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Abstract

Theoretical and numerical analysis is performed for an inviscid axisymmetric vortical bathtub-
type flow. The level of vorticity is kept high so that the image of the flow on the radial-axial
plane (r-z plane) is not potential. The most significant findings are: 1) the region of validity of
the strong vortex approximation is separated from the drain by a buffer region; 2) the power-
law asymptote of the stream function, specified by ∆ψ ∼ r4/3∆z, appears near the axis when
vorticity in the flow is sufficiently strong and 3) the local Rossby number in the region of 4/3
power-law is not very sensitive to the changes of the initial vorticity level in the flow and the
global Rossby number.
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1 Introduction

The bathtub vortex is a phenomenon well-known even by nonspecialists: when water is drained
from a large tank through a small orifice, the flow is composed of the combination of a translational
motion towards the orifice and a rotational motion. The relative intensity of the rotation may
vary significantly depending on the initial distribution of the vorticity within the fluid but the
rotation never vanishes completely due to the Earth’s rotation (Shapiro 1962). Simple observations
of bathtub vortices indicate that 1) the core of the flow is axisymmetric, 2) the bulk of the flow
usually remains laminar even if the Reynolds number is very large and 3) the flow seems steady (or
quasi-steady). The relative intensity of rotation is characterized by the Rossby number (Rs). When
the Rossby number is large, the vorticity is relatively weak and the flow image on the radial-axial
(r-z) plane is potential (we use the term ”potential” for the flows with negligibly small level of the
circumferential vorticity ωθ without expecting that the axial component of vorticity ωz takes zero
values). Determining characteristics of the potential flows is standard.

In the present work, we are interested in flows with smaller Rossby numbers and stronger vortic-
ity when the r-z image of the flow is far from being potential. Einstein and Li (1951) investigated
the case of asymptotically small Rossby numbers (Rs → 0). This approximation is referred to
here as the strong vortex approximation. Lewellen (1962) applied the strong vortex asymptotic
analysis to a steady strong vortex in a viscous fluid. Lundgren (1985) carried out a similar asymp-
totic analysis for a bathtub flow focusing on unsteady effects rather than on the global influence
of viscosity. This publication is most relevant to the present work. Lundgren (1985) assumed that
the Rossby number is so small that the strong vortex approximation is valid everywhere in the
flow. The advantage of this solution is its relative simplicity but the strong vortex approximation
does not comply with the conventional boundary conditions of zero radial velocity in the draining
pipe. In addition, the flow above the draining pipe is determined by the axial velocity profile at the
drain which remains unknown and was presumed by Lundgren (1985). It is not likely that this flow
scheme corresponds to the bathtub flow observed in experiments. Klimenko (1998b) demonstrated
that a sudden change in a strong vortex flow would cerate a buffer region near the disturbance. The
strong vortex approximation is not valid in the buffer region. The experiments of Sakai, Madarame
and Okamoto (1996) indicate that the axial velocity is a linear function of z (this behaviour corre-
sponds to the strong vortex approximation) above the drain but not near the drain where the flow
experiences rapid acceleration. Hence it is likely that, in a realistic bathtub flow, the strong vortex
approximation may be valid in the bulk of the flow but not in the immediate vicinity of the drain.

It is well-known that the nonlinear interactions of vorticity and velocity are the most common
sources of instability and turbulence in fluid flows. This problem is usually not accounted in inviscid
flows since viscosity is generally responsible for the vorticity generation in boundary layers near
the solid walls. In the bathtub-type flow, vorticity is inherently present in the flow and may, under
certain conditions discussed in the paper, cause physical and numerical instabilities. It is possible, of
course, to solve Navier-Stokes equations instead of equations governing inviscid evolution of vorticity
and set the viscosity at a level which is sufficiently high for dampening all possible instabilities.
The same effect can be achieved by introducing turbulent viscosity. Although this approach may
generate some solutions, they are not much relevant to the bathtub vortex flow where the Reynolds
number is, typically, very high. The bulk of the vortex flow is laminar and effectively inviscid. The
viscous effects remain local and may be significant only near the walls or near the axis as considered
by Lewellen (1962). Obtaining solutions of equations governing inviscid evolution of vorticity, which
is the focus of the present work, represents a demanding numerical problem.

When considering a bathtub-type vortical flow, some researches take into account the air dip
formed at the surface (Lundgren 1985, Forbes and Hocking 1994) while others tend to neglect it
(Lewellen 1962, Marris 1967). For the asymptotic limit of the fast rotation, determining the shape
of the air dip can be done analytically (Lundgren 1985). When vorticity is weak and the flow is
potential, the shape of the air dip can be found numerically (Forbes and Hocking 1994). For the
flows with moderately strong vorticity, which are considered in the present work, the analysis of
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the free surface shape is not computationally feasible.
The bathtub flow is characterized by slow evolution of the flow. This property is used here

to obtain quasi-steady solutions. However, the bathtub flow can not be treated as completely
steady: the circulation γ in the near-axis region gradually increases as the fluid particles arrive
from peripheral regions where the initial value of γ is greater. The main difference between the
terms ”quasi-steady flow” and ”steady flow” is that the equations describing steady axisymmetric
flows of an inviscid fluid is not applicable to the bathtub vortex. In a steady flow, the lines of
constant γ must coincide with the streamlines and this is certainly not valid for a bathtub-type
vortical flows. In general, the axisymmetric steady flows allow for analytical integration of the
vorticity ωθ which would significantly simplify the calculations (Long 1953, Batchelor 1967).

