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Asymptotic approximations for swirling turbulent plume rising
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Governing equations of swirling turbulent buoyant plumes rising from horizontal cir-
cular sources into a stationary surrounding are established with the plume function
considered. In an attempt to find out the analytical solutions for both lazy and forced
plumes, we derive the asymptotic approximations with first-order expansions for all
swirling plume variables, including the radius, swirl ratio, axial velocity, and temperature,
by applying regular perturbation methods with the swirl term being the perturbative part.
Finally, the asymptotic solutions are compared with the numerical evaluations conducted
through the fourth-order Runge-Kutta method. The results show that, for lazy plumes, the
zeroth-order expansions are good enough to approximate the solutions for each variable,
while the first-order expansions are found to match the numerical solution much better for
forced plumes, indicating that swirling motions slightly influence lazy plumes but largely
affect forced ones. It is also found that, in the presence of swirls, the plume radius slightly
increases, while the centerline axial velocity decreases and the temperature barely changes,
in both lazy and forced plumes. Additionally, as the input plume function value increases,
the swirl ratio decays faster and further decreases the impact on other variables. Especially,
a swirl can even turn a moderate forced plume into a lazy plume due to the dominated
perturbative part in the near field, which might cause the method for categorizing plumes
to be called into question.

DOI: 10.1103/PhysRevFluids.6.094604

I. INTRODUCTION

Turbulent plumes are widely involved in issues of industrial applications, including chimneys and
cooling towers. The present work is extended from our previous studies regarding swirl-enhanced
natural draft dry cooling towers [1–4], and it was found that swirling motions enhance the thermal
performance of cooling towers by both reducing the adverse cold air inflow and increasing the
air flow rate through the towers. Specifically, swirls mitigate the cold air inflow by thinning
the boundary layer thickness inside towers and increasing the plume width above towers. The
corresponding details inside towers were discussed [2,3], while the mechanism related to how swirls
influence hot air plumes above towers yet remains unclarified. In this regard, focusing on the swirl
effects on the plume itself, with no crosswind, cold air inflow, and boundary layer effects taken into
account, here we consider a swirling turbulent buoyant plume steadily released from an isothermal
circular source into a quiescent surrounding, as shown in Fig. 1. The plume rises from a source with
an initial radius bi, arbitrary tangential velocity uθ,i, uniform axial velocity uz,i, and temperature Ti,
while the environment is unstratified with a uniform temperature T∞.

Approaches in terms of plume research usually can be categorized into microscopic and macro-
scopic methods [5]. The former directly seeks numerical solutions of Navier-Stokes equations with

*yuchen.dai@uq.edu.au

2469-990X/2021/6(9)/094604(17) 094604-1 ©2021 American Physical Society

https://orcid.org/0000-0002-8960-4040
https://orcid.org/0000-0003-3123-2616
https://orcid.org/0000-0003-0282-7960
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.6.094604&domain=pdf&date_stamp=2021-09-10
https://doi.org/10.1103/PhysRevFluids.6.094604


DAI, KLIMENKO, LU, AND HOOMAN

FIG. 1. Schematic diagram of a steady swirling plume rising from a circular source.

different turbulence models through computational fluid dynamics, while the latter first simplifies
Navier-Stokes equations based on several hypotheses and then looks for numerical solutions with
a much lower cost or makes further modifications attempting to reach the analytical solutions.
The macroscopic method is also known as the integral method and is adopted in the current
study. The corresponding integral form was first developed by Morton, Taylor, and Turner [6],
referred to as the MTT model, which is generally based on assumptions regarding the entrainment
rate proportional to the axial velocity, Boussinesq approximation, and the plume properties in the
direction orthogonal to the flow direction.

In an attempt to analytically solve the MTT model, similarity solutions can readily be obtained
by assuming that plume variables behave as power laws in the z direction. However, they are only
valid in the far field of the source, and it is undoubted that similarity solutions are based on the
point source assumption, while real sources usually have finite area with an initial radius. Thus,
determining the virtual origin to correct the similarity solutions for both lazy and forced plumes
has been discussed in many studies [7–9]. In addition to similarity solutions, the � approach further
simplifies the MTT model, and thus, analytical solutions or approximations, covering both near
and far fields of the source, can be yielded under certain conditions [10–12]. The dimensionless
parameter � was proposed by Morton and Middleton [13] and further developed by Hunt and Kaye
[10] as (see Table I for nomenclature)

�(z) = 5Q2F

4αM
5
2

, (1)

where the volume flux Q, buoyancy flux F , and axial momentum flux M are defined as [7]

Q = 1

π

(
2π

∫ ∞

0
uzrdr

)
,

F = 2

π

(
2π

∫ ∞

0
gβ�Tuzrdr

)
,

M = 2

π

(
2π

∫ ∞

0
u2

z rdr

)
. (2)
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TABLE I. Nomenclature.

