≡ ||<ξ> ln(η )-<ln(ξ)>
7 8

j7
0

*
& ° * ° °+ (1-<ξ>) ln(1-η )-<ln(1-ξ)> |P(η )dη (7.9)
7 8

8
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In theory, Girimaji’s model should give better performance than the AMC

model at later times since the AMC model strictly requires there to be

some unmixed fluid present in the mixture. No such restriction applies to

Girimaji’s model. The simulations carried out by Swaminathan and
133Mahalingam start with an inhomogeneous layer and it is only late in the

calculation that the mixing field becomes homogeneous. At these later

times Girimaji’s model does seem to give better results for the

conditional average scalar dissipation. Results for the CMC modelling

appear better with the AMC model but this is clouded by the lack of

homogeneity in the scalar fields at early times.

7.2.2. Validity of the primary closure hypothesis

We are concerned here with the fundamental closure hypotheses of CMC

assumed in Eqs (3.13) and (3.28). As already pointed out, these can be

shown to be essentially the same, and essentially the same as Eq. (3.31).

Taking into account the fact that it is ∂JY/∂η that appears in the CMC

Eq.(3.4), the closure hypothesis is correctly stated as

2∂<D∇Y"⋅∇ξ|η>P(η)ρη ∂ <NY"|η>P(η)ρη2[------------------------------------------------------------------------------------------------------- - [-------------------------------------------------------------------------------------- = 0 (7.10)∂η 2∂η

89Mell examines the "error" terms <D∇Y"⋅∇ξ|η> and <NY"|η> in the data base
91of Mell et al and finds them to be significant fractions of the

corresponding retained terms <N|η>∂Q/∂η and <N|η>Q, particularly at the

highest Damkohler number. The signs of these "error" terms are however

the same and they may almost completely cancel when the true test of

Eq.(7.10) is applied. Further examination of this issue using the DNS

data bases is warranted.

7.2.3. Closure of the chemical source term

For a one-step irreversible reaction errors in first order

conditional moment closure of the conditional reaction rate are given by

k<YAYB|η> - kQAQB = k<Y"AY"B|η> (7.11)
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where the effect of temperature fluctuations on the rate constant k are
89 91negligible. Mell using the data bases of Mell et al found that the

error was less than 1% of k<YAYB|η> at Da0 = 0.5, but rises to as much as

7% at Da0 = 8. It should be noted that there could be a strong Reynolds

number dependence on such results since the fluctuations in N about <N|η>

increase with Reynolds number. It is not yet clear whether the error will

continue to increase with Da0 as reaction becomes confined to a thin sheet

and all terms in Eq.(7.11) become zero outside this sheet. This question

should be answerable by appropriate asymptotic analysis. In Section 8 we

consider the formulation and modeling of balance equations for covariances

such as <Y"AY"B|η> and closure of the chemical source term at the second

order.

Inferring general conclusions from such results is foolhardy. If the

rate constant is strongly temperature dependent, we expect to find the

errors from first order conditional moment closure to be greatest at low

Da0, since now there will be increases in Y"A and Y"B due to local

extinctions or much reduced reaction rates where the temperature is low.
75Lee and Pope studied reversible one-step chemistry with a high

activation energy for the rate constant, and find that first conditional

moment closure is good only at high Da0. At low Da0 significant

extinction occurs and first order closure becomes innaccurate. They did

not investigate the possibility of obtaining better results with a higher

order conditional moment closure.

7.3. Multi-step kinetics

99Montgomery et al consider the H2-O2 reaction from a fundamental

kinetics point of view but end up calculating the reaction using a

one-step reduced mechanism. They find good agreement with CMC predictions

for unconditional averages of major species and temperature even when

assuming <N|η>t = <N>t. Proper modelling for <N|η>t is needed to get

accurate predictions of reaction rate and conditional average statistics.
133Swaminathan and Mahalingam consider a 3-step series parallel

reaction with two intermediate species. They find that the intermediate

species are more sensitive to correct modelling of the scalar dissipation

and that a second order closure would improve predictions for the
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intermediate species with the highest Damkohler number.
129Swaminathan and Bilger have studied a 2-step reduced mechanism for

125hydrocarbon combustion. They find that CMC predictions of both the

major and minor species are excellent, although second order closure would

improve predictions of the conditional average reaction rates.
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8. CONDITIONAL VARIANCE EQUATION AND SECOND ORDER CLOSURE

In this section we consider the conditional expectations of the

second moments of reactive scalars which are given by

2K ≡ (Y″) ; G ≡ <K|η>

Kij ≡ Y″Y″; Gij ≡ <Kij|η> (8.1)
i j

The double prime denotes fluctuations with respect to the conditional mean

(conditional fluctuations) Y″ ≡ Y-Q, Q ≡ <Y|η>. The matrix Gij is the

conditional covariance matrix. It is obvious that the matrices in Eq.(8.1)

are symmetric: Kij = Kji, Gij = Gji. Normally, the conditional

fluctuations of the reactive components are significantly smaller than the

unconditional fluctuations and the conditional fluctuations can often be

neglected when the average value of the source terms in kinetic equations

is calculated (see Section 3.5). However, if conditional fluctuations of

reactive components are not small, the conditional expectations of the

second moments can be used to find more accurate average values of the

source terms. Eq. (3.38) can be used for this purpose provided that the

higher order terms are negligible. This will generally be the case if the

corrections themselves are significantly less than the first order

term. Since correlation coefficients lie between -1 and 1, this will be

achieved for

2 1/2[<Yi" |η>] << Qi (8.2)

and
2 1/2[<T" |η>] /QT << 3QT/Ta if β ≤ 1

<< 3/(β-2) if β > 2 and Ta < QT (8.3)

where β is the temperature index and Ta is the activation temperature.

Alternatively, we may use Eq.(2.10) & (2.15) and write

i<Wi(Y)|η> = Wi(Z) P(Z|η) dZ1dZ2...dZn (8.4)
j
∞

where Y1,...,Yn-1 are governed by Eq.(3.2); Yn ≡ h is governed by

8-1



Eq.(3.33) and P(Z|η) is the conditional pdf (introduced in Sec.2.1.3)

which can be assumed to have a presumed form such as the Gaussian form

-1/2
& n * # 1 $P(Z|η) = (2π) det(Gij) exp -[---- gij(Zi-Qi)(Zj-Qj) (8.5)
7 8 3 2 4

where gij is the inverse matrix of Gij that is gikGkj=δij. A

clipped joint Gaussian form may be necessary to avoid unrealizable

portions of the Z domain. For extinction problems a bimodal form may be

better since the fluid is either alight or extinguished with almost

nothing in between.
11CMC models for G have been derived by Bilger using the

55,56decomposition technique and by Klimenko using the pdf approach. Li
76and Bilger formulated a CMC model for Gij using the decomposition

technique. Derivations using the pdf and decomposition techniques are

considered in Sections 8.1 and 8.2 respectively. The model for Gij is

formulated first and then the equation for G is derived by putting i=j.

General discussion of the CMC equations for the second moments can be

found in Section 8.3. Some comments on the application of second order

closure are presented in Section 8.4 including simplifications that make

the technique more tractable for practical systems. Without loss of

generality we can put i=1, j=2 from here on in this section.

8.1. The Pdf Method

+First we derive the equation for G12 ≡ <Y1Y2|η> = G12 + Q1Q2. The
+relationship of G12, the joint pdf P(Z,η) the pdf P(η) is given by

+ iG12 P(η) ≡ <Y1Y2|ξ=η> P(η) = Z1Z2 P(Z1,Z2,η) dZ1dZ2 (8.6)
j
∞

The joint pdf equation (2.48) is used in the derivation. We assume that

η=Z3, W3=0 and n=3 in Eq.(2.48) and consider this equation as the equation

for P(Z1,Z2,η). Equation (2.48) is multiplied by Z1Z2 and integrated over

all Z1 and Z2. Note that Z1 and Z2 are independent variables and may be

taken inside derivatives with respect to t, x and η. The terms which
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involve ∂/∂Z1 and ∂/∂Z2 are integrated by parts. Note also that P(Z,η)L0

as |Z|L∞. The result of the integration is

+∂G12P(η)ρη & + *
----------------------------------------------------] + div <vK12|η>P(η)ρη = <W1Y2 + W2Y1|η> P(η)ρη∂ t 7 8

∂J12- 2 <D(∇Y1⋅∇Y2)|η>P(η)ρη + -------------------] (8.7)∂η

+∂<NK1 2|η>P(η)ρη & + *J12 ≡ - -----------------------------------------------------------------------------------------] + 2 <D ∇K12⋅∇ξ |η> P(η)ρη (8.8)
7 8∂η

+ + + 2where ρη≡<ρ|η>, K12≡Y1Y2, G12=<K12|η> and N ≡ D(∇ξ) is the dissipation of
55the conserved scalar. The closure assumptions used by Klimenko

+ +<NK12|η> =<N|η> <K12|η> (8.9)

+
+ ∂<K 1 2|η><D(∇K12⋅∇ξ)|η> = <N|η> ---------------------------------------] (8.10)∂η

are similar to the assumptions in Eqs.(3.47) and (3.48). As we note in

Section 8.3 these assumptions may be too restrictive. With these

assumptions Eq.(8.8) takes the form

+∂<N|η>P(η)ρη + ∂G1 2J12 = - ------------------------------------------------------------------ G12 + <N|η>P(η)ρη[-----------------] (8.11)∂η ∂η

With the use of the pdf equation (3.15) and closure (8.11) Eq.(8.7) can

now be written in the form

& *div <v″(Y 1 Y 2 )″|η>P(η)ρη+ 7 8 2 +∂G1 2 + ∂ G12-----------------] + <v|η>⋅∇G12 + ------------------------------------------------------------------------------------------------------------------------------] - <N|η>[---------------------------] =∂ t 2P (η)ρη ∂η

= <W1Y2 + W2Y1|η> - 2 <D(∇Y1⋅∇Y2)|η>P(η)ρη (8.12)

The last term in this equation may be written

∂Q 1 ∂Q2<D(∇Y1⋅∇Y2)|η> = <D(∇Y″⋅∇Y″)|η> + -------------] ------------- N (8.13)
1 2 ∂η ∂η
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Here, we have used Eq.(3.19), have neglected the terms which involve ∇Q

since these terms are small for large Reynolds numbers (see Sec.2.3.3) and

have taken into account that

∂<Y″|η><D(∇Y″⋅∇ξ)|η> = <N|η> ---------------------------------------] = 0∂η

according to Eq.(3.48). The identity

+ + & *(Y1Y2)″ = K12 - G12 = (Q1+Y″) (Q2+Y″) - Q1Q2 - G12 =
7 1 2 8

= Q1Y″ + Q2Y″ + K12 - G122 1

is used to modify the third term in Eq.(8.12)

& * & *div <v″(Y1Y2)″|η>P(η)ρη - Q2div <v″Y″|η>P(η)ρη -
7 8 7 1 8

& * & *- Q1div <v″Y″|η>P(η)ρη = div <v″K″ |η>P(η)ρη +
7 2 8 7 12 8

+ <v″Y″|η>P(η)ρη∇Q2 + <v″Y″|η>P(η)ρη∇Q1 (8.14)
1 2

The next step in the derivation is obtaining the equation for the

product Q1Q2. Equation (3.16) written for Q1 is multiplied by Q2.