2 The governing equations

A general axisymmetric inviscid flow with vorticity is governed by the following set of equations
(Batchelor 1967)
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∂
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represents the substantial derivative; r, z and θ are radial, axial and circumferential coordinates; ψ
is the stream function; vr, vz, vθ are the velocity components; γ ≡ vθr is the circulation; ωr, ωz,
ωθ are the vorticity components. Equation (5) controls generation of the vorticity component ωθ.

If the flow is steady, then the streamlines ψ = const coincide with the lines of γ = const and
equation (5) can be integrated (Batchelor 1967)

ωθr = γ
∂γ

∂ψ
− r2 ∂B

∂ψ
(7)

where B ≡ v2/2 + p/ρ is the Bernoulli integral. In this flow, γ and B can be expressed as
functions of ψ since these values are constant along streamlines.

If the vorticity in the flow is strong, the leading order approximation of the stream function is
given by Einstein and Li (1951)

ψ = f0 (r, t) + f1(r, t) z (8)

where f0 and f1 are arbitrary functions. As determined by equation (8), the radial velocity vr does
not depend on z and the axial velocity vz is the linear function of z. Generally, the strong vortex
approximation is not consistent with (7).
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3 The flow in a bathtub

A cylindrical tub of radius rb is drained though the pipe of radius rd which is assumed to be much
smaller than rb (see Figure 1). Before draining is started at t = 0, the flow is represented by the
solid-body rotation with the constant vorticity ωz = ω0, ωr = 0 and ωθ = 0. The level of the water
in the tub is given by h = h(t) and h0 = h(0) is its initial value. The draining speed is determined
by u ≡ −dh/dt and q ≡ ur2

b/2 is introduced so that 2πq represents the volume flow rate.

3.1 Peripheral flow

In the bulk of the tub, the flow is given by

ψ =
1
2
u
(
r2
b − r2

) z
h
, vr =

1
2
u

h

(
r − r2

b

r

)
, vz = −u

h
z (9)

While evolution of the circulation and vorticity that corresponds to the specified initial conditions
and the velocity field is represented by

γ (t) =
ω0

2
(
r2
b − r2

bH + r2H
)
, ωz = Hω0, ωr = 0, ωθ = 0 (10)

where H ≡ h/h0. The velocity field given by (9) satisfies equations (1)-(5) as well as the boundary
conditions vr = 0 at r = rb; vz = −u at z = h and vz = 0 at z = 0. However, this representation of
the velocity is, obviously, not valid near the drain. The flow determined by (9) and (10) is potential
(ωθ = 0) and, at the same time, this flow complies with the strong vortex approximation (8). The
flow specified by (9) and (10) is not steady. The applicability of equations (9) and (10) is determined
by their ability to match the flow near the axis. Obviously, this solution is valid when the water
is shallow h � rb. Since equations (9) and (10) represent the strong vortex approximation, the
solution should be also valid when the global Rossby number Rsb ≡ u/(rbω0) is small. The most
interesting feature of the flow specified by (10) is that γ increases while ωz does not increase with
time. This indicates a singularity forming near the axis which is actually perceived as the bathtub
vortex.

If the water is sufficiently deep, Rsb is sufficiently large and the flow rate is constant, then, after
a short initial period of time this flow is similar to the flow in a sudden pipe contraction and can
be treated as steady. The steady flow is governed by equations (1) and (7). As rotation speed
increases and Rsb decreases, the vorticity ωθ becomes more and more significant. Batchelor (1967)
demonstrated that as soon as Rs2

b reaches ∼ 1/3.8, the flow loses its ability to adjust itself to small
changes of the tub radius, rb. It is likely that at this point the structure of the flow is changed so
that (1) and (7) do not control the flow. One possible scenario is the appearance of recirculation
zones, loss of stability and transition to turbulence. Another scenario, which is considered here, is
development of the unsteady vortical flow specified by equations (9) and (10). Klimenko (1998b)
found that, in the steady flow, rotation may be noticeable near the drain but it does not have
characteristic features of the bathtub vortex. Steady flow is not of much interest for the present
work.