Symbol Definition

cp specific heat capacity [J/(kg K)]
g acceleration of gravity (m/s2)
p pressure (Pa)
r radius (m)
G Swirl ratio
T temperature (K)
u velocity (m/s)
z elevation (m)
β thermal expansion coefficient (1/K)
α entrainment coefficient
ρ density (kg/m3)
ν kinematic viscosity (m2/s)
� plume function
∞ ambient
r, θ, z radial, tangential, axial direction
Ri Richardson number
b plume width
e entrainment
i initial
Z dimensionless height
B dimensionless plume width
U dimensionless velocity

 dimensionless temperature difference

In accordance with the plume function value, plumes can be categorized into lazy (� > 1), pure
(� = 1), and forced (0 < � < 1) plumes, with special flow regimes including jets (� = 0) and
fountains (� < 0).

In the presence of swirls, Lee [14] theoretically established governing equations for swirling
plumes based on the MTT model with the Gaussian axial velocity and temperature profile as-
sumptions in a cross section of the plume and found the power series solutions in the near field
of the source. Narain and Uberoi [15] also gave the similarity solutions, which are valid only in
the far field of the source and require the virtual origin correction, as mentioned before. With
swirling motions present, however, the virtual origin assumption might be called into question
since tangential momenta fall into a singularity there. Given that either the near-field or far-field
solution has its restrictions, numerical results were finally illustrated in the pioneering studies
subjected to swirling plumes [14,15]. In addition, their investigations did not consider different
types of plumes. Note that only the common plumes, lazy and forced ones, will be our concern
in this study. These two plumes apparently show different characteristics; that is, plume neck and
maximum axial velocity can be found in sufficiently lazy plumes, while they are absolutely absent
in forced ones. Hence, analyzing the swirl effects on turbulent plumes depending on the plume
types becomes indispensable. Before doing so, it is necessary to emphasize that the determination
of the entrainment coefficient α still remains controversial [5], and it is also influenced by swirling
motions [15,16] or rotating environments [17]. By retaining the MTT entrainment hypothesis as
the benchmark (constant α), the acceptable value for Gaussian profiles, in the absence of rotational
momentum, is in the range 0.045 < α j < 0.056 in jets and 0.07 < αp < 0.11 in plumes [18]. In
contrast, with swirl present, this coefficient could increase to 0.179 depending on the swirl intensity
[16]. To accurately predict the entrainment, many efforts have been made to correlate an empirical
function of the entrainment coefficient in terms of the local Richardson number [19–21]. Those
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empirical correlations provoke much more complexity in the differential equation system when
swirls are considered. Since the aim of this study is to qualitatively and analytically investigate how
swirls influence the plume properties for both lazy and forced plumes, the invariant entrainment
coefficient model is adopted at this step. A similar clarification was also made in the classic lazy
plume theory by Hunt and Kaye [10].

In this study we focus on an analytical investigation of swirl influences on basic properties
of both lazy and forced plumes in uniform quiescent surroundings, including plume radius, axial
velocity, and temperature. The constant-entrainment-coefficient model is adopted. We first simplify
the swirling plume governing equations into a first-order ordinary equation system based on the
MTT model and � approach in Sec. II. Then the asymptotic solutions are derived in Sec. III for
both lazy and forced plumes by applying the regular perturbation method with the swirl term as
the perturbative part. A comparison with numerical results is presented, and physical insights are
discussed in Sec. IV. Conclusions are drawn in Sec. V.

II. GOVERNING EQUATIONS

The MTT model [6] is adopted, and the approach is also based on the Reynolds decomposition
and other further assumptions, as reported in [14,15,22]. The hypotheses in this study, in general,
can be summarized as follows:

(1) The flow is steady and axisymmetric.
(2) The entrainment velocity ue is proportional to the axial velocity at the center of the plume u∗

z
(entrainment assumption: ue = αu∗

z ).
(3) The radial profiles of the mean axial velocity and buoyancy are similar (Gaussian) at all

heights.
(4) The flow is Boussinesq.
(5) The flow is long and narrow for the evocation of the usual boundary layer approximation.
(6) All triple correlations, as well as certain double correlations, are neglected.
(7) Molecular viscosity is neglected in comparison with the eddy one.
By means of these hypotheses, the system of equations describing the turbulent swirling plume

can be written as follows: The incompressible continuity equation

∂ (rur )

∂r
+ ∂ (ruz )

∂z
= 0. (3)

The radial component of momentum conservation

u2
θ

r
= 1

ρ∞

∂ p

∂r
. (4)