Equation (3.16) written for Q2 is multiplied by Q1. Adding the results

yields

∂Q1Q 2-------------------------] + <v|η>⋅∇(Q1Q2) +∂ t

1 & *
& * & *

------------------------------- |Q2div <v″Y″|η>P(η)ρη + Q1div <v″Y″|η>P(η)ρη |
7 1 8 7 2 8P(η)ρη 7 8

2∂ Q1Q 2 ∂Q1 ∂Q2= <N|η>[------------------------------] - 2<N|η> ----------------- -----------------] + Q2<W1|η> + Q1<W2|η> (8.15)
2∂η ∂η ∂η

Subtracting Eq.(8.15) from Eq.(8.12) and using Eqs.(8.13) and (8.14) we

obtain
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& *div <v″Y″Y″|η>P(η)ρη7 1 2 8 2∂G1 2 ∂ G1 2-----------------] + <v|η>⋅∇G12 + ---------------------------------------------------------------------------------------------------------------] - <N|η>[----------------------------] =∂ t 2P(η )ρ η ∂η

= <W″Y″ + W″Y″|η> - 2<D(∇Y″⋅∇Y″)|η> -
1 2 2 1 1 2

<v″Y″|η>∇Q1 - <v″Y″|η>∇Q2 (8.16)
2 1

Another form of this equation can be obtained with the use of Eq.(3.15):

∂G12P(η)ρη & *
------------------------------------------------] + div <vK |η>P(η)ρη =∂ t 7 12 8

2 2∂ <N|η>P(η)ρη ∂ Q1 2- ----------------------------------------------------------------------]G12 + <N|η>P(η)ρη[-----------------------] + (8.17)
2 2∂η ∂η

& *+ P(η)ρη <W″Y″ + W″Y″|η> - 2<D(∇Y″⋅∇Y″)|η> + <v″Y″|η>∇Q1 - <v″Y″|η>∇Q27 1 2 2 1 1 2 2 1 8

The equation for the conditional variance can be easily obtained by

putting Y1=Y2=Y in Eq.(8.16)

& 2 *div <v″(Y ″ ) |η>P(η)ρη7 8 2∂G ∂ G
[-------------] + <v|η>⋅∇G + ------------------------------------------------------------------------------------------------------------------] - <N|η> ------------------- =∂ t 2P(η)ρ η ∂η

2= 2<W″Y″|η> - 2<D(∇Y″) |η> + 2<v″Y″|η>∇Q (8.18)

8.2. Decomposition Method

The first step in the derivation of the equation for G12 using the

decomposition method is the equation for K12 ≡ Y″Y″
1 2

∂K12 & *ρ--------------------] + ρv⋅∇K12 - div Dρ∇K12 + 2Dρ(∇Y″⋅∇Y″) =
7 8 1 2∂ t

= ρ(W1Y″+W2Y″) + ED12 + ED21 - EQ12 - EQ21 (8.19)
2 1

where
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∂Q jEDij ≡ Y″ρD∇ξ⋅∇[ --------------] + Y″div(ρD∇Qj) (8.20)
i ∂η i

2
& ∂Q j ∂ Q j *EQij ≡ Y″ ρ-------------] + ρv⋅∇Qj - ρN[----------------------] (8.21)

i7 ∂ t 2 8∂η

This equation is derived from Eq.(3.21) which is valid for both Y″ and Y″.
1 2

The correlation is decomposed in a way which is similar to Eq.(3.17)

K12(x,t) = G12(ξ(x,t),x,t) + K″ (x,t) (8.22)
12

where Kij and Gij is given by (8.1). It is easy to see that

<K″ (x,t)|η> = 0. The differentiation of Eq.(8.22) yields
12

∂K″∂Kij ∂G i j ∂Gi j ∂ξ i j
[----------------] = -------------] + ---------------] ---------- + -----------------] (8.23)∂ t ∂ t ∂η ∂ t ∂ t

∂Gi j∇Kij = ∇Gij + ---------------] ∇ξ + ∇K″ (8.24)∂η i j

Equation (8.19) takes the form

2∂G12 ∂ G1 2ρ--------------------- + ρv⋅∇G12 - ρN [-----------------] + 2Dρ(∇Y″⋅∇Y″) = ρ(W1Y″+W2Y″) +∂ t 2 1 2 2 1∂η

+ ED12 + ED21 - EQ12 - EQ21 + EG - EK (8.25)

where

∂G i jEG ≡ div(ρD∇Gij) + ρD∇ξ⋅∇[ --------------] (8.26)∂η

∂K″
1 2 & * & *EK ≡ ρ---------------------] + ρ v⋅∇K″ - div Dρ∇K″ (8.27)∂ t 7 128 7 128

Taking the expectation of Eq.(8.25), conditional on ξ(x,t)=η, yields

2∂G12 ∂ G1 2ρη--------------------- + ρη<v|η>⋅∇G12 - ρη<N|η> [-----------------] =∂ t 2∂η

ρη<W″Y″ + W″Y″|η> - 2ρη<D(∇Y″⋅∇Y″)|η> - eK - eQ12 - eQ21 (8.28)
1 2 2 1 1 2

where eK ≡ <EK|η> and
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2
& ∂ Q j *eQij ≡ <EQij|η> = ρη ∇Qj⋅<Y″v″|η> - [----------------------]<Y″N″|η> (8.29)
7 i 2 i 8∂η

According to the analysis of Sec.2.3.3, the terms <EDij|η> and <EG|η> are

small for large Reynolds numbers. These terms are neglected in Eq.(8.28).

Let us analyze the unconditional mean of the term EK.

∂K″ ρ
i 1 2 & * & *<EK> = eKP(η)dη = < --------------------------------] + div ρvK″ - div Dρ∇K″ > =
j ∂ t 7 128 7 128

∂<K″ ρ>
1 2 & * & * & *

---------------------------------------] + div <ρvK″ > - div <Dρ∇K″ > = div <ρv″K″ > =∂ t 7 12 8 7 12 8 7 12 8

&i * i & *= div ρη<v″K″ |η>P(η)dη = div ρη<v″K″ |η>P(η) dη (8.30)
7j 1 2 8 j 7 1 2 8

The derivation of this equation is similar to the derivation of Eq.(3.27).

The basic closure used here is similar to Eq.(3.28)

& *eKP(η) = div ρη<v″K″ |η>P(η) (8.31)
7 1 2 8

With this closure, equation (8.28) takes the form

& *div <v″K″ |η>P(η)ρη2 7 1 2 8∂G12 ∂ G1 2--------------------- + <v|η>⋅∇G12 - <N|η> [-----------------] + ---------------------------------------------------------------------------------------------------------]∂ t 2∂η P(η)ρ η

= <W″Y″ + W″Y″|η> - 2<D(∇Y″⋅∇Y″)|η> - ∇Q1⋅<Y″v″|η> - ∇Q2⋅<Y″v″|η> +
1 2 2 1 1 2 2 1

2 2∂ Q1 ∂ Q2+ [----------------------]<Y″N″|η> + [----------------------]<Y″N″|η> (8.32)
2 2 2 1∂η ∂η

The governing equation for the conditional variance can be obtained from

Eq.(8.32) by assuming Y1=Y2=Y

& *div <v″K″|η>P(η)ρη2 7 8∂G ∂ G
------------- + <v|η>⋅∇G - <N|η> [-----------------] + ----------------------------------------------------------------------------------------------------]∂ t 2∂η P(η )ρ η
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2
2 ∂ Q= 2<W″Y″|η> - 2<D(∇Y″) |η> - 2∇Q⋅<Y″v″|η> + 2[-------------------]<Y″N″|η> (8.33)

2∂η

8.3. Discussion

If the Reynolds numbers is large and differential diffusion effects

are neglected, equations (8.32) and (8.33) represent the most complete

form of the second moment CMC equation. Let us compare the equations

derived by the pdf and decomposition methods. Equations (8.18) and (8.33)

are the same except that there is one extra term in Eq.(8.33). The last

term of Eq.(8.33), which is denoted in this section as -T4, does not

appear in Eq.(8.18). A similar conclusion can be drawn form comparison of

Eqs.(8.32) and (8.16): the last two terms of Eq.(8.32) does not appear in

Eqs.(8.16). If we apply hypothesis (3.47) to these terms, we obtain that

these terms are zero. For example, <Y″N″|η> = 0. This indicates that

closure hypotheses (3.47), (3.48), (8.9) and (8.10) used to obtain

Eqs.(8.16) and (8.18) are more restrictive than closure hypotheses (3.10),

(3.28) and (8.31). The more restrictive hypotheses, applied to Eqs.(8.32)

and (8.33), transform these equations into Eqs.(8.16) and (8.18).

The more restrictive hypotheses in Eqs.(8.16) and (8.18), used in the
55 63earler work of Klimenko , correspond to the old Kolmogorov theory which

neglects the large-scale (>lK) fluctuations of the scalar dissipation.
56 64Klimenko demonstrated that the refined Kolmogorov theory requires that

the additional source term

2 2 2
& ∂ Q * & *-T4 ≈ 2 ----------------------------- <N|η> τN; (8.34)
7 2 8 7 8∂η

should be added to Eq.(8.18). Here, τN is the integral Lagrangian time

scale for the scalar dissipation N. It appears that the term T4 is

automatically present in Eq.(8.33). Equations (8.32) and (8.33) were
76obtained by Li and Bilger (although the third terms on the left-hand

side of Eqs.(8.32) and (8.33) were missed). Term (8.34) can be considered

as a modeling assumption for the term T4 in Eq.(8.33).

Let us compare Eq.(4.2) and Eq.(8.33). Equation (8.33) has some
2additional terms: the dissipation term 2<D(∇Y″) |η>, the generation term

-2<v″Y″|η>∇Q and the extra-generation term due to N-fluctuations
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2 2 762<Y″N″|η> ∂ Q/∂η . These terms need modeling. Li and Bilger considered

the one-step irreversible reaction in a steady-state turbulent scalar

mixing layer and suggested

22<D(∇Y″) |η> = C1G/τY (8.35)

2 2∂ Q 1/2 ∂ Q2<Y″N″|η> [------------------------ = C2<N|η> G [------------------------ (8.36)
2 2∂η ∂η

where τY=kt/εt is the integral time scale, C1 and C2 are constants. The

generation term -2<v″Y″|η>∇Q was neglected. We can expect that in

turbulent shear flow this term can be neglected in most of the cases since

the transverse gradients of Q are small in shear flows (see Section 5).