The leading terms of the near-axis asymptote of the flow specified by (9) and (10) are given by

ψ0 =
q

h
z, vr0 = − q

h

1
r
, vz0 = 0, ωz0 = Hω0, γ0 =

ω0

2
r2
b (1−H) (11)

It should be noted that the approximation for γ is not applicable during a very short initial period
when H ≈ 1. This short period is not considered in the present work. Although the Strouhal
number calculated for the flow specified by (11) appears to be small, this flow is not steady since
the velocity is directed towards the flow axis, while direction of vorticity is vertical. Equations (11)
set the inflow boundary conditions for the near-axis region.
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3.2 The near-axis region

In the region surrounding the axis, the flow specifications given by (9) are, obviously, not applicable.
The near-axis flow, which can not be represented by analytical formulae, is the actual subject of
the present study. We rewrite the system of equations (1) - (5) in the dimensionless form:
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represent the Rossby number, the Strouhal number and the geometric parameter of the near-axis
region; the normalized values are denoted by capital letters:
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r

rd
, Z =

z

h
, Ψ =

ψ

q
, Vr = vr

rdh

q
, Vz = vz

r2
d

q
, (20)
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ωz0q

γ0h
, Ωθ = ωθ

r3
d

q
, Γ =

γ

γ0

, Ωz =
ωz
ωz0

, Ωr =
ωr
ωz0

h

rd
(21)

The typical values are selected on the basis of the near-axis asymptote of the peripheral flow (11)
taken at a chosen time moment, say t = t1. In the near-axis region the Rossby number Rsd is much
larger than the Rossby number Rsb and the Strouhal number is very small except for a very short
initial period. We seek quasi-steady solutions of this system of equations in form of the expansions
Γ = Γ0 + St Γ1 + ..., Ψ = Ψ0 + ..., etc. With the exception of the circulation Γ, which needs
two terms in the expansion, only the leading order terms are needed for the present analysis. The
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subscripts ”0” denoting the leading terms is omitted (except for Γ). Most of equations (12) – (16)
remain without changes, while the equations involving Γ take the form

Ωr = − 1
R

∂Γ1

∂Z
, Ωz =

1
R

∂Γ1

∂R
(22)

Vz
∂Γ0

∂Z
+ Vr

∂Γ0

∂R
= 0, Vz

∂Γ1

∂Z
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∂Γ1
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= −∂Γ0

∂T
(23)

Vz
∂Ωθ/R
∂Z

+ Vr
∂Ωθ/R
∂R

= −2Γ0

Rsd
Ωr
R3

(24)

The boundary conditions for Γ, Ψ and Ωθ are now considered. For the near-axis region, the
upstream conditions are determined by matching the variables of the near axis region with (11) for
t = t1

Γ0 → 1, Γ1 →
1
2
R2 + (Γ1)0, Ψ→ Z, Ωθ → 0 as R→∞ (25)

Note that Ωz → 1 upstream from the near-axis region. The constant (Γ1)0 does not affect cal-
culations and, without loss of generality, can be set to zero at the upstream boundary of the
computational domain. As it can be inferred from equation (23), the leading order circulation
remains constant. The slow time T is chosen so that the time derivative of the circulation equals
to unity. Thus we have

Γ0 = 1,
∂Γ0

∂T
=

h

ωz0q

∂γ0

∂t
= 1 (26)

at t = t1 in the whole near-axis region. The computational domain and the boundary conditions
used are shown in Figure 2. It should be emphasized that the conventional boundary conditions
∂Ψ/∂Z = 0 are applied at the boundary Z = −Hd in the drain.

4 The main features of bathtub-type vortical flows

In this section we analyze the features of inviscid bathtub-type vortical flows which are important
for understanding of the results of computations. In our considerations we repeatedly use the fact
that, in inviscid fluid, the vorticity vectors ω evolve in exactly the same way as the corresponding
material line elements (Batchelor 1967).

Proposition 1 Positive values of the product ωzγ have a stabilizing effect on the flow while negative
values of the product ωzγ would have a destabilizing effect.

Let us assume that, initially, the vorticity vector and the corresponding material line element
(or material vector) A0B0 shown in Figure 3 are directed along z-axis (ωr = 0). Since ∂γ/∂z = 0,
the value of γ must be the same at A0 and B0. After a short time interval, the position of the same
material line element in a bathtub-type flow without significant vorticity is shown by A1B1. The
vorticity component ωr takes a negative value. Since r(A1) > r(B1), the rotation at B1 is faster.
If γ has the same sign as ωz (negative in Figure 3) then the vector A1B1 has its θ-component
directed towards the reader. Hence, the flow generates the vorticity ωθ whose direction is shown
in Figure 3. This vorticity acts to rotate the vector A1B1 back to the vertical direction. If |γ| is
large, a small deviation from the vertical direction, such as shown by the vector A1B´

1, would be
sufficient to generate the vorticity ωθ required to preserve the initial direction of the vector A0B0.
In this case, the vorticity/velocity interactions adjust the flow in a way which keeps generation of
ωθ under control. Thus, the fast rotation in a vortex-type flow has some stabilizing effect provided
γωz > 0. This condition is essentially the same as the well-known Rayleigh condition for stability
of the inviscid flow between rotating cylinders (Vanyo 1993). A negative value of the product γωz
would have an opposite, destabilizing effect on the flow.
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Proposition 2 The bathtub vortical flow can not be transformed in the drain into a vortical pipe
flow with vr = 0. The flow in the draining pipe would continue to evolve. The characteristic length
of this evolution is given by ∆z = hRs2

d.