The tangential component of momentum conservation

∂

∂r
(r2uruθ ) + ∂

∂z
(r2uθuz ) = − ∂

∂r
(r2u′

ru′
θ ). (5)

The axial component of momentum conservation

∂

∂r
(ruruz ) + ∂

∂z

(
ru2

z

) = − r

ρ∞

∂ p

∂z
+ gβ(T − T∞)r − ∂

∂r
(ru′

ru′
z ). (6)

Energy conservation

∂

∂r
(rurT ) + ∂

∂z
(ruzT ) = − ∂

∂r
(ru′

rT ′). (7)

The radial profiles of time-mean axial velocity and buoyancy are similar (Gaussian) in the
plume at all heights as previously assumed. A similar profile of swirling velocity, however, remains
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unknown, and it is usually determined experimentally:

uz(r, z) = u∗
z (z)exp

(
− r2

b2

)
, (8)

uθ (r, z) = u∗
θ (z)g

(
r

b

)
, (9)

�T (r, z) = �T ∗(z)exp

(
− r2

b2

)
, (10)

where b = b(z) is the width of the plume at which time-mean axial velocity decreases to e−1 of
its maximum magnitude u∗

z . It should be emphasized that this plume width, or radius, is not the
real one which can be observed in corresponding experiments but is proportional to it, as indicated
in [6]. Owing to the symmetry at r = 0 and ambient fluid at r = ∞, the corresponding boundary
conditions are

u∗
r = u∗

θ = ∂uz

∂r
= u′

ru′
θ = u′

ru′
z = u′

rT ′ = 0 at r = 0,

u∗
θ = u∗

z = p = u′
ru′

θ = u′
ru′

z = u′
rT ′ = 0 at r = ∞. (11)

We first look into Eq. (4), and the gauge pressure function can be derived by its indefinite integral
as

p(r, z) = p∞ − ρ∞
∫ ∞

r

u2
θ

r
dr, (12)

where p∞ is the pressure of undisturbed ambient fluid. Substituting similar profiles into it and
combining it with the axial momentum equation, the gauge pressure term can be eliminated. Then
Eqs. (3) to (7) can be integrated from the plume axis r = 0 to r = ∞ by applying similar profiles
[Eqs. (8) to (10)] and boundary conditions [Eqs. (11)] as

d

dz
(u∗

z b2) = 2αu∗
z b,

d

dz

(
u∗2

z b2 − 4ξu∗2
θ b2

) = 2gβ�T ∗b2,

d

dz
(u∗

θu∗
z b3) = 0,

d

dz
(u∗

z gβ�T ∗b2) = 0, (13)

where ξ is a constant and depends on the swirl velocity profile g( r
b ) as

ξ =
∫ ∞

0

r

b

∫ ∞

r
b

g2
(

r
b

)
r
b

d2

(
r

b

)
. (14)

A common approach to solve Eqs. (13) is by assuming that the variables behave as power laws
in z, which is also known as similarity solutions, but they are valid only in the field far from the
source [15]. In addition, power series expansion results near the source have been investigated, but
it is obvious that they are valid only in the near field [14]. Both similarity solutions and power series
expansion have corresponding restrictions. In this regard, the plume function developed by Hunt and
Kaye [7,10] is introduced, and by substituting the Gaussian profiles of axial velocity and buoyancy
[Eqs. (8) and (10)] into Eqs. (1) and (2) we arrive at

�(z) = 5gβ�T ∗b

4αu∗2
z

. (15)
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Note that this is also different from the plume function developed by Michaux and Vauquelin
[23] since they assumed the top-hat profiles on the axial velocity and buoyancy, while we adopted
Gaussian profiles on the counterparts. A comprehensive comparison between top-hat and Gaussian
profile assumptions on plumes can be found in [24]. In addition, Eq. (15) is related to the form of
the local Richardson number Ri as

�(z) = 5

4α
Ri. (16)

The swirl ratio G is defined as

G(z) = u∗
θ

u∗
z

; (17)

then Eqs. (13) can be reformulated to clearly express the changing rate with z of b, G, u∗
z , and

gβ�T ∗ as functions of �,

db

dz
= 4α

5

(
10ξG2 + 5

2
− �

)
,

dG

dz
= 4αG

5b

(
10ξG2 − 5

2
− �

)
,

du∗
z

dz
= −8αu∗

z

5b

(
10ξG2 + 5

4
− �

)
,

dgβ�T ∗

dz
= −8α2u∗2

z

5b2
�. (18)

Reorganizing Eqs. (18) yields

d�

dz
= 4α�

b
(10ξG2 + 1 − �). (19)

The above equations show the swirling plume flow properties, indicating that the width of the plume
and the axial velocity are certainly influenced by swirling motions, and they reduce to the normal
form reported in [23] in the absence of swirl (G = 0), but the authors have not found the exact
analytical solution so far. However, it is noted that ξ is a constant on the magnitude of O(10−1)
[14,15] and thus can be regarded as a small parameter. In addition, the G value is usually lower than
0.6 since excessively intense swirl would result in the collapse of the Gaussian profile assumption
on the axial velocity equation (8), as reported in [25]. Hence, the regular perturbation method is
adopted to approximate the asymptotic solutions in the next section.