The last term on the left-hand side of Eq.(8.33) can also be neglected.
76Li and Bilger compared the modeling results with direct

experimental measurements of the conditional variance G made in the

reacting turbulent scalar mixing layer presented in Section 5.8.1. Their
^modelled equation for the normalised first moment Q1 includes an extra

^term -G on the RHS to account for second order closure of the reaction
^rate. Here G is the normalised version of G, using the same normalisation

^as for Q. The effect of this term was found to be entirely negligible. The
^modelled equation for G was

^ 2∂G ^& ^ * ^-1 ^ 1/2 ∂ Q ^-1 ^
[-----------------] = - 2G 2Q1-η+ηs + AC2x1 G [-------------------] - μkC1x1 G (8.37)^ 7 8 2∂ x 1 ∂η

Here m is the power law index for the decay of the turbulence kinetic

energy with distance x1; with μk = 1.3 taken from the experimental data.

In this modelled equation the chemical term has been closed at the second

moment level: the extra term involving the conditional third moment
3<Y" |η> being found in the experimental data to be never more than 15% of

^the other chemical term. The boundary conditions used for G are

^ ^G = 0 for x1 =0; and G = 0 at η =0,1 for x1 > 0.

With these boundary conditions Eq. (8.37) has a singularity at x1=0. Li
76 ^ 1/2and Bilger overcame this by reformulating Eq.(8.37) in terms of G

^ 1/2which involves dividing the equation through by G . The term on the RHS
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2 ^ 2 ^ 1/2 ^involving ∂ Q/∂η then becomes a source for G as soon as Q becomes

nonlinear under the influence of reaction. It is evident that the sign

taken for C2 in the modelling of Eq. (8.36) needs to reflect whether the

species is a reactant or a product. Here species 1 is a reactant and C2 is

positive. It was set equal to 1.1 to give a good match to the data.

Figure 40 shows the general nature of the results predicted by Li and
76Bilger . It is seen that the conditional variance peaks at η = ξs = 0.5

and that this peak increases with distance downstream before finally

decaying. The solutions reflect an approximate balance between the source

term, Eq. (8.36) and the chemical term acting as a sink. The dissipation

term, Eq. (8.35) and the convective term, the LHS of Eq.(8.37), are an

order of magnitude lower.

Figure 41 shows comparison of the predictions with the data. Separate

solutions were made for the value of ηs pertaining to each data set. The

figure shows predictions for two different models of the scalar

dissipation. Model A is for that presented here and in Section 5.8.1.

Model B is more sophisticated and allows for <N|η> to vary with η. The
^models give almost identical solutions for the first moment, Q1, but the

^more sophisticated model gives a somewhat higher peak value for G. The

value of C2 = 1.1 was chosen to give the best fit at x1 = 15M for Model B.

The figure shows that there is no consistent dependence of the

experimental data for the conditional variance on position across the

layer as was also found for the first conditional moment (see Section 5.1

and Figs. 1 and 16). This was assumed in the modelling. The data indicate

that the peak conditional variance begins to fall at large distances

downstream, and this is not predicted by the modelling. The modelling also

predicts narrower profiles in η space than is found in the experimental

data.
76As has been pointed out, Li and Bilger did not include the third

term on the LHS of Eq. (8.33). Estimates indicate that it is an order of

magnitude smaller than the source term, Eq. (8.36), and the chemical sink

term and of the same order as the dissipation term, Eq. (8.35) and the

convective term. Its inclusion may not greatly change the magnitude of the

solutions obtained, but may improve the profile shape in η space and the

x1 dependence. The use of the source term of Eq. (8.34) in place of that

in Eq. (8.36) is also likely to significantly change the profile shape in

η space and in x1. This has not been investigated as yet.
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131Swaminathan and Bilger examine DNS data bases for nonpremixed

reaction in decaying homogeneous turbulence with a two-step reduced
129mechanism for hydrocarbon combustion in terms of the conditional

variance Eq. (8.36). For homogeneous flow this may be written

2∂G ∂ G
[-------------] - 2<Y″W″⏐η> - <N⏐η>[-------------------] -

2∂ t ∂η

2∂ Q2<Y″N″⏐η>[-------------------] + 2<D∇Y″⋅∇Y″⏐η> - eK = 0 (8.38)
2∂η

Figure 42 shows results for the fuel species in two different simulations

R1 and R5. It is seen that the conditional species fluctuation scalar

dissipation term, T4, is far from being negligible as assumed in
55Klimenko and Eq. (8.9). Indeed it is the largest term and is balanced

largely by the reaction rate correlation term, T2 so that an estimate for

G can be made by setting these two terms equal. It is seen that the

primary closure assumption of Eq. (8.31) is much better. Note that for

homogeneous flow this becomes eK = 0 and that eK for the fuel species

appears as eq in Fig. 42. It c an be noted that the terms in the balance
ff

for simulation R5 are much larger than the terms for R1. This is in part

due to the higher turbulence Reynolds number producing higher fluctuations

in N, but also due to the fact that the Damkohler numbers in simulation R5

are about half those in R1.

131Swaminathan and Bilger also examine the modelling for terms T4 and

T5 given in Eqs (8.36) and (8.35) respectively. The "constant" C2 can be

expressed

2 1/2RNY <N″ ⏐η>C2≡ [---------------------------------------------------------------------------]

<N⏐η>

where RNY is the conditional correlation coefficient between N″ and Y″. It

is found that RNY is a function of η but apparently not a strong function

of the Reynolds number. or the Damkohler number. For a first

approximation, the assumption of it having a magnitude of about 0.8 with

the appropriate sign may be sufficient. The sign is positive for reactant

species and negative for product species. The "constant" C1 in Eq.(8.35)

is also found to be dependent on η, but is also dependent on the Damkohler
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number.
132Swaminathan and Bilger have continued the analysis of this same

data base in terms of the progress variables for each of the two reaction

steps and have included analysis of the conditional covariance equation. A

new model for the conditional dissipation of the progress variable

fluctuations is proposed based on stationary laminar flamelet modeling.

This model is an improvement over that of Eq. (8.35), but further work is

still needed to improve its general applicability.

8.4. Second Order Closure

It is becoming evident that the use of a second order closure for the

conditional reaction rate term will be of value in such problems as the

prediction of autoignition in diesel engines and the formation of NO. It

may also be capable of handling flows with local and even bulk ignition

and extinction behaviour. Further investigation of the correct form of the

conditional variance and conditional covariance equations and appropriate

modelling for the unclosed terms is merited. Data from direct numerical

simulations (DNS) and laboratory experiment should be useful for doing

this.

In systems involving complex multi-step chemistry it may be possible

to simplify the making of the second order corrections to the basic first

moment closure. Correlations between species mass fractions and

temperature could be related to correlations among the much fewer progress

variables necessary for a reduced kinetic mechanism. Thus for the H2-O2
68system Kronenburg et al use a full mechanism to compute the leading

order of the reaction rates but the second order corrections to these

rates are all related to the conditional variance of the fluctuations in

the total moles per unit mass which is a suitable progress variable for

the one-step reduced mechanism for this system. Only one extra equation -

for this variance - need then be solved to obtain closure which is made

using a presumed form for the conditional pdf of this progress variable.

Results for NO formation in a turbulent jet diffusion flame of hydrogen

are shown in Fig. 43 for distances from the nozzle exit plane, x, equal

to 0.125, 0.5 and 0.75 of the visible flame length, Lv. Results at the

downstream positions including at the visible flame length (not shown

here) are excellent. Discrepancies remain at positions close to the

nozzle. These are likely to be due to the effects of differential
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diffusion (see Section 9.4) and problems of modelling the mixing at the

outer edges of the jet where the flame sits at these locations.
87Mastorakos et al have used DNS to study autoignition in homogeneous

turbulence with initially nonpremixed cold fuel and hot air. They find

that the turbulence has a very significant effect on the time for

ignition. Locally high values of scalar dissipation result in lowering the

temperature due to high conduction losses. Fluctuations about the

conditional average temperature are quite large and must be included in

the modelling of the reaction rate if predictions of the ignition time are
86to be at all accurate. Mastorakos and Bilger have formulated a second

order closure CMC model for this system and find excellent agreement of

the predictions with the DNS as is shown in Fig. 44.
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9. CONDITIONAL MOMENT METHODS: FURTHER TOPICS

The topics considered in Section 9 are prospective topics for futher

development of the Conditional Moment Closure. These involve the

differential diffusion, CMC with multiple conditions, CMC for spray

compustion, CMC for premixed combustion and CMC & Lagrangian modelling.

The CMC-like techniques can be applied to generate conditional equations

with conditioning variables which are different from the conventional

mixture fraction. New types of conditions generate new equations with new

applications. We shall refer to these CMC-like methods as conditional

methods. The extend of the discussions presented here is determined by the

relevance to the original topic of this review - the turbulent combustion.

9.1. Differential Diffusion

In this section we consider the equation for the conditional mean

Q ≡ <Y⏐ξ=η> ≡ <Y⏐η> when the conserved scalar and the reactive scalar have

different diffusion coefficients

∂ξ & * & *ρ---------- + ρ v⋅∇ξ - div Dρ∇ξ = 0 (9.1)∂ t 7 8 7 8

∂Y & * & *ρ----------- + ρ v⋅∇Y - div DYρ∇Y = Wρ (9.2)∂ t 7 8 7 8

That is D≠DY in these equations. The difference in the diffusion

coefficients can affect the CMC equation for Q as well as induce some

additional generation of the conditional variance G. Here we focus only on

the conditional expectations of the first moments. In Sec. 9.1.1 the

general unclosed CMC equation is derived. In Sec.9.1.2. we follow
66Kronenburg and Bilger and consider the closures which provide good

agreement with the DNS calculations.