Indeed, let us assume that vr = 0 downstream from the drain orifice. Evolution of vorticity is
similar to evolution of the material vector A0B0. In a quasi-steady flow, the fluid particles A and
B move along streamlines (see Figure 3). The time-shifted position of the vector A0B0 is shown
by the vector A2B2, which has a non-zero radial component denoted as A2B2r in Figure 3. Hence,
ωr 6= 0 in the drain. As it follows from equation (5), dωθ/dt 6= 0 and the flow continues to evolve:
∂vz/∂z 6= 0. The continuity equation

∂vz
∂z

+
1
r

∂

∂r
(rvr) = 0 (27)

requires that vr 6= 0. The assumption vr = 0 is not valid.
Considering that |A0B0| /h ∼ |A2B2r| /rd, we infer that the radial component of vorticity in the

drain can be estimated by ωr ∼ ωz0rd/h. The circumferential vorticity can achieve a significant
change ωθ ∼ vz/rd of its value within the distance ∆z ∼ r2

dvzωθ/(γ0ωr). By combining these
equations with obvious q ∼ vzr2

d, we obtain ∆z ∼ hRs2
d.

Practically, the development of the flow in the drain can be neglected provided ∆z � rd. This
leads us to the following inequality for the Rossby number Rsr which is calculated on the basis of
the radial vorticity component ωr

Rs2
r ≡

v2
z

γ0ωr
∼ Rs2

d /Ld � 1 (28)

If this condition in not valid, it is likely that intense increase of the vorticity ωθ in the flow would
cause appearance of recirculation zones. If this condition is valid then ωr can be neglected and the
flow in the drain (but not in the tub) can be approximately treated as steady, since both velocity
and vorticity have vertical direction.

Proposition 3 A quasi-steady bathtub-type vortical flow can not have any recirculation zones.

Indeed, in a flow with recirculation zones, some of the streamlines would form a closed path.
According to equations (23) and (26), the value of Γ1 monotonically decreases along streamlines
and this is impossible when a streamline forms a closed path. In addition, the sign of the derivative
∂Γ1/∂Z is likely to change within a recirculation zone and this would violate the stability condition
ωzγ > 0.

Proposition 4 If the stream function and the circulation of a quasi-steady bathtub-type vortical
flow remain uniformly smooth within a fixed region as the local Rossby number tends to zero, then
ωr/ωz → 0 and the strong vortex approximation is valid in this region.

Since the stream function is uniformly smooth in the region, the absolute values of the derivatives
of the stream function are restricted and the velocity components can be estimated rvz . ∆ψ/∆r
and rvr . ∆ψ/∆z where ∆ψ is the change of ψ in the region whose size is denoted by ∆r and
∆z. We introduce v = (v2

z + v2
r)1/2 and lm = min(∆r,∆z) and estimate rv . ∆ψ/lm. Equation (1)

restricts the values of circumferential vorticity r|ωθ| . ∆ψ/l2m. Equation (5), which specifies the
change of circumferential vorticity in the region, yields

∆(ωθ/r) = −2
∫
ωrγ0

vr3
dl &

lmγ0

∆ψ

∫
ωr
r2
dl

where the integrals are evaluated along a section of a chosen streamline laying within the region.
Since ψ is uniformly smooth in region, we can select a characteristic radius for a chosen streamline.
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The following estimation of the integral takes into account that ωr must be smooth and does
not oscillate in the region. Combining the inequalities obtained for ωθ gives (∆ψ)2 & l4mγ0ωr or
βl2m/r

2 . Rs2 where

Rs2 ≡ v2

ωzγ0

(29)

is the Rossby number and β ≡ ωr/ωz. Considering that the region is fixed, we obtain β → 0 as
Rs2 → 0. This estimation requires that γ → γ(r) and vr → vr(r) as determined by equations (3)
and (2). The stream function which keeps vr = vr(r) is given by (8). This proves the proposition.
The applicability of the strong vortex approximation in different parts of the flow is determined
by condition Rs� 1, where the Rossby number given by (29) is evaluated locally and depends on
local values of v and ωz. The order of the local Rossby number does not necessarily coincide with
the order of Rsd – the global Rossby number of the whole near-axis region.

Proposition 5 The flow field specified by the strong vortex approximation can not satisfy the
boundary conditions in the drain ∂ψ/∂z = 0 and also can not be adjusted in a thin layer in order
to satisfy these conditions.