III. ANALYTICAL APPROXIMATIONS

The initial conditions for all variables are first expressed as follows:

b(0) = bi, G(0) = Gi, u∗
z (0) = u∗

z,i, �T ∗(0) = �T ∗
i , �(0) = �i. (20)

We then make a change in variable G̃ for a simpler expression as

G̃ = 10G2, G̃i = 10G2
i , (21)

and normalize the height, plume radius, axial velocity, and temperature difference as

Z = z

bi
, B = b

bi
, U ∗

z = u∗
z

u∗
z,i

, 
 = �T ∗

�T ∗
i

. (22)
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Then the swirling plume ordinary differential equation system can be expressed as

dB

dZ
= 4α

5

(
ξ G̃ + 5

2
− �

)
,

dG̃

dZ
= 8αG̃

5B

(
ξ G̃ − 5

2
− �

)
,

d�

dZ
= 4α�

B
(ξ G̃ + 1 − �),

dU ∗
z

dZ
= −8αU ∗

z

5B

(
ξ G̃ + 5

4
− �

)
,

d


dZ
= −2α


B
. (23)

As mentioned above, ξ is a small parameter, so that each variable in Eqs. (23) can be represented in
the following expansion:

f (z) = f0(Z ) + ξ f1(Z ) + O(ξ 2), (24)

with the boundary conditions f0(Z = 0) = fi and f1(Z = 0) = 0. As seen, in addition to G̃, the
leading-order term in Eq. (24) refers to plumes without swirling motions involved, while the higher-
order term takes responsibility for swirling effects. We substitute Eq. (24) into (23) and collect the
terms of zeroth-power ξ (ξ 0) as follows:

dB0

dZ
= 4α

5

(
5

2
− �0

)
,

dG̃0

dZ
= 8αG̃0

5B0

(
−5

2
− �0

)
,

d�0

dZ
= 4α�0

B0
(1 − �0),

dU ∗
z0

dZ
= −8αU ∗

z0

5B0

(
5

4
− �0

)
,

d
0

dZ
= −2α
0

B0
. (25)

Note that B−1 = B−1
0 − ξB−2

0 B1 + O(ξ 2), but this will result in a nonlinear system of the higher-
order equations which cannot be solved. Thus, here we approximate B−1 ≈ B−1

0 for first-order
equations and collect the terms as ξ 1:

dB1

dZ
= 4α

5
(G̃0 − �1),

dG̃1

dZ
= 8α

5B0

(
G̃2

0 − G̃0�1 − G̃1�0 − 5

2
G̃1

)
,

d�1

dZ
= 4α

B0
(G̃0�0 − 2�0�1 + �1),

dU ∗
z1

dZ
= − 8α

5B0

(
U ∗

z0G̃0 − U ∗
z0�1 + 5

4
U ∗

z1 − U ∗
z1�0

)
,

d
1

dZ
= −2α
1

B0
. (26)
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We express zeroth-order equations in terms of �0 as

dB0

d�0
= B0

5�0

5
2 − �0

1 − �0
,

dG̃0

d�0
= 2G̃0

5�0

− 5
2 − �0

1 − �0
,

dU ∗
z0

d�0
= −2U ∗

z0

5�0

5
4 − �0

1 − �0
,

d
0

d�0
= − 
0

2�0(1 − �0)
, (27)

so that the solutions in terms of �0 can be collected as follows:

B0 =
(

1 − �i

1 − �0

) 3
10

(
�0

�i

) 1
2

,

G̃0 = G̃i

(
1 − �0

1 − �i

) 7
5
(

�i

�0

)
,

U ∗
z0 =

(
1 − �0

1 − �i

) 1
10

(
�i

�0

) 1
2

,


0 =
(

1 − �0

1 − �i

) 1
2
(

�i

�0

) 1
2

. (28)

Note that the zeroth-order solutions cover the cases in the absence of swirl (G = 0). By substituting
Eqs. (28) into (26), one can have the change rate of �1 in terms of �0 as

d�1

d�0
= G̃i�i

(1 − �i )
7
5

(1 − �0)
2
5

�0
+ �1

�0

1 − 2�0

1 − �0
, (29)

which has the solution

�1 = 5

2
G̃i�i�0

1 − �0

1 − �i

[
2F1

(
2

5
, 2;