9.1.1 Derivation of the unclosed equation

As in Sec.3.1.2, we derive the governing equation for Yψη where

ψη≡δ(ξ(x,t)-η) and then average it. Equation (2.43) is used as the

equation for ψη (η=Z1, ξ=Y1, W1=0, n=1). This equation is multiplied by Y

and added to Eq.(9.2) multiplied by ψη to obtain
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∂ψηρY & * ∂ψηYd i v(Dρ∇ξ)
---------------------------- + div vψηρY + [------------------------------------------------------------------------- - ψηdiv(DYρ∇Y) = ψηWρ (9.3)∂ t 7 8 ∂η

The derivation of the following equations is similar to the derivation of

Eqs.(3.7) and (3.8)

2
& * ∂ & 2* ∂ & *div YDρ∇ψη = ---------------] ψη YDρ(∇ξ) - [----------- ψη div(YDρ∇ξ)
7 8 2 7 8 ∂η7 8∂η

2∂ & 2* ∂ & * ∂ & *= --------------------] ψη YDρ(∇ξ) - [----------- ψη Y div(Dρ∇ξ) - ----------- ψη Dρ(∇ξ⋅∇Y) (9.4)
2 7 8 ∂η7 8 ∂η7 8∂η

& * & * ∂ & *div ψηDYρ∇Y = ψη div DYρ∇Y - -----------] ψηDYρ(∇ξ⋅∇Y) (9.5)
7 8 7 8 ∂η 7 8

The two last term on the left-hand side of Eq.(9.3) are modified using

Eqs.(9.4) and (9.5)

2∂ψηρY & * ∂ & 2* ∂ & *
---------------------------- + div vψηρY + ---------------] ψη YDρ(∇ξ) - ----------- ψη (D+DY)ρ(∇ξ⋅∇Y) -∂ t 7 8 2 7 8 ∂η7 8∂η

& * & *- div Dρ∇(Yψη) - div ψη(DY-D)ρ∇Y = ψηWρ (9.6)
7 8 7 8

Averaging of Eq.(9.6) yields

∂QP(η)ρη & * ∂JY----------------------------------------] + div <vY|η>P(η)ρη = <W|η>P(η)ρη + -----------] + eD (9.7)∂ t 7 8 ∂η

where
∂<NY|η>P(η)ρηJY ≡ <(D+DY)(∇Y⋅∇ξ)|η>P(η)ρη - -----------------------------------------------------------------------------] (9.8)∂η

& * 2& *eD ≡ div <(DY-D)ρ∇Y|η>P(η) + ∇ <DρY|η>P(η) -
7 8 7 8

& *- div <Y∇(Dρ)|η>P(η) (9.9)
7 8

2and N ≡ D(∇ξ) . The differential diffusion effects are significant at

moderate Reynolds numbers and the term eD is retained in Eq.(9.7) . We use

the term "moderate" to emphasize that we do not consider the limit ReL∞
but, practically, the Reynolds number can be as large as in real

combustors. The first term of the representation of eD in Eq.(9.9) can be
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expected to be most significant.

Considering the differential diffusion effects we still can apply the

CMC approximation (3.10) to JY and we still should require that Q=Y=a,

W=0, a=const is the solution of Eq.(9.7) but the solution Y=ξ, W=0 is not

valid if D≠DY in Eqs.(9.1) and (9.2) . Hence, as in Sec.3.1.3, we can

find the coefficient A in Eq.(3.10) but the coefficient B is not

determined. The approximation for JY takes the form

∂<N|η>P(η)ρη ° ∂QJY = - ------------------------------------------------------------------ Q + B <N|η>P(η)ρη[-------------] (9.10)∂η ∂η

°where B ≡B/(<N|η>P(η)ρη) is unknown.

The unclosed equation can also be derived by the decomposition

method. Details of the derivation are similar to those given in Section
123.2 and may be found in Bilger . The resulting equation is

2∂Q DY ∂ Qρη------------- + ρη<v|η>⋅∇Q - ρη[-------------]<N|η>[-------------------] = ρη<W|η> + eQ + eY (9.11)∂ t D 2∂η

where

∂QeQ ≡ < div(ρDY∇Q) + ρDY∇ξ⋅∇------------- |η> +∂η
& DY * ∂Q
[-------------] - 1 <div(ρD∇ξ)|η> ------------- (9.12)
7 D 8 ∂η

and

∂Y″ & *eY ≡ - < ρ---------------- + ρv⋅∇Y″ - div DYρ∇Y″ |η> (9.13)∂ t 7 8

In the above the ratio DY/D has been assumed constant even though the

diffusivities are varying. These equations can be compared with Eqs

(3.22) - (3.24) for the equal diffusivity case. It is seen that Dy

replaces D in some places and that a new term appears in the definition of

eQ, involving the difference in the diffusivities

& DY * ∂QeQ3 ≡ ρη [-------------] - 1 Mη ------------- (9.14)
7 D 8 ∂η

where
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1Mη ≡[----------]<div(ρD∇ξ)|η> (9.15)ρη

is the conditional diffusion and is related to the conditional dissipation

Nη by

∂NηPηρηMηPηρη = ---------------------------------------] (9.16)∂η

as can be seen from Eq. (2.49). It is seen that Mη remains finite at

large Reynolds numbers and hence eQ3 will also remain finite. It is the

source term that generates differential diffusion. At moderate and high

Reynolds number the other terms in eQ are negligible, as before, and Eq.

(9.11) may be written

∂Qρη------------- + ρη<v|η>⋅∇Q =∂ t
2DY ∂ Q & DY * ∂Qρη<W|η> + ρη[-------------]Nη[-------------------] + ρη [-------------] - 1 Mη ------------- + eY (9.17)D 2 7 D 8 ∂η∂η

It is apparent that, if differential diffusion effects are to tend to zero

at high Reynolds number, the term eY must be such as to counteract the

effects of eQ3 at high Reynolds number. Closure for eQ3 is first examined

for nonreacting homogeneous flow.

9.1.2. Closure for nonreacting homogeneous flow

66Kronenburg and Bilger consider the mixing of two nonreactive

scalars with mass fractions, normalized by their maximum values, YA and

YB, and initial conditions such that they are essentially separated so

that while YA + YB = 1 everywhere, YA≈1, YB≈0 or YA≈0, YB≈1 over most of

the field. The mixture fraction, ξ, and differential diffusion, z, are

defined

ξ ≡ (1 + YA - YB)/2 (9.18)

z ≡ (1 - YA - YB)/2 (9.19)
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For species diffusivities DA and DB the balance equations for ξ and z in

uniform property flow are

∂ξ & * 2 2
---------- + v⋅∇ξ - Dξ∇ ξ = -d∇ z (9.20)∂ t 7 8

∂z & * 2 2
--------- + v⋅∇z - Dξ∇ z = -d∇ ξ (9.21)∂t 7 8

where Dξ ≡ (DA + DB)/2 and d ≡ (DA - DB)/2. It is seen that the mixture

fraction has a differential diffusion source term, but this is found to be

of little significance.

The conditional average Qz of z, Qz≡<z|η> has a balance equation

similar to Eq. (9.17) , and for homogeneous turbulence and scalars this

may be written

2∂Qz DY ∂ Qz 2 2 ∂Qz---------------- = ------------- <N|η>[---------------------- - d<∇ ξ|η> + d<∇ z|η> ---------------- + eY (9.22)∂ t D 2 ∂η∂η

2In this equation -d<∇ ξ|η> is the source term for differential diffusion

corresponding to eQ3 in Eq.(9.14). It will remain significant at high

Reynolds numbers. A model for eY is required which will give the right

behaviour for Qz.
66Kronenburg and Bilger carried out direct numerical simulations of

this problem using a pseudo-spectral code. A typical result for z as a

scatterplot against ξ and Qz against η is shown in Fig. 45 In this

simulation ScA = 1 and ScB = 0.5. It is seen that while the conditional

variance of z is quite large, Qz is of the same order of magnitude, being

positive for low values of η and negative at high values. The shape of

Qz(z) mirrors that of Mη which has an "N"-like shape for this flow. (It is

noted that for homogeneous turbulence with a Gaussian mixture fraction
7pdf, Nη is independent of η so that Nη = <N> ; and from Eq.(9.16) it is

seen that Mη will be a straight line going through zero at η = <ξ> and
2having a slope of -<N>/<(ξ") >.)

From the DNS data it was found that eY has the shape of Qz and a rate

proportional to the reciprocal of the Kolmogorov time scale, τK. The

model recommended for eY is

p p1/2
p D A -DB p Q zeY = - 0.4 p[---------------------------------]p [-----------------------] (9.23)
p Dξ p τ K
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With this model for eY Eq.(9.22) gives good predictions of Qz over the

range of DNS investigated including variations in <ξ> and ScA, ScB. The

model also predicts that Qz L 0 as the Reynolds number becomes large.
100Nilsen & Kosaly have carried out DNS studies at higher Reynolds numbers

and confirm this modelling for eY.
147Yeung & Pope studied differential diffusion in decaying isotropic

turbulence using DNS. They report results for the correlation coefficient,

ρAB, for the two species. This is found to decay towards zero. As shown by
66Kronenburg and Bilger , the correlation coefficient contains no

information about the conditional average differential diffusion and

& 2 2 *2
|ρAB| ≈ 1 - 2 <(z") >/<(ξ′) > (9.24)

7 8

where z" ≡ z - Qz. The correlation coefficient is thus more a measure of

the conditional variance. We note that if the conditional variance is

very small, A and B could be nearly perfectly correlated but still show a

large amount of differential diffusion with Qz ≠ 0. For closure of the

chemical source terms it is apparent that the conditional average of the

differential diffusion is the quantity of primary importance.

9.1.3. Closure for reacting flow

′ 101Nilsen & Kosaly have used DNS to study differential diffusion in

homogeneous turbulence with a single step irreversible reaction with

differing Schmidt numbers for the reactants. They present a model for the

differential diffusion which neglects the contribution from eY discussed

in the previous section, but they require the modelling of a conserved
67 ,70scalar with an intermediate Schmidt number. Very recent results

at Sydney University indicate that good predictions are obtained if the

above model for eY is used for those species that have a non-unity Lewis

number.

9.2. CMC with Multiple Conditions

Previously, we mainly considered combustion occurring in a turbulent

flow resulted from mixing of two streams: stream of fuel and and stream of
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oxidizer. This two-stream mixing process is characterized by one scalar

value - the mixture fraction. There are, however, some practical cases

when one mixture fraction variable is not sufficient. These cases are

referred to as cases with multi-stream mixing. For example, mixing of

three separate streams of fuel, oxidizer and an inert gas should be

characterized by two independent conserved scalars. Some features of
48three-stream mixing are considered by Juneja and Pope . More complicated

mixing schemes may need more than two scalars. In terms of the conditional

methods advanced in the present review, this requires consideration of

conditional expectations with several different conditioning variables.