Indeed, the boundary conditions in the drain ∂ψ/∂z = 0 require that f1 = 0 in (8). Hence, vr
must be zero in the whole region above the drain which is physically impossible.

If the strong vortex approximation can not satisfy the conditions in the drain, the flow may be
adjusted in a layer which is asymptotically thin for small values of the Rossby number. Within this
layer, the strong vortex approximation is not valid. Physically, this layer may be located on the
surface OO´(see Figure 2) or on any other surface separating the tub and the drain. Mathematically,
this layer can also appear at Z = −Hd where the drain boundary conditions are applied. For
simplicity, we will consider only horizontal layers and demonstrate that, in these layers, the flow
can not be adjusted to satisfy the boundary conditions in the drain. First, we note the evolution
of vorticity equations

dωz
dt

= ωz
∂vz
∂z

+ ωr
∂vz
∂r

,
dωr
dt

= ωz
∂vr
∂z

+ ωr
∂vr
∂r

(30)

where d/dt is determined by (6), can be formally obtained from (4), (3) and (27). The strong vortex
approximation can not satisfy vr = 0. Within the thin layer (or thin boundary layer if the layer
is located at Z = −Hd) the variables are marked by superscript ”◦” to distinguish them from the
outer flow. Using z◦ = (z − hd)/δ and taking into account (3), (4), (5), (27) and (30), we obtain
the following leading order equations

∂v◦z
∂z◦

= 0,
∂ω◦z
∂z◦

= 0,
∂γ◦

∂z◦
= 0 =⇒ v◦z = vz, ω◦z = ωz, γ◦ = γ

ω◦θ =
1
δ

∂v◦r
∂z◦

+ ωθ, vz
∂ω◦r
∂z◦

= ωz
∂v◦r
∂z◦

, vz
∂ω◦θ
∂z◦

= −2δ
γω◦r
r2

Elementary transformations of the equations in the second line yield

∂2ω◦r

∂ (z◦)2 +
δ2

r2

2
Rs2

z

ω◦r = 0, v◦r =
vz
ωz
ω◦r + cv, Rs2

z ≡
v2
z

γωz
(31)

where cv is a constant which is determined by the upstream conditions. We consider Rsz as a local
value which can be calculated at different physical locations. The local Rossby number should be
distinguished from the global parameters of the flow Rsb and Rsd . Equation (31) determines that,
when Rsz is small, rapid changes are indeed possible within a thin layer. The thickness of the
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layer can be defined as δ = rRsz. However, the solution of (31) is given by a propagating wave
ω◦r = c cos(2z/(rRsz)) which can not simultaneously satisfy the upstream conditions vr 6= 0, ωr → 0
specified by the strong vortex approximation and the downstream condition vr = 0. Physically,
this indicates that, when Rsz is small, the disturbances from the boundary conditions in the drain
tend to propagate upstream and affect the whole flow. These waves bear some resemblance to the
Kelvin inertial waves in uniformly rotating fluids (Greenspan 1968). The intensity of generated
vorticity which can be estimated by ωθ ∼ vr/Rsz is asymptotically high as Rsz → 0. This indicates
that the flow is likely to loose stability and become turbulent .

This consideration explains the conditions imposed on the flow in Proposition 4. Near the
axis, the values of Rs and Rsz defined in (29) and (31) are very similar. If the size of the region
is asymptotically small or the flow in the region is not smooth, the strong vortex approximation
may not be applicable since the solution of equation (31) does not comply with the strong vortex
approximation. However, if Rsz is small and the streamlines are smooth in a region, whose typical
scale ∆z is much greater than δ = rRsz (that is ∆z◦ >> 1), then equation (31) takes the form
ωr = 0 which is consistent with Proposition 4. Batchelor (1967) considered a steady axisymmetric
vortical pipe flow and found that, if Rsz is smaller than a certain critical number, the flow losses
its ability to adjust itself to varying boundary conditions.

Proposition 6 Assuming that the level of vorticity in a quasi-steady bathtub-type flow is sufficiently
high and the power-law approximation ∆Ψ = C1R

α∆Z of the stream function (where ∆Z ≡ 1− Z
and ∆Ψ ≡ 1−Ψ) is valid in a significant section of the near-axis region, the value of the exponent
in this region is given by

α = 4/3 (32)

The velocity components are determined by equation (13): Vr = −C1R
α−1, Vz = −C1αR

α−2∆Z.
Since in the strong vortex flow we have Ωr = 0, equations (22), (23) and (26) yield Ωz = −1/(VrR).
Combining equations for Vr, Vz and Ωz determines the local Rossby number calculated on the basis
of axial velocity

Rs2
z =

V 2
z

Γ0Ωz
Rs2

d = C3
1α

2∆Z2R3α−4 Rs2
d (33)

Obviously, if the level of vorticity is very low, then the flow must be potential (ωθ = 0) and α = 2
near the axis. We assume now that vorticity is sufficiently strong to affect the flow somewhere at
R ≈ R1. If α < 4/3, then according to Equation (33), the value of Rsz would be large for R� R1

and the flow would become effectively potential. In a potential flow, α = 2 and this value is in
contradiction with α < 4/3. If α > 4/3, then the value of Rsz would be very small at smaller
radii (R� R1). The streamlines of this flow should comply with the strong vortex approximation.
According to the analysis of Proposition 5, this flow would not be able to satisfy the conditions in
the drain. Hence α must be 4/3.