7

5
; 1 − �i

)
−

(
1 − �0

1 − �i

) 2
5

2F1

(
2

5
, 2;

7

5
; 1 − �0

)]
, (30)

where 2F1 is the standard hypergeometric function [26].
Now substituting Eqs. (28) and (30) into (26) and noting that

d
( G̃1

G̃0

)
dZ

= 8α

5B0
(G̃0 − �1),

d
(U ∗

z1

U ∗
z0

)
dZ

= − 8α

5B0
(G̃0 − �1), (31)

other variables in the first-order equations in terms of �0 can be illustrated as

dB1

d�0
= G̃i�

1
2
i

5(1 − �i )�
3
2
0

(
1 − �0

1 − �i

) 1
10

− G̃i�
1
2
i 2F1

(
2
5 , 2; 7

5 ; 1 − �i
)
�

1
2
0

2(1 − �i)

(
1 − �i

1 − �0

) 3
10

+ G̃i�
1
2
i �

1
2
0

2(1 − �i )

(
1 − �0

1 − �i

) 1
10

2F1

(
2

5
, 2;

7

5
; 1 − �0

)
,
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d
( G̃1

G̃0

)
d�0

= − 2G̃i�i

5(�i − 1)
7
5

(�0 − 1)
2
5

�2
0

+ G̃i�i

�i − 1

[
2F1

(
2

5
, 2;

7

5
; 1 − �i

)
−

(
�0 − 1

�i − 1

) 2
5

2F1

(
2

5
, 2;

7

5
; 1 − �0

)]
,

d
(U ∗

z1

U ∗
z0

)
d�0

= 2G̃i�i

5(�i − 1)
7
5

(�0 − 1)
2
5

�2
0

− G̃i�i

�i − 1

[
2F1

(
2

5
, 2;

7

5
; 1 − �i

)
−

(
�0 − 1

�i − 1

) 2
5

2F1

(
2

5
, 2;

7

5
; 1 − �0

)]
,

d
1

d�0
= − 
1

2�0(1 − �0)
. (32)

With the boundary condition f1(�0 = �i ) = 0, the solutions can be obtained as

G̃1

G̃0
= −2

7
G̃i�i

(
1 − �0

1 − �i

) 7
5

2F1

(
7

5
, 2;

12

5
; 1 − �0

)
+ G̃i�i

�i − 1
2F1

(
2

5
, 2;

7

5
; 1 − �i

)
�0

− 5

7
G̃i�i

(
1 − �0

1 − �i

) 7
5

2F1

(
2

5
, 2;

12

5
; 1 − �0

)
+ C1,

U ∗
z1

U ∗
z0

= 2

7
G̃i�i

(
1 − �0

1 − �i

) 7
5

2F1

(
7

5
, 2;

12

5
; 1 − �0

)
− G̃i�i

�i − 1
2F1

(
2

5
, 2;

7

5
; 1 − �i

)
�0

+ 5

7
G̃i�i

(
1 − �0

1 − �i

) 7
5

2F1

(
2

5
, 2;

12

5
; 1 − �0

)
− C1,


1 = 0, (33)

where

C1 = 2

7
G̃i�i2F1

(
7

5
, 2;

12

5
; 1 − �i

)
− G̃i�

2
i

�i − 1
2F1

(
2

5
, 2;

7

5
; 1 − �i

)
+ 5

7
G̃i�i2F1

(
2

5
, 2;

12

5
; 1 − �i

)
. (34)

Finally, substituting the B0 solution in terms of �0 into Eqs. (25) yields

d�0

dZ
= 4α�

1
2
i (1 − �i )

Bi
�

1
2
0

(
1 − �0

1 − �i

) 13
10

. (35)

Now the solutions to zeroth- and first-order equations can be obtained once Eq. (35) is solved,

except for B1(�0) because difficulties arise when integrating �
1
2
0 (1 − �0)

1
10 2F1( 2

5 , 2; 7
5 ; 1 − �0).

Hence, we shall discuss further approximated solutions for B1(�0) in accordance with initial lazy
(�i > 1) and forced (�i < 1) plumes in the next section.