The CMC equations can be generalized for conditional expectations

with multiple conditions. In this section, Q is defined as

Q ≡ <Y⏐ξ1=η1,...,ξn=ηn> ≡ <Y⏐η> where η ≡ (η1,...ηn). The conserved
------ ------

scalars ξi and the reactive scalar Y are governed by the equations

∂ξ i & * & *ρ----------] + ρ v⋅∇ξi - div Dρ∇ξi = 0; i=1,...,n (9.25)∂ t 7 8 7 8

∂Y & * & *ρ----------- + ρ v⋅∇Y - div Dρ∇Y = Wρ (9.26)∂ t 7 8 7 8

The derivations of the CMC equations with multiple conditions are similar

to the derivations of the CMC with one-variable conditions considered in

Sec.3.1 and Sec.3.2. We assume here that the conserved scalars do not

coincide with each other. Practically, such a situation, when we need more

than one conserved scalar, can appear if combustion occurs in a turbulent

flow formed by three or more streams. The example is given by an oxidizer

jet and a fuel jet injected into air. In this case, the mixing

characteristics are determined by two conserved scalars. The main terms of

the CMC equation which are related to double-conditioning (ξ1=η1 and
11ξ2=η2) were obtained by Bilger , except that he considered one of the

scalars to be reactive. In that case the reactive scalar was formulated

as a progress variable and the application envisaged was for a

conventional 2-stream mixing problem with local extinction or ignition

events giving rise to large fluctuations about the conditional mean.

Little further progress has been made on this problem and it will not be

considered in detail here.
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9.2.1. The pdf method

The relationship of the conditional expectation Q, the joint pdf

P(Z,η) (where Z is the sample space variable for Y) and the pdf P(η) is
------ ------

given by Eq.(2.15)

+∞
iQ P(η) ≡ <Y|ξ=η> P(η) = Z P(Z,η)dZ (9.27)

------ ----- ------ ------ j ------

-∞

We utilize the joint pdf equation (2.48) which is valid for the case of

large Re numbers and consider this equation as the equation for P(Z,η). We

put in Eq.(2.48) ηi=Zi,Wi=0 (i=1,...,n); Z=Zn+1, W=Wn+1. This equation is

multiplied by Z and integrated over all Z. The terms which involve ∂/∂Z

are integrated by parts. The result of the integration is

∂ & * & * ∂J i-------- QP(η)ρη + div <vY|η>P(η)ρη = <W|η>P(η)ρη + -----------] (9.28)∂t7 ------ 8 7 ------ ------ 8 ------ ------ ∂η i

∂ & *Ji ≡ 2<D(∇Y⋅∇ξi)|η>P(η)ρη - -----------] <NijY|η>P(η)ρη (9.29)
------ ------ ∂η j 7 ------ ------ 8

where ρη≡<ρ|η>, Nij ≡ D(∇ξi⋅∇ξj) is the dissipation tensor and i,j=1,...,n
------

here and further on. A sum is taken over repeated indices. Equation (3.4)

has n+4 independent variables: t, x1, x2, x3 and η1,...,ηn.

The flux of a reactive scalar in conserved scalar space, Ji, is

approximated by the diffusion approximation

∂QJi = AiQ + Bij[-------------] (9.30)∂η j

The arguments supporting this approximation is similar to the arguments

for Eq.(3.10) given in Sec.3. We do not assume any particular form of the

coefficients Ai and Bij but they are fully determined by a the following

constraint: if W=0 and a=const, bk=const then Y=a+bkξk is a solution of

Eq.(9.26) for any arbitrary velocity field. According to Eq.(2.17) this

solution corresponds to Q=a+bkηk. The substitution of Y=a+bkξk into

Eq.(9.29) yields

& *∂ & *Ji = - a+bkηk -----------] <Nij|η>P(η)ρη ]+ bj<Nij|η>P(η)ρη (9.31)
7 8∂η j 7 ------ ------ 8 ------ ------
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while the substitution of Q=a+bkηk into Eq.(9.30) yields

Ji = (a+bkηk)Ai + bjBij (9.32)

Since Eqs.(9.31) and (9.32) are valid for any arbitrary constants a and

bk, the coefficients Ai and Bij must be determined by the corresponding

terms in Eq.(9.31). The closure for Ji takes the form

∂ & * ∂QJi = - Q -----------] <Nij|η>P(η)ρη + <Nij|η>P(η)ρη[--------------- (9.33)∂η j 7 ------ ------ 8 ------ ------ ∂η j

Equation (9.28) takes the form

∂ & * & *
-------- QP(η)ρη + div <vY|η>P(η)ρη = <W|η>P(η)ρη -∂t7 ------ 8 7 ------ ------ 8 ------ ------

2 2∂ & * ∂ Q- Q ------------------------] <Nij|η>P(η)ρη + <Nij|η>P(η)ρη[-----------------------------] (9.34)∂ηi∂η j 7 ------ ------ 8 ------ ------ ∂η i ∂η j

Equation (9.34) is the CMC equation with multiple conditions. The

alternative form of this equation

& *div <v ″Y″|η>P(η)ρη7 ------ ------ 8 2∂Q ∂ Q
------------- + <v|η>⋅∇Q + ----------------------------------------------------------------------------------------------------- - <Nij|η>[-----------------------------] = <W|η>(9.35)∂ t ------ ------ ∂η i ∂η j ------P(η)ρ η------

can be obtained by using the equation for the joint pdf P(η). The
------

double-prime denotes the fluctuations about the conditional mean

(⋅)″≡(⋅)-<⋅|η>.
------

9.2.2. The decomposition method

In this section we consider the alternative way to derive the

equation for Q(η,x,t)≡<Y(x,t)|η>. This derivation is based on the
------ ------

decomposition

Y(x,t) = Q(ξ(x,t),x,t) + Y″(x,t) (9.36)
-----
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The differentiation rules for Eq.(9.36) are given by

∂Y ∂Q ∂Q ∂ξ i ∂Y″
[-----------] = -------------] + -------------] ----------] + -----------] (9.37)∂ t ∂ t ∂η i ∂ t ∂ t

∂Q∇Y = ∇Q + -------------]∇ξi + ∇Y″ (9.38)∂η i

2∂Q ∂ Qdiv(ρD∇Y) = div(ρD∇Q) + -------------]div(ρD∇ξi) + ρD(∇ξi⋅∇ξj)[-----------------------------] +∂η i ∂η i ∂η j

∂Q+ ρD∇ξi⋅∇-------------] + div(ρD∇Y″) (9.39)∂η i

We substitute Eqs.(9.37) -(9.39) into Eq.(9.26) and use Eq.(9.25). The

result is conditionally averaged (with the condition ξ(x,t)=η)
----- ------

2∂Q ∂ Qρη------------- + ρη<v|η>⋅∇Q - ρη<Nij|η>[-----------------------------] = ρη<W|η> + eQ + eY (9.40)∂ t ------ ------ ∂η i ∂η j ------

where

∂QeQ ≡ < div(ρD∇Q) + ρD∇ξi⋅∇-------------]| ξ(x,t)=η > (9.41)∂η i ----- ------

∂Y″ & * & *eY ≡ - < ρ---------------- + ρ v⋅∇Y″ - div Dρ∇Y″ | ξ(x,t)=η > (9.42)∂ t 7 8 7 8 ----- ------

This equation is unclosed. In order to close this equations we consider

the identity

i ∂Y″ρ & * & *- eYP(η)dη1...dηn = < ----------------------] + div ρvY″ - div Dρ∇Y″ > =
j ------ ∂ t 7 8 7 8

∂<Y″ρ> & * & * & *
----------------------------------] + div <ρvY″> - div <Dρ∇Y″> = div <ρv″Y″> =∂ t 7 8 7 8 7 8

i & *= div ρη<v″Y″|η>P(η) dη1...dηn (9.43)
j 7 ------ ------ 8

which derivation is similar to derivation of Eq.(3.27). The hypothesis

which is utilized here is

& *eYP(η) = - div ρη<v″Y″|η>P(η) (9.44)
------ 7 ------ ------ 8
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is the generalization of Eq.(3.28) and does not need any specific

comments. The term eQ is small for large Reynolds numbers and can be

neglected (see Sec.2.3.3). Equation (9.40) takes the form

& *div <v ″Y″|η>P(η)ρη7 ------ ------ 8 2∂Q ∂ Q
------------- + <v|η>⋅∇Q + ----------------------------------------------------------------------------------------------------- - <Nij|η>[-----------------------------] = <W|η>(9.45)∂ t ------ ------ ∂η i ∂η j ------P(η)ρ η------

9.2.3. Discussion

It is easy to see that both methods of derivation of the CMC equation

with multiple conditions yield identical equations (9.35) and (9.45). This

supports the validity of these equations. Practically, solving the CMC

equation with multiple conditions is more complicated than solving the

standard CMC equation. The conditional dissipation tensor <Nij|η> needs
------

further approximations which must be consistent with the equation for

P(η). The large number of independent variables represent the additional
------

difficulty. Equations (9.35) and (9.45) must be solved in a domain which

has a configuration that is more complicated than the interval ηmin≤η≤ηmax
48for one-variable CMC. The paper by Juneja and Pope analyzes general

properties of the two-scalars pdf P(η1,η2) and presents some interesting

DNS results for P(η1,η2).

9.3. CMC and Spray Combustion

In this section we consider a spray of droplets in a turbulent flow,

the effects of the evaporation of the droplets and the mixing and

combustion of the vapour. Our primary interest is in the formulation of

the CMC method taking into account the significant variations of the

concentrations of evaporated species in the inter-droplet space. In this
61consideration we follow Klimenko and Bilger . Existing methods (see

35,36 1Faeth , Bachalo ) treat the problem of the mixing of the spray as a

whole arising from the penetration of the spray into the surrounding air

and from the mixing processes associated with the large scale turbulence.

The droplets themselves and the inter-droplet distances are small compared

with the integral scale of the turbulence. Evaporation from the droplets
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causes a lot of fine scale structure in the scalar field and this can be

important in the combustion process. Thus, if the spray is dilute it can

affect the structure and pollutant formation in the reaction zone of the

flame; and if the spray is less dilute it will affect formation of soot

and other pollutants such as PCAH (poly-cyclic aromatic hydrocarbons) and

NOx from fuel bound nitrogen.

9.3.1. Basics of droplet evaporation and combustion

144Williams treats the theory of quiescent burning droplets. This can
14be recast in terms of mixture fraction ϕ introduced by Bilger . The

conditions at the surface which separates liquid and gas phases for the

sensible enthalpy h, for the mass fraction Y of the evaporating substance

and for mixture fraction are given by

⋅ & ∂Y *m(Yd-Ys) = - ρD[-----------] (9.46)
7 ∂n s8s

⋅ & ∂h *m(hd-hs) = - ρD[----------] (9.47)
7 ∂n s8s

⋅ & ∂ϕ *m(fd-fs) = - ρD[-----------] (9.48)
7 ∂n s8s

⋅where m≡ρvn is the local mass flux, ns is the outer normal vector at the

droplet surface, subscript "d" corresponds to conditions inside the

droplets and subscript "s" denotes values taken at the "gas side" of the

surface (ϕ=fd inside the droplets and ϕ=fs at the droplet surface).