Since the local Rossby number Rsz can not be very large or very small in the region of α = 4/3,
we can estimate Rsz ∼ 1. The approximate character of this estimation should be emphasized. The
substitution of Rsz ∼ 1, α = 4/3 and ∆Z ∼ 1 into (33) yields

C1 ∼
(

Rsz
Rsd

)2/3

∼ Rs−2/3
d (34)

The axial component of the velocity Vz ∼ R−2/3∆Z has a singularity at the axis. Physically, of
course, the velocity can not tend to infinity. When the Reynolds number is high but not infinite, a
thin viscous core is formed in the immediate vicinity of the axis as considered by Lundgren (1985).
The singularity of α = 4/3 disappears in the viscous core. Alternatively, an air core can be formed
at the axis of the bathtub flow.
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Proposition 7 If the vorticity in the flow is sufficiently strong and the water is sufficiently deep so
that the 4/3 power-law region extends up to the peripheral region of the flow, the transition between
these regions occurs at

R1 ∼ Rs1/2
d (35)

The stream function in the region of α = 4/3 is given by ∆Ψ = C1R
4/3∆Z while ∆Ψ = ∆Z in

the peripheral region. At R ∼ R1, these two representations of the stream function should match
C1R

4/3∆Z ∼ ∆Z. After taking into account (34), we obtain (35). Of course, R1 can not exceed
the extend of the near-axis region of a potential flow specified by r ∼ h or R ∼ 1/Ld. If R1 � 1/Ld,
then vorticity in the flow is weak and the intermediate region of α = 2 appears. The division of the
flow into the peripheral and near-axis regions suggests that at least one of the parameters r1 ≡ R1rd
or h must be much smaller than rb. Since Rsd ∼ Rsb(rb/rd)2, the condition r1 � rb takes the form
Rsb � 1.

5 Numerical method

The flow in the near-axis region is analyzed numerically by seeking solution of the system of
equations (12), (13), (22), (23) and (24) while taking into account (26). This system is effectively
a non-linear integro-differential system of equations. Calculations are carried out on a regular grid
with gradually varying steps and maximal resolution near the orifice. The calculations involve the
following chain

Ψold

I
=⇒ (Vz, Vr)

II
=⇒
↑

∆t, (Γ1)old

Γ1

III
=⇒ Ωr

IV
=⇒
↑

∆t, (Ωθ)old

Ωθ1
V

=⇒ Ψnew (36)

where equation (13) is used in step I, (23) and (26) in II, (22) in III, (24) and (26) in IV, (12)
in V. Steps II, IV and V need boundary conditions. The boundary conditions used are shown in
Figure 2. Although only quasi-steady solutions are sought, the time derivative is formally included
into the substantial derivative as it is determined by equation (17). This allows to reach the
quasi-steady solution by performing steps in time. The old values of Γ1 and Ωθ are needed only
for time steps. The equations are discretized using second order finite-difference schemes. The
choice for steps II and IV was made in favour of the upwinding scheme. When time evolution
is used to reach convergence, the time derivatives are approximated by the first order implicit
finite difference scheme. The operation defined by (36) is denoted in the rest of the paper as
Ψnew = Λ∆t[Ψold, (Γ1)old , (Ωθ)old] where ∆t specifies the duration of the time steps. If no time
evolution considered (∆t = ∞), then this operation is denoted as Ψnew = Λ[Ψold].

The calculations comprise several stages. First, the functional FΛ(Ψ) ≡ ‖Ψ− Λ[Ψ]‖, where the
norm ‖a‖ of a vector a is introduced as (

∑
i aiai)

1/2 and the sum is taken over values in each node of
the computational domain, is minimized by the Levenberg-Marquardt algorithm. The minimization
is performed on several progressively more refined grids. The best resolution is reached on a 51×37
grid. If the initial Ψ is set for a refined grid without taking into account Ψ obtained on coarser
grid, the algorithm is not able to minimize FΛ. Final convergence is achieved by ∼ 30000 implicit
small time steps. The calculations are terminated when the residual FΛ(Ψ)/ ‖Ψ‖ reached ∼ 10−10.
Practically, this means that the results presented here are exact solutions of the finite difference
equations. The precision of the finite difference approximation is checked by recalculating Ψ on
the 101× 73 grid without attempting to reach the solution on this grid. The residual FΛ(Ψ)/ ‖Ψ‖
calculated on a 101× 73 grid is less then 1% in most of the calculations presented here.