A. Lazy plume

It is known that swirling motions barely influence the plume in the far field since G → 0 as
Z → ∞, so the first-order terms are more likely to correct the plume solutions in the near field. For
a lazy plume [which may equivalently be regarded as a source excess of buoyancy flux compared to
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inertia flux according to Eq. (16)], it is clear that 0 � 2F1( 2
5 , 2; 7

5 ; 1 − �0) < 1. Then by taking its
Taylor series near �i, we obtain

2F1

(
2

5
, 2;

7

5
; 1 − �0

)
≈ 2F1

(
2

5
, 2;

7

5
; 1 − �i

)
− 2

[
�−2

i − 2F1
(

2
5 , 2; 7

5 ; 1 − �i
)]

5(1 − �i )
(�0 − �i); (36)

then the first-order equation of B1 in terms of �0 can be reformed as

dB1

d�0
= C2

(�0 − 1)
1

10

�
3
2
0

+ C3
�

1
2
0

(�0 − 1)
3

10

+ C4�
1
2
0 (�0 − 1)

1
10 + C5�

3
2
0 (�0 − 1)

1
10 , (37)

where

C2 = − G̃i�
1
2
i

5(�i − 1)
11
10

,

C3 = G̃i�
1
2
i 2F1

(
2
5 , 2; 7

5 ; 1 − �i
)

2(�i − 1)
7

10

,

C4 = − G̃i�
1
2
i

2(�i − 1)
11
10

[
2F1

(
2

5
, 2;

7

5
; 1 − �i

)
− 2 − 2�2

i 2F1
(

2
5 , 2; 7

5 ; 1 − �i
)

5�i(�i − 1)

]
,

C5 = − G̃i
[
1 − �2

i 2F1
(

2
5 , 2; 7

5 ; 1 − �i
)]

5�
3
2
i (�i − 1)

21
10

, (38)

so that the solution can be yielded as

B1 = C2
10

11
(�0 − 1)

11
10 2F1

(
11

10
,

3

2
;

21

10
; 1 − �0

)
+C3

10

7
(�0 − 1)

7
10 2F1

(
−1

2
,

7

10
;

17

10
; 1 − �0

)
+C4

10

11
(�0 − 1)

11
10 2F1

(
−1

2
,

11

10
;

21

10
; 1 − �0

)
+C5

10

11
(�0 − 1)

11
10 2F1

(
−3

2
,

11

10
;

21

10
; 1 − �0

)
+ C6, (39)

where

C6 = −C2
10

11
(�i − 1)

11
10 2F1

(
11

10
,

3

2
;

21

10
; 1 − �i

)
−C3

10

7
(�i − 1)

7
10 2F1

(
−1

2
,

7

10
;

17

10
; 1 − �i

)
−C4

10

11
(�i − 1)

11
10 2F1

(
−1

2
,

11

10
;

21

10
; 1 − �i

)
−C5

10

11
(�i − 1)

11
10 2F1

(
−3

2
,

11

10
;

21

10
; 1 − �i

)
. (40)

Now Eq. (35) can be expressed as

d�0

dZ
= − 4α�

1
2
i

(�i − 1)
3

10

�
1
2
0 (�0 − 1)

13
10 , (41)
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and the solution can be written only in the implicit form:

Z (�0) = 5(�i − 1)
3

10

6α�
1
2
i

[
2F1

(− 3
10 , 1

2 ; 7
10 ; 1 − �0

)
(�0 − 1)

3
10

− 2F1
(− 3

10 , 1
2 ; 7

10 ; 1 − �i
)

(�i − 1)
3

10

]
. (42)

Note that, in the absence of swirl, the heights where a lazy plume reaches its neck and the maximum
axial velocity can be explicitly obtained by substituting �0 = 5

2 and �0 = 5
4 into Eq. (42).

B. Forced plume

For a forced plume [which may equivalently be regarded as a source excess of inertia flux

compared to buoyancy flux according to Eq. (16)], on the other hand, 0 � �
1
2
0 < 1. Similarly, by

taking its first-order expansion near �i, we obtain

�
1
2
0 ≈ �

1
2
i + 1

2�
− 1

2
i (�0 − �i ) = �

1
2
i + 1

2�
− 1

2
i [(1 − �i ) − (1 − �0)], (43)

so that the first-order equation of B1 in terms of �0 can be reformed as

dB1

d�0
= C7

(1 − �0)
1

10

�
3
2
0

+ C8
�

1
2
0

(1 − �0)
3

10

+ C9(1 − �0)
1

10 2F1

(
2

5
, 2;

7

5
; 1 − �0

)
+C10(1 − �0)

11
10 2F1

(
2

5
, 2;

7

5
; 1 − �0

)
, (44)

where

C7 = G̃i�
1
2
i

5(1 − �i )
11
10

,

C8 = − G̃i�
1
2
i 2F1

(
2
5 , 2; 7

5 ; 1 − �i
)

2(1 − �i )
7

10

,

C9 = G̃i�i

2(1 − �i )
11
10

+ biG̃i

4(1 − �i )
1

10

,

C10 = − G̃i

4(1 − �i )
11
10

; (45)

then the solution can be obtained as

B1 = −C7
10

11
(1 − �0)

11
10 2F1

(
11

10
,

3

2
;

21

10
; 1 − �0

)
− C8

10

7
(1 − �0)

7
10 2F1

(
−1

2
,

7

10
;