Mixture fraction ϕ is defined as the mass fraction of droplet material

such that it is conserved under chemical reaction and applies in the gas

phase between the droplets (in most of the cases ϕ is introduced so that

fd=1 and f0=0; where f0 is the value of ϕ in the inter-droplet space before

evaporation starts). The new notation "ϕ" is used to distinguish the

mixture fraction from the conserved scalar ξ which is not affected by the

evaporation processes. The scalar transport equations determine evolution

of scalars Y, h and ϕ in the gas phase but in the case of scalar ϕ this

equation has zero source term. Differential diffusion is not considered

here and the diffusion coefficients, D, are assumed to be the same for all

components. Concentration Ys=Ys(hs) is the saturation concentration
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corresponding to hs. In many cases, not only the boundary conditions for

Y, h and ϕ but also the scalar fields themselves have a certain degree of

similarity.

We denote by <⋅>g the value of (⋅) averaged over the gas phase for

distances small compared to the integral length scale of the turbulence
-1/3and large compared with the inter-droplet distance, rc=c with c the

number density of the droplets. At these scales we define the overall

mixture fraction (including liquid and gas) of the droplet material as ξ,

and the mass fraction of liquid droplets as αd so that ξ=αdfd+αgfg where

αg=1-αd, fg≡<ϕρ>g/ρg, ρg≡<ρ>g. The overall density is given by
° ° ° 3ρ+=αdρd+αgρg where αd≡4πrdc/3 is the specific volume occupied by the

° ° °droplets, αg=1-αd, αd=αdρd/ρ+ and rd is the droplet radius. Existing
35methods can be used to find the first and second moments of fg and αd in

the spray field. They will determine the gross burning characteristics of

the spray. The CMC equations with condition ξ=η can be also used to find

the overall evaporation characteristics. The overall mixture fraction ξ is

a conserved scalar whose fluctuations are determined by turbulent

macro-transport and ξ is not directly affected by the evaporation

processes. Our prime interest here is, however, different: application of

the CMC equations to the inter-droplet combustion processes.

The characteristics of the inter-droplet field ϕ are determined by

the evaporation rate. The mass evaporation rate Jm of a single droplet is
2 ⋅given by Jm=4πrdm. In order to close the problem Jm should be expressed in

terms of the characteristics of the inter-droplet field. The mass

evaporation rate Jm of a single droplet is determined by the Nusselt
14number

⋅2rd m J m f s -f2Nu = [--------------------------------------------------------------] = -----------------------------------------------------------------------------]; B ≡ [------------------], (9.49)
ρ1D 1 ln ( 1+B) 2πrdρ 1 D1ln(1+B) fd-f s

where f2 is a constant which is discussed in Sec.9.3.3. Index ’1’ is

related to the values taken in the inter-droplet space, at sufficient

distance from each individual droplet.If droplets are non-inertial and

density and diffusivity are constants then Nu=2. For inertial droplets the
1/2Nu number can be estimated as Nu=2(1+0.3Red ).
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9.3.2. Formulation of the CMC model

Fluctuations of the reactive species can arise from two main causes:

1) turbulent macro-transport and 2) inter-droplet micro-processes. In

general, averages with double conditioning Q≡<Y|ξ=η,ϕ=f> should be used

here. The variations of ξ are related to the turbulent macro-transport and

the variations of ϕ are related to inter-droplet micro-processes. We are

most interested, however, in the description of the inter-droplet

processes. In order to exclude the macro-fluctuations from our

consideration we investigate the case of homogeneous turbulence with

ξ=const. The conditional expectation Q is introduced here as

Qi≡<Yi|ϕ=f>≡<Yi|f> where index "i" corresponds to different species.

The CMC equations in homogeneous turbulence can be written here as

usual (see Eq.(4.30))

2∂Qi ∂ Q i--------------- = <N|f> ----------------------] + <Wi|f> (9.50)
2∂ t ∂ f

2∂Qh ∂ Qh----------------- = <N|f> ----------------------] + <Wh|f> (9.51)
2∂ t ∂ f

2where Qi≡<Yi|f>, Qh≡<h|f>, N≡D(∇ϕ) , Wi and Wh are the chemical source

terms which do not include the mass exchange due to evaporation. The

boundary conditions for Eqs.(9.50) and (9.51) can be written as

(Yi)d-Qi ∂Qi q ∂Qhf=fs: [----------------------------------] = [---------------], [----------------------------] = - [-----------------], Qs=Ys(hs) (9.52)
f d - f s ∂ f fd - fs ∂ f

f=f0: Qi=(Yi)0, Qh=h0 (9.53)

where q is the evaporation enthalpy q≡hs-hd; (Yi)d specifies conditions

inside the droplets: (Yi)d=Yd=1 for the evaporating substance and (Yi)d=0

for others. The index "0" in Eq.(9.53) corresponds to the conditions in

the inter-droplet space before evaporation and reactions start. Boundary

conditions (9.52) are obtained from Eqs.(9.46)-(9.48). In general, fs is

unknown function of time so Eqs.(9.50) and (9.51) are to be solved in the

time-dependent domain fs(t)≥f≥f0. Function fs(t) is determined by the
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saturation condition Qs=Ys(hs) for evaporating substance.

As usual, equations (9.50) and (9.51) are to be solved in

conjunction with the pdf equation

2∂P(f)ρ f ∂ <N|f>P(f)ρ f--------------------------------- + ---------------------------------------------------------------------] = 0 (9.54)
2∂t ∂ f

° °where P(f)ρf = αdδ(f-fd)ρd + αgPg(f)ρf, ρf≡<ρ|f> and P(f) is the pdf of ϕ.

The Delta-function in the pdf P(f) is related to the conditions inside

droplets. Equation (9.54) is valid only in the gas phase fs(t)>f≥f0 where
°the pdf is smooth P(f) = αgPg(f). Modeling of <N|f> is required to close

Eqs. (9.50) and (9.51). If P(f) is given, <N|f> can be calculated from

(9.54) with proper boundary conditions for <N|f> P(f) (see Sec.2.4). The

pdf P(f) and the dissipation <N|f> have certain distinctive features which

require special consideration. Modeling of Pf and <N|f> is considered in

the next section.

9.3.3. The mixture fraction pdf and dissipation in sprays

2In this sections we consider specific features of Nf ≡ <D(∇ϕ) |ϕ=f>

and Pf≡P(f) which are related to the spray micro-structure. The new

notations Nf and Pf are used here for the conditional dissipation and the

pdf of the mixture fraction ϕ. The mixture fraction ϕ was introduced in

Sec.9.3 as the mass fraction of the droplet material such that it is

conserved under chemical reaction. Here, we consider the micro-structure

of the mixture fraction field which is related to discrete nature of the

evaporation sources. Various types of spray micro-structure can be

identified. These are considered in two main classes: those in which the

droplets are essentially non-inertial with no motion relative to the

fluid; and those in which the droplets are inertial and move relative to

the surrounding fluid. Several regimes exist within each of these classes.

Information on the pdfs and scalar dissipation is obtained using

dimensional analysis, asymptotic matching methods and existing analytical

solutions.

Figure 46 shows schematically two classes of the micro-structure of
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the spray. In Fig. 46(a) the inertial time scale for the droplets τd

(equations determining τd are discussed later) is small compared with the
1/2Kolmogorov time scale τK=(ν/εt) , where εt is averaged dissipation of

energy and ν is kinematic viscosity coefficient. The droplets have lost

their initial momentum from the spray nozzle and now are moving with

essentially no relative motion to the gas phase. Evaporation from the

droplets causes the scalar field to be spherically symmetric close to the

droplets. In Fig. 46(b) the inertia of the droplets causes motion relative

to the gas phase as the gas phase accelerates due to fine scale turbulent
1motion. This will occur when τd>τK. The wakes of the droplets cause a lot

of fine scale structure in the scalar field.

In the absence of the discrete sources of the evaporating gas - the

droplets - the small scale structure of the turbulent scalar field is

determined by two parameters: scalar dissipation and viscosity

(diffusivity). In the theory of small-scale turbulence, the required

characteristics of the scalar field are determined by the analysis of the

dimensions involved (that is by applying the Π-theorem). In the presence

of the evaporating droplets the structure of the turbulent scalar field is

more complicated and may involve several different asymptotic zones. The

basic principles of the analysis remain the same: finding the determining

parameters for each zone and then using the Π-theorem to determine the

shape of the functions <N|f> and P(f) that we are interested in. It should

not be forgotten that <N|f> and P(f) are also linked by Eq.(9.54).

i) Non-inertial Droplets

Here, we consider the droplets which do not have any significant

velocity relatively to the continuous phase (Fig. 46(a)). For a single
144droplet under stagnant conditions the solution f(r) is well-known . The

function f(r) determines also the pdf Pf and the conditional scalar

dissipation Nf (Section A in Tab. 3). At distances of a few times larger

than rd the Stefan flow can be neglected and the scalar f transport is

determined by diffusion. Since rc is normally much smaller than turbulence
63integral macroscale L, we apply here the logic of Kolmogorov theory of

small-scale turbulence. The diffusion asymptote (Section A+ in Tab. 3) has

two determining parameters for f-f2: diffusion coefficient D1 and the
2 ⋅diffusion component of the flux J1≡Jm(fd-f2)/ρ1 (where Jm=4πrdm is the

mass evaporation rate of the droplet; f2 specifies effective conditions

for f at a large distance from the droplet; D=D1, ρ=ρ1 for r»rd; effects
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related to Sc≠1 or Pr≠1 are not considered). The determining parameters

are framed in the table. If droplet is surrounded by a turbulent flow, the

dissipation of turbulent energy εt should also be included into the list

of determining parameters for scales of order of or larger than Kolmogorov

length scale lK since the scalar field f is affected by turbulence and εt

is a determining parameter for the small scale turbulence. (We assume that

the Stefan flows do not destroy small-scale structure of turbulence but

the global expansion due to the Stefan flows must be, of course, taken

into consideration. Normally, lK is at least few times larger than rd.)

Equations for Pf and Nf predicted by the Π-theorem are included in Sec.B,

Tab. 3. The Kolmogorov Scale Zone is asymptotically matched with the Near
2Zone for rd«r«lK. This specifies constant (2π) in Sec.B-, Tab. 3.