The convergence of the time steps indicates stability of the solutions obtained. Overall phys-
ical stability at high Reynolds numbers is the remarkable property of the bathtub vortical flow
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(Proposition 1). In numerical calculations, this stability is, however, quite fragile. Any, even small,
disturbance may potentially cause rapid development of instabilities. If the initial conditions for
Ψ are set well (for example, by using Ψ calculated on coarser grid), plausible time steps can be
performed for quite a long time until a recirculation zone appears (usually, near the drain or near
the axis). As soon as the recirculation zone appears, instabilities develop and the numerical ap-
proximation of the flow is rapidly destroyed. This behaviour is in agreement with the properties of
the flow specified by Propositions 1 and 3. Unlike scalar transport (Klimenko 1998a), the vorticity
transport involves nonlinear interactions of velocity and vorticity in an inviscid fluid (although these
interactions are limited here by the axisymmetric conditions) which can be physically unstable. The
initial minimization of the functional FΛ(Ψ) was absolutely necessary to obtain good initial condi-
tions for convergence by time steps. This minimization, performed in the nearly 2000-dimensional
space of the values of Ψ in each node, required substantial computational resources and this makes
any further refinement of the grid (or significant enlarging of the computational domain) quite
difficult. As it is noted above, the success of the minimization procedure is also dependent on the
choice of a good initial approximation for Ψ. Generally it is more difficult to achieve convergence
for smaller values of the Rossby number. Both the functional minimization procedure and the time
steps often need a manual control over convergence. No convergence was reached for the values of
Rsd significantly smaller than these presented in the next section.

6 Results of the simulations

In a strong vortex flow, the axial component of velocity Vz is a linear function of Z as defined by
(8). The calculated dependence of Vz Rs2/3

d on ∆Z ≡ 1 − Z (where the estimation of Proposition
6, C1 ∼ Rs−2/3

d , is taken into account) is shown in Figure 4. The dependence is linear except for
the buffer region near the orifice where the flow experiences rapid acceleration towards the draining
pipe. Similar behaviour was observed in experiments carried out by Sakai et al. (1996). It can be
noticed that the thickness of the buffer layer decreases slightly as Rsd decreases. However, according
to the analysis of Proposition 5, the buffer layer can not form an asymptotically thin boundary
layer and the disturbances from the boundary conditions in the drain tend to propagate upstream.

The streamlines Ψ = const are shown in Figure 5 for different values of Rsd and Ld = 0.1.
Figure 5,b is plotted in logarithmic coordinates to demonstrate the slope of the streamlines which
is found to be in a good agreement with the analysis of Proposition 6. If the intensity of vorticity
is negligibly small, Rsd = ∞, then α = 2. As Rsd decreases, the region with α = 4/3 is formed in
the immediate vicinity of the axis while α remains equal to 2 in the other parts of the flow near the
axis. Any further decrease of Rsb causes broadening of the region with α = 4/3 until the region of
α = 2 disappears. Then the region of α = 4/3 starts to shrink into the region above the drain. The
translational velocities near the drain and near the bottom of the tub remain relatively fast and
neither the power-law approximation nor the strong vortex approximation are not valid in these
regions. Convergence of the solution was not reached if Rs2

d is significantly smaller than 10. When
local values of the Rossby numbers become too small, the flow looses its ability to adjust itself to
the boundary conditions (Proposition 5) and be transformed into a pipe-type flow. We can expect
that, under these conditions, the flow near the drain becomes fluctuating and most likely turbulent.
According to equations (8) and (31) these disturbances would propagate upstream into the region
above the drain.

The observed behaviour is determined by a relatively simple rule – the flow adjust itself to
prevent the local Rossby number Rsz being much smaller than 1. The dependence of C1 evaluated
in the region of α = 4/3 on Rsd is shown in Figure 6. This dependence matches well the estimates
(34) of Proposition 6. The value of Rs2

z varies only slightly when Rs2
d changes several orders

of magnitude. The weak dependence of Rsz on Rsd gives, however, a clear indication that Rsz
decreases when Rsd decreases (near the axis the values of Rsz and Rs are virtually the same). In
the region of the 4/3 power-law, the value of Rsz can be several orders of magnitude smaller than
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the global Rossby number Rsd. Although in the presented calculations the local Rossby number
does not, generally, reach very small values Rsz � 1, the strong vortex approximation appears
to be applicable in quite a large region above the drain but not in the vicinity of the drain. As
determined by equation (33), Rsz increases towards the drain. The minimal local Rossby number
at the drain orifice achieved in the calculations is Rsz ≈ 1.