17

10
; 1 − �0

)
+C9

10

7
(1 − �0)

11
10

[
4

11
2F1

(
11

10
, 2;

21

10
; 1 − �0

)
− 2F1

(
2

5
, 2;

7

5
; 1 − �0

)]
+C10

10

17
(1 − �0)

21
10

[
4

21
2F1

(
2,

21

10
;

31

10
; 1 − �0

)
− 2F1

(
2

5
, 2;

7

5
; 1 − �0

)]
+ C11, (46)

where

C11 = C7
10

11
(1 − �i )

11
10 2F1

(
11

10
,

3

2
;

21

10
; 1 − �i

)
+ C8

10

7
(1 − �i )

7
10 2F1

(
−1

2
,

7

10
;

17

10
; 1 − �i

)
−C9

10

7
(1 − �i )

11
10

[
4

11
2F1

(
11

10
, 2;

21

10
; 1 − �i

)
− 2F1

(
2

5
, 2;

7

5
; 1 − �i

)]
−C10

10

17
(1 − �i )

21
10

[
4

21
2F1

(
2,

21

10
;

31

10
; 1 − �i

)
− 2F1

(
2

5
, 2;

7

5
; 1 − �i

)]
. (47)
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Now Eq. (35) can be expressed as

d�0

dZ
= 4α�

1
2
i

(1 − �i )
3

10

�
1
2
0 (1 − �0)

13
10 , (48)

and again, the solution can be written only in the implicit form:

Z (�0) = (1 − �i )
3

10

2α�
1
2
i

[
�

1
2
0 2F1

(
1

2
,

13

10
;

3

2
; �0

)
− �

1
2
i 2F1

(
1

2
,

13

10
;

3

2
; �i

)]
. (49)

IV. COMPARISON WITH NUMERICAL RESULTS

The numerical solutions to the swirling plume equations, Eqs. (18) and (19), were conducted by
adopting the fourth-order Runge-Kutta method. The input constants are listed in Table II.

Figure 2 presents the vertical evolution of swirling lazy plume variables calculated through both
numerical and asymptotic methods. The input swirl ratio is fixed at the largest value, Gi = 0.6. The
solid lines show the numerical results, while the dashed and dotted lines illustrate the zeroth- and
first-order expansions. As observed, for lazy plumes, especially the highly lazy plume (�i = 10), the
zeroth-order expansions show good enough approximations, indicating negligible changes caused
by swirls in lazy plumes. As mentioned before, G̃ is on the magnitude of O(10−1), while for lazy
plumes � is not lower than 1, which explains the slight influence of the perturbative part, referring
to swirling terms in Eqs. (18), on each of the variables. Especially, the largest deviation between
the zeroth- and first-order expansions is found to be the plume radius for the highly lazy plume, as
shown in Fig. 2(a). The obvious deviation in the far field is mainly caused by the simplification of
Eq. (36) through the first-order Taylor series near �i. In addition, Fig. 2(b) reveals that, as the initial
plume function value increases, the swirl ratio decays faster, especially in the near field. This further
causes other variables, like the centerline axial velocity U ∗

z , to show certain deviations between
zeroth- and first-order expansions in the near field. It is also found that the centerline axial velocity
U ∗

z increases first and then decreases, and the changing rate, as well as the maximum centerline
axial velocity, are reduced by swirls. This is because centrifugal forces are present by introducing
swirling motions in plumes, leading the edge of the plume to expand outwards, and thus increase the
plume radius. Consequently, the axial velocity decreases due to the continuity. Note that there are
no first-order expansions on the buoyancy variable 
 due to the absence of the perturbative term in
the buoyancy equation in Eqs. (18). Hence, in general, the zeroth-order expansions are good enough
to approximate each variable in lazy plumes, unless one is concerned with the swirl influence in the
near field precisely.

The vertical evolution of swirling-forced plumes is demonstrated in Fig. 3, with the input swirl
ratio fixed at Gi = 0.6. As can be seen, excluding the buoyancy variable which is not influenced
by the perturbative term, the zeroth- and first-order expansions show larger differences for each
variable in forced plumes than in lazy ones, and the first-order expansions show better matches with
the numerical results. This is expected since � and 10ξG2 are on the same magnitude of O(10−1),
particularly in the near field, so the perturbative term cannot be neglected anymore. Furthermore,
the swirl ratio G decays much slower in comparison with that in lazy plumes, and the lower the
input plume function value is, the slower the swirl ratio decays, as demonstrated in Fig. 3(b).
Hence, in forced plumes, swirling motions significantly influence the plume properties excluding

TABLE II. Input constants.