Constant A1 in Sec.B+ remains unknown.
-1/3At the distances ~ rc≡c (where c is the number density of the

droplets) the scalar field f is not determined by a single droplet. There

are two cases case 1: lK<rc and case 2: lK>rc (strictly speaking lK«rc and

lK»rc) considered in Sec.C, Tab. 3. The determining parameters for

equations in Sec.C are: the diffusion component of the collective

evaporation rate W1≡Wm(fd-f2)/ρ1 (where Wm is collective mass evaporation

rate per unit volume); concentration c; dissipation of the turbulent

energy εt (in the case 1) and diffusion coefficient D1 (in the case 2).
°These parameters yield equations for value f with the dimension of f. If

droplets are different, then the values of J1 are different for different

groups of the droplets cJ1=W1β. The mean value of β over all droplets is

unity. The pdfs considered in Sec.A,B are conditioned on J1. If all of the

droplets are similar then β≡1 and J1=W1/c. In general, it is plausible to
2 2 1/2 °estimate: f ′≡(<ϕ >g-<ϕ>g) =const⋅f , but we should note here that in

some cases the asymptote of the pdf Pf has the tail with non-integrable
°second moment and f determines the dispersion only for the core part of

the pdf. The core parts of Pf and Nf (Sec.C, Tab. 3) are asymptotically

matched with the equations of Sec.B (case 1) or with the equations of

Sec.A (case 2). In the Inter-droplet Zone the density does not vary ρ=ρ1

and we assume that fg≡<ϕρ>/ρg=<ϕ>g (<ϕ>g is determined by the core part of

the pdf).
° ° ° °The shapes of the functions PK, NK, Pc and Nc are not determined by

° °Π-theorem or by asymptotical matching, but we approximate PK and NK by

assuming that B- equations are valid for r≤lK, f≥f(lK) and B+ equations

are valid for r≥lK, f≤f(lK). This gives an approximate value of
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-2/7A1≈(4π) (we assume here that φ2≈0). The scalar field f in inter-droplet

space is a superposition of the scalar fields generated at least by a few

of the droplets located in the vicinity of the physical point under

consideration. If sources J1 of these droplets are approximately of

similar intensity (or similar order of intensity) then, according to the

central limit theorem, we expect the pdf Pf to be Gaussian. This is not

valid for small distances r«rc when f is determined by one of the

droplets. So we can assume that the pdf has a Gaussian core and an

adjoined power function specified in Sec.C1- or Sec.C2-. The values of φ1

and φ2 are expected to be universal constants. Constant φ1 is linked with

the dispersion of the Gaussian core of the pdf.

ii) Inertial Droplets

If the characteristic relaxation time τd is greater than the

Kolmogorov time scale τK, the droplets move relatively to the continuous
1phase . The heat and mass transport occur in the wake-like structures

(Fig. 46(b)) which have determining parameters different from parameters

considered in previous section.

For further estimations we consider the case when τd belongs to the

inertial interval range (this is valid in most of the practical cases).
141 2The relative velocity of a droplet can be estimated as ud=A2εtτd

(A2=const). Let us assume first that τd is determined by the Stokes
2equation τd=τst≡2rdρd/(9ρν). A droplet has a relative motion if

21<(τd/τK)≈(rd/lK) ρd/ρ. The Reynolds number for the droplet motions is~
2 1/2introduced as Red≡2rdud/ν≈(rd/lK) (ρd/ρ) . If Red>1 the Stokes equation~

126overestimates τd and ud. In this case τd should be corrected
0.687 -1τd=τst(1+0.15Red ) . After elementary transformations we obtain

0.687 1/2Rest=Red(1+0.15Red ) so the Reynolds number Red is a function of

Rest which is formally calculated from Rest≡2rdust/ν,

In the case of moving droplets it is more difficult to find

analytical formulas for the Near Zone (Sec.A, Tab. 4), but the far

asymptote of the Near Zone (Sec.A+, Tab. 4) is usually a laminar wake with

the scalar f intensity S1≡J1/ud which is then entrained and expanded by

turbulence. Functions Pf and Nf are found by integrating over the wake

sectors with given value of f. The estimations and matching procedures for

other zones are similar to ones carried out in the previous section,
°except that f can not be determined from dimension analysis and it is

found by matching with zones B+ or A+. We note also that characteristic
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droplet relaxation length ru≡τdud≈τstust is normally much larger than rc
0.5 1/3for droplets with τd/τK»1 since ru/rc ≈ (τd/τK)((ρd/ρ) cm) ~ τd/τK

0.5 1/3(cm is mass concentration of the dispersed phase and ((ρd/ρ) cm) ~1 in

most of the practical cases). Constant A1 can be estimated as
-1/3A1≈(4π) /2.

iii) Remarks for Practical Applications

Tables 3 and 4 specify various possible regimes and asymptotes. It is

not easy to support all of these regimes in applications. In practice we
acan use the pdf with the Gaussian core and the power tail Pf~(f-f1) . The

value of a can be taken to match the asymptote in the region which is most

important for combustion processes. The scalar dissipation Nf can be found

then from the pdf equation given by Eq.(9.54). Note that NfPfρf=cJm(fd-f)

is the quasi-steady-state (∂Pf/∂t≈0) solution of the pdf equation. This

solution is valid for the tail region but the time derivative is

significant for the Gaussian core.

9.4. CMC for Turbulent Premixed Combustion

In turbulent premixed systems, most of the fluctuation in temperature

and species mass fractions are associated with a reaction progress

variable. For constant pressure adiabatic systems this is best defined in

terms of the sensible enthalpy, rather than the temperature or the mass

fraction of a major species. This is because its balance equation does

not involve large contributions from variation of specific heat and it is
13least affected by differential diffusion effects. Bilger has developed

the theory for application of CMC to premixed systems. It should be noted

from the outset that CMC is not likely to make a contribution to the

fundamental closure problem of turbulent premixed combustion -- prediction

of the fields of mean and variance of the progress variable. The

contribution that CMC can make in premixed systems is for prediction of

the effects of turbulence on the detailed chemical structure of the flame

including pollutant formation.

For species such as NO, most of the formation occurs in the

post-flame gases where the progress variable is close to unity in an

adiabatic system. In practice, systems are not adiabatic and the post
13flame gases are cooled by radiation. Bilger uses this to define a
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progress variable, c, which can give resolution of the chemistry occurring

in the post-flame gases:

& s s * sc ≡ h - h u - 2h + 2hu /Δh (9.55)
7 8

swhere h is the enthalpy as defined in Eq.(3.32) and h is its sensible

component so that

sh = h + ∑ Yi(h0)i (9.56)
i

with (h0)i the enthalpy of formation of species i. Subscript u refers to
sthe values in the unburnt premixture and Δh is the sensible enthalpy rise

from the value in the unburnt premixture to the adiabatic equilibrium

fully burnt value. For a system with radiation or other heat losses h

becomes less than hu and continues to decrease in the post-flame gases so

that c increases above unity. All species and the temperature will then
13become single-valued functions of c. Bilger gives an example of how

species and temperature might vary with c in such a system.

The balance equation for the enthalpy is given by Eq.(3.33) and this

and Eqs (3.2) and (9.56) can be used to derive the balance equation for c:

∑ Wi ( h0)i + WR∂c s iρ[----------]+ ρv⋅∇c - ∇⋅(ρα∇h ) = ρ[------------------------------------------------------------------------------] ≡ ρSc (9.57)∂ t sΔh

The rate of pressure rise term has been neglected. With ζ taken as the

sample space variable for c, conditional averages Q are made for species

mass fractions conditional on c(x,t) = ζ and result in a modelled balance

equation

∂Q
[------------- + <v|ζ>⋅∇Q =∂ t

2∂ Q ∂Q ∇⋅(<v " Y"|ζ>P(ζ))<W|ζ> + Nζ[------------------] - <Sc|ζ>------------- - ------------------------------------------------------------------------------------] (9.58)
2 ∂ζ∂ζ P (ζ)

where Sc is defined in Eq. (9.57) and the fluctuations v" and Y" are now

about their means conditional on c = ζ. Also

Nζ ≡ <α∇c⋅∇c|ζ> (9.59)
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is the conditional scalar dissipation for the progress variable, c. A
13similar equation can be derived for the conditional enthalpy . Eq.(9.58)

is similar to the CMC equation for nonpremixed systems except that it

contains the extra term involving <Sc|ζ>. First order closure for this

term and for <W|ζ> may be possible.
84Mantel & Bilger have studied the effects of turbulence on Nζ using

138the DNS data base of Trouve and Poinsot . They find that at high

turbulence levels Nζ is significantly increased above its laminar values

in the preheat zone of the flame. This DNS has a one-step irreversible

reaction and there is no effect of turbulence on <Wi|ζ> for unity Lewis
107number. O’Young & Bilger have used advanced laser diagnostic methods to

measure Nζ in turbulent premixed propane-air flames. They find that at

high turbulence levels Nζ is considerably decreased below its laminar

flame values. This seems to be associated with a decrease in OH
106concentrations . This suggests that multistep chemistry is needed to

fully understand the structure of premixed flames. DNS with the 2-step
129reduced chemistry for methane of Swaminathan & Bilger is being

attempted in collaboration with Poinsot and his co-workers. This DNS

should allow testing of the above model for CMC in turbulent premixed

combustion.

9.5. Conditional methods and Lagrangian modelling

The techniques of deriving and closing equations for conditional

expectations, which are presented in this review, can be applied to other

conditional expectations with various conditions which are not analysed in
57previous sections. Klimenko considered Qv ≡ <Y|v>, the value of scalar

Y conditioned on a fixed value of the velocity v, and demonstrated that

this value relates the Lagrangian phase-space density function FL(v,x;t)

(or the Lagrangian pdf PL(v,x;t)) and the Eulerian velocity pdf Pv(v;x,t)

by the equation

FL = QvPv (9.60)

The conditional technique which has some similarities with CMC but

involves three conditioning variables - the velocity components - allows

one to obtain the exact equation for FL
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∂FL ∂v i FL ∂GiFL ∂Hi------------ + ---------------------- + ---------------------- + --------------- = WvPv + E (9.61)
∂ t ∂x i ∂v i ∂v i

where

∂<c∇vi|v>PvE ≡ ED - Eν, ED ≡ D ∇⋅(<∇c|v>Pv), Eν ≡ ν [----------------------------------------------------------]

∂ vi
∂<(∇v i ⋅ ∇vj)c|v>P vHi ≡ ν[-------------------------------------------------------------------------------------] - (D+ν)<∇vi⋅∇c|v>Pv + <c″S″|v>Pv (9.62)

i∂v j

i,j = 1,2,3, Gi ≡ - <∂p/∂xi|u>/ρ and Wv ≡ <W|v> is the conditional

expectation of the particle source. The convention of summation over

repeated indices is applied. This equation is a direct consequence of the

Navier-Stokes and scalar transport equations and it is shown to be
113consistent with the traditional Lagrangian models based on the

Markov-process assumptions whose general representation is given by

2∂FL ∂viFL ∂A i FL ∂ B i j FL[------------ + [------------------- + [------------------------ - [---------------------------------- = WvPv (9.63)
∂ t ∂xi ∂v i ∂v i ∂v j

where Bij and Ai are the diffusion and drift coefficients. The findings of

Ref. 57 involve several additional theoretical constraints which can be

effectively used in Lagrangian modelling. These results are supported by
142the direct numerical simulations of Weinman and Klimenko .
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10. CONCLUSIONS AND PERSPECTIVES

It may be concluded that CMC methods have a sound theoretical basis

and that CMC predictions of laboratory and DNS experiments give very good

agreement. The novelty of this approach brings forward a rich variety of

theoretical and modeling problems that are proving stimulating to the

growing number of workers in this field. The approach also gives much

new physical insight into the phenomena of turbulence-chemistry

interactions.