Besides the Rossby number, Rsd, the flow in the near-axis region depends also on another
dimensionless parameter, Ld ≡ rd/h. In the strong vortex flow, the leading order representation of
Ψ in (8) determines that ∂2Ψ/∂Z2 ≈ 0. Hence the parameter Ld does not affect the solution of
equation (12) in this region. Since the translational velocities are fast and Rsz is relatively large
near the edge of the drain, the solution in this region is more affected by Ld. This behavior is
illustrated in Figure 7 where the streamlines of two fields are shown for the same value of Rsd and
different values of Ld. In general, decreasing Ld does not make convergence of the solution more
difficult although the precision of the finite difference approximation of the flow near the drain
decreases. On the contrary, increasing Ld (while keeping Rsd fixed) makes convergence either more
difficult or impossible. This behaviour is in agreement with equation (28) of Proposition 2.

Under conditions discussed in Proposition 7, the 4/3 power-law region may extend far upstream
from the drain. The region of R/R1 ∼ 1 is shown in Figure 8. The vertical line indicates the
location of the R1 specified by equation (35). This line represents the expected upstream boundary
of the 4/3 power-law region. The power-law approximation is obviously not valid for any R near the
bottom of the tank. A strong current towards the drain is formed there. It should be emphasized
that this effect is not related to the viscous Ekman layer since viscosity is not considered in the
present work. As it can be expected, the stronger vorticity in the flow extends the peripheral region
further towards the axis.

7 Conclusions

Axisymmetric laminar flows in a bathtub with moderately high levels of vorticity and high values
of the Reynolds numbers are considered. The drain radius rd is assumed to be much smaller
than the tub radius rb. The flow is characterized by the geometry of the tub and by the Rossby
number. Under normal conditions of existence of the bathtub vortex, the flow is divided into
peripheral region which occupies most of the tub volume and the near-axis region. Since the flow
characteristics of the peripheral region can be obtained easily, the focus of the present work is
the flow in the near-axis region. While the overall Rossby number in the tub, Rsb, can be small
(small Rossby numbers correspond to relatively strong vorticity in the flow), the Rossby number
characterizing the near-axis region Rsd ∼ Rsb(rb/rd)2 is much larger than Rsb. The flow in the
near-axis region is characterized by a slow temporal evolution but it can not be treated as a steady
axisymmetric flow.

The major properties of the bathtub vortical flow are analyzed theoretically and numerically.
Both analyses, theoretical and numerical, are in good agreement. The major results of the present
work are:

1) Generally, if Rsd is large the flow image on the radial-axial plane is close to the image of a
potential flow. However, the local flow characteristics are determined by the local Rossby number,
Rs, which can vary significantly in different parts of the flow near the axis and may differ from Rsd
by several orders of magnitude. Specifically, the region of strong vorticity and Rs ∼ 1 is observed
in the immediate vicinity of the axis even if Rsd is quite large.

2) It is shown that if the values of the local Rossby number near the drain are too small, the
flow would not be able to satisfy the conditions in the drain. Physically, we can expect that the flow
at the drain orifice becomes unsteady and turbulent. The disturbances from the drain are likely to
propagate upsrteam.

3) It is shown that, if Rsd is sufficiently small, the strong vortex approximation is applicable in
a large region adjoint to the axis but not near the drain. The drain orifice is surrounded by the
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buffer region where the flow goes through rapid acceleration towards the drain. Similar behaviour
is observed in bathtub vortex experiments (Sakai et al. 1996).

4) When Rsd is changed several orders of magnitude, the order Rs in the regions of strong
vorticity is preserved.

5) The power-law representation of the stream function ∆Ψ ∼ Rα∆Z is valid in a large region
near the axis but not in the vicinity of the drain and the bottom of the tub. Low levels of vorticity
correspond to α = 2 while high levels of vorticity correspond to α = 4/3.

6) The numerical solutions obtained in the present work are, generally, stable when evolve tem-
porally. However, even small deviations from the initial conditions used here may cause appearance
of local recirculation zones that follow by rapid development of instabilities. No convergence was
reached for Rsd is significantly smaller than in the calculations presented. Although the geometric
parameter Ld ≡ rd/h has much less effect on calculations than Rsd, the convergence of the solutions
is more difficult for smaller depth h.
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Figure Captures

Figure 1. Schematic of the bathtub flow.

Figure 2. The calculation domain and the boundary conditions.

Figure 3. Vorticity evolution in a bathtub-type flow.

Figure 4. The normalized axial velocity Vz Rs2/3
d as a function of ∆Z = 1 − Z for R =

{0.04, 0.18, 0.32, 0.47}. Smaller values of Vz correspond to larger R.

Figure 5. The streamlines Ψ = const for Ld = 0.1 and several values of the parameter Rsd
plotted using a) the conventional coordinates and b) the logarithmic coordinates.

Figure 6. The calculated values of C1 as a function of Rs2
d.

Figure 7. The streamlines Ψ = const for Rs2
d = 10 and different values of the parameter Ld.

Figure 8. The streamlines Ψ = const in the region R/R1 ∼ 1 of the vortical flow with Rs2
d = 50

and Ld = 0.01 plotted in logarithmic coordinates. The figure in the corner is the same but plotted
using the conventional coordinates.
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