In particular we note the following:

• The primary closure hypothesis is well defined mathematically and

appears to be valid over a wide range of conditions. Its validity

in flows with local extinctions and ignition and near the fast

chemistry limit needs further investigation.

• Workable models for closing the other unclosed terms in the CMC

equation are available, but further work is needed to improve

them.

• The additional dimensionality associated with the conditioning

variable has been a deterrent to using the method in problems with

2 and 3 spatial dimensions. In problems with low spatial gradients

in the conditional averages it may be possible to use a much

coarser spatial grid in the CMC calculation than that needed in

the flow solver.

• Computational costs are moderate even with full chemical

mechanisms. Little work has been done on the numerical methods

used and significant improvements may be possible.

• It seems likely that the method will be able to incorporate the

effects of differential molecular diffusion.

Initially it appeared that the technique may be limited to problems

where local extinction and ignition phenomena are not significant. The

recent success of second order closure prediction of autoignition in

nonpremixed turbulent flows gives hope that the technique may be more

widely applicable than originally thought. There is much further

development needed, however.
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FIGURE CAPTIONS

Fig. 1 . Scatter plots of all data and conditional averages conditional

on mixture fraction for the temperature and OH mass fraction in a

piloted diffusion flame of methanol at x/Dj=20, Uj=60m/s and

r/Dj=: O, 1.7; p, 1.4; Δ, 1.1. The full curves are for a laminar

counterflow diffusion flame with a strain rate parameter a = 5
-1 85s . Data of Masri et al .

Fig. 2 . Clipped Gaussian pdfs with various values of mean mixture

fraction (first column) and root mean square fluctuation of

mixture fraction (second column) The delta functions at η=0,1

have strengths α,β of 0.048, 0.048; 0.21, 0.0; and 0.07 , 0.0,

respectively.

Fig. 3 . Beta function pdfs with the same mean and root mean square

fluctuation of mixture fraction as in Fi g . 2 Note the different

behaviour near η=0,1 and the absence of delta functions.

Fig. 4 . Probability of the event Z1 < Y < Z2 shown (a) using the cumulative

probability function and (b) using the pdf.

Fig. 5 . Probability of the event Z < Y < Z+ΔZ.

Fig. 6 . Surface plot of a Gaussian joint pdf for two variables.

Fig. 7 . Contour plot of the Gaussian joint pdf of Fig. 6.

Fig. 8 . (a) Contour plot of the joint pdf P(Z1,Z2) [-------------------------]; locus of

<Y1|Z2> ---------- ---------- ----------; locus of <Y2|Z1> ---------- [ [---------- ] [---------- .

(b) Conditional pdfs for two values: Z1= a and b.

Note that the peak of P(Z2|b) is higher than the peak of P(Z2|a)

even though the peak of P(Z2,b) is lower than the peak of

P(Z2,a). This is because P(Z1=a) > P(Z1=b).

Fig. 9 . Behaviour of conditional scalar dissipation with smooth pdfs.

(a) Unbounded Gaussian pdf; (b) Smooth pdf with fixed bounds;

(c) Smooth pdf with moving bounds.
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Fig. 10. Qualitative behaviour of the correlation function Kξ.

^° ^ ^Fig. 11. Pdfs P (η) i n the wake of a heated cylinder versus η=ΔT/ΔTc for
62various transverse locations. Adapted from Klimenko et al .

^ ^Fig. 12. Normalised pdf integral across the flow, P(η), Adapted from
62Klimenko et al .

Fig. 13. Normalised conditional scalar dissipation integral across the
^ ^ 62flow, N(η). Adapted from Klimenko et al .

Fig. 14. Integrated conditional scalar dissipation, N*, measured in

turbulent jet diffusion flames of air-diluted methane. Adapted
128from Starner et al .

Fig. 15. Schematic diagram of the reactive scalar mixing layer. Adapted
16from Bilger et al .

Fig. 16. Conditional averages of reactant concentration conditional on

mixture fraction as measured in a reacting scalar mixing layer

with ND= 0.42 and x1/M = 21. Different symbols are used for
12different points across the flow. Adapted from Bilger .

Fig. 17. Predictions for the conditional average reactant concentration in

a reacting scalar mixing layer as a function of η and normalized
^downstream distance x1= NDx1/M using Eq.(5.42) with A= 0.03, ηs=

120.5. Adapted from Bilger .

Fig. 18. Conditional averages of reactant concentration at η= 0.5 in a

reacting scalar mixing layer. Curves are for predictions using

Eq. (5.42) with various values of A. Data points from experiments
16of Bilger et al : Δ, ND= 0.42; p, ND= 2.6. Figure adapted from

12Bilger .

124Fig. 19. CMC predictions (full lines) of Smith et al for nitric oxide

compared with laser induced fluorescene measurements (dots) of
2Barlow and Carter .

124Fig. 20. CMC predictions (full lines) of Smith et al for nitric oxide
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compared with conditionally averages of measurements (connected
2circles) of Barlow and Carter .

124Fig. 21. CMC predictions (Smith et al ) and laser measurements ( Barlow
2and Carter ) of conditional average temperature in a hydrogen jet

diffusion flame: x1=lf/2 - - - predictions, -o-o-o- measurements;

x1=lf/8 ---- predictions, -•-•-•- measurements.

Fig. 22. Comparison of conditionally averaged NO mole fractions at x1=lf
calculated from CMC models with 26 step and 2-step reduced

mechanisms, with and without radiation losses. Bold/plain lines

denote full/reduced mechanism calculations whilst solid/broken
124lines denote radiative/ adiabatic calculations .

Fig. 23. Schematic diagram for experimental set-up for round turbulent
23reacting plume .

Fig. 24. Experimental results and CMC predictions in a reacting turbulent

round plume of NO into background O3: ------ conditional mean of
25data, - - - CMC predictions, ..... reaction dominated limit .

94Fig. 25. Schematic of an axisymmetric combustor Dimensions are in mm.

94Fig. 26. Mean streamlines calculated for the combustor of Fig. 25 .

Fig. 27. Contours of Favre-averaged mixture fraction, f ≡ <ρξ>/<ρ>,
94calculated for the combustor of Fig. 25 .

Fig. 28. Contours of Favre averaged variance of mixture fraction, g ≡
2 94<ρξ″ >/<ρ>, for the combustor of Fig. 25 .

Fig. 29. Core and outlet averaged pdfs for an ISR model of the
94recirculation zone end of the combustor of Fig. 25 .

94Fig. 30. Core-averaged conditional scalar dissipation for the ISR model

(full line) compared with laminar counterflow result with the

same maximum (dashed line).

Fig. 31. Predictions for the conditional average species mass fractions in
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the recirculation zone of the combustor of Fig. 25 using the ISR
94model .

Fig. 32. Predictions for the conditionally averaged temperature and NO

mass fraction in the recirculation zone of the combustor of
94Fig. 25 using the ISR model .

93Fig. 33 Comparison between ISR predictions with t h e Miller-Bowman
40(solid lines) as well as the GRI (dotted l i nes) mechanisms and

42measured data (s y mbols) . R= 30.5 mm is the radius of the

confining tube.

Fig. 34. Schematic of a Dilution Flow Reactor

Fig. 35. Comparison of predicted and experimental results: series parallel
80reaction of Li and Toor .

Fig. 36. Pdfs of the mixture fraction for the spatially homogeneous
91case :(a) <ξ> = 0.25; (b) <ξ> = 0.5.

Fig. 37. The value of <N⏐η>/<N> from the DNS data (symbols) and from the

Case (b) model normalised by <N> from the DNS at times t = 0.9,
912.3, 3.7. Spatially homogeneous case . (a) <ξ> = 0.25; (b)

<ξ>=0.5.

91Fig. 38. Variation of the unconditional scalar dissipation with time .

Fig. 39. Time evolution of the terms on the left hand side (LHS) of the

CMC equation, Eq. 4.30, expressed as a fraction of the reaction

rate term. Spatially homogeneous case, <ξ> = ξs = 0.25. (a) Da0 =
910.5, (b) Da0 = 8. Results of Mell et al .

Fig. 40. Predictions for normalized conditional variance in a reacting

turbulent scalar mixing layer, Eq. (8.37), for ξs = 0.5. From Li
76and Bilger .

Fig. 41. Predictions for conditional variance in a reacting turbulent
76scalar mixing layer compared with experiment . (a) x1/M = 8, (b)

x1/M = 12.
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Fig. 42. Balance of terms in the conditional variance equation for the

fuel species in nonpremixed reaction in decaying homogeneous
131turbulence . Ti refers to the ith term as it appears in Eq.

(8.38). (a) Simulation R1 with Reλ = 33.5; (b) simulation R5 with

Reλ = 50.5.

Fig. 43. Predictions for conditional average mass fraction of NO in a

hydrogen jet diffusion flame using a partial second order
68conditional moment closu r e . Filled symbols are the conditional

2averaged experimental data of Barlow and Carter with the bars

indicating plus/minus two conditional standard deviations.

Triangles are predictions with first order closure and squares

for second order closure. (a) x/Lv = 0.125 and 0.5; (b) x/Lv =

0.75.

Fig. 44 . Predictions and DNS data for conditional average and root mean

square fluctuation of normalised temperature rise, θ, for
86autoignition in turbulent nonpremixed flow . t1 is at 0.64τh and

t2 is at 1.41τh where τh is the shortest time to ignition of a

uniform mixture. Ignition occurs at 2.05τh.

Fig. 45. Scatterplot of differential diffusion, z, versus mixture

fraction, ξ, and conditional average, Qz, versus η for mixing in
66decaying homogeneous turbulence .

61Fig. 46. Qualitative structure of the interdroplet field . (a)

Non-inertial droplets; (b) inertial droplets.
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TABLE CAPTIONS

Table 1. Constants βu, βη, βN, βp for different types of flows.

Table 2. Relative error in <YFYO>t from CMC(a) and CMC(b) for all
91Da0 values at each time considered. Mell et al .

2Table 3. Functions Pf≡P(f) and Nf≡<D(∇ϕ) |ϕ=f> for non-inertial droplets.

2Table 4. Functions Pf≡P(f) and Nf≡<D(∇ϕ) |ϕ=f> for inertial droplets.
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