Constant Value Reference

α (Gaussian) 0.088 [27]
ξ 0.2 [14]
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FIG. 2. Vertical evolution of swirling lazy plumes (Gi = 0.6). The solid lines are numerical solutions,
while the dashed lines and dotted lines represent the zeroth- and first-order expansions of the asymptotic
approximations.

buoyancy. The plume radius, as observed in Fig. 3, increases in the near field with swirls present.
Additionally, different from the increasing and then decreasing trend on the centerline axial velocity
in lazy plumes, it shows a consistently decreasing pattern in forced plumes, and the swirling motion
even amplifies the changing rate. The vertical evolution of plume function value for a moderate
forced plume (�i = 0.5) shows an interesting pattern. Specifically, for both numerical and first-order
expansion results, the plume function values keep increasing and even exceed 1 and reach their
maximum values, then decrease close to 1 in the far field, which means that a moderate forced
plume can even be transformed into a lazy plume by introducing swirling motions, as illustrated in
Fig. 3(e). This is because, as forced plumes increase close to the pure one (�i → 1−), (1 − �i) is
much lower than 10ξG in Eqs. (18), resulting in the swirling term dominating the changing rate in
the near field. By revisiting the definition of the plume function � in our study, as shown in Eq. (15),
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FIG. 3. Vertical evolution of swirling forced plumes (Gi = 0.6). The solid lines are numerical solutions,
while the dashed lines and dotted lines represent the zeroth- and first-order expansions of the asymptotic
approximations.

it is proportional to the plume radius b but inversely proportional to the square of the centerline
axial velocity u∗

z . As found before, a swirl always increases the plume radius but decreases the
axial velocity in where it has an non-negligible effect (since it decays rapidly), leading to a further
increment of the plume function value. Hence, when the initial plume function is less than but not
far away from unity, i.e., �i = 0.5, it tends to increase to 1 as the plume evolves vertically. Once the
plume function value is close to 1 and the swirl effects are still present, it exceeds unity and thus
turns from a forced plume to a lazy one. Then the plume function value tends to decrease to 1, and
we call it the recovery mechanism. At this stage, both the plume function recovery mechanism and
swirl effects influence the evolution of the plume function. If the swirl effects outweigh the other
mechanism, the plume function will keep increasing and vice versa. When swirl almost decays, the
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plume function again develops asymptotically to unity in the far field, like how a normal lazy plume
behaves. Such a phenomenon should be emphasized since the way to categorize plumes would be
called into question in this special regime.

V. CONCLUSIONS

Based on the MTT model and the plume function, the governing equations for swirling turbulent
plumes steadily rising from circular sources into a stationary surrounding have been reformed into
a nonlinear first-order ordinary differential equation system, including plume radius, swirl ratio,
axial velocity, and buoyancy. Due to the difficulty of deriving its exact solutions, we have managed
to reach the asymptotic approximations by applying regular perturbation methods, considering the
swirling terms as the perturbative part. Therefore, the zeroth-order expansions refer to cases in the
absence of swirls, and the exact solutions have been yielded in implicit forms, while the first-order
terms are more like corrections, especially in the near field since the swirl ratio tends to zero
in the far field. Finally, the approximated analytical solutions were compared with the numerical
results found by the fourth-order Runge-Kutta method. The comparisons have shown that, for lazy
plumes, the zeroth-order expansions are generally good enough to approximate the solutions for
each variable, while the first-order expansions show better matches with the numerical solutions
for forced plumes. It has also been found that, in the presence of swirls, the plume radius slightly
increases, while the centerline axial velocity decreases and the temperature barely changes, in both
lazy and forced plumes. Additionally, as the input plume function value increases, the swirl ratio
decays faster and further decreases the impact on other variables. Especially, for a moderate forced
plume, it can even be turned into a lazy plume by introducing swirling motions. We therefore
believe that establishing a more appropriate plume function with swirl present is the key to the
next step before introducing the variable-entrainment-coefficient model which provokes additional
complexity.
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APPENDIX: SMALL-PARAMETER ASSUMPTION CLARIFICATION

The regular perturbation method is based on the small parameter ξ defined in Eq. (14), and the
value is assumed in Table II. To clarify this, we first assume the tangential velocity profile g( r

b ) can
be assumed to be a third-order polynomial function as

g

(
r

b

)
= a1

r

b
+ a2

(
r

b

)2

+ a3

(
r

b

)3

, 0 � r

b
� 1, (A1)

with a1, a2, and a3 determined by experimental data in [25]. Furthermore, as indicated in [14], the
upper limit of the integration equation (12) can be transformed between the edge of the plume and
infinity without introducing much error since the swirl velocity decays rapidly toward the plume
edge. Thus, ξ can be estimated by

ξ =
∫ 1

0

r

b

∫ 1

r
b

g2( r
b )

r
b

d2

(
r

b

)
= 1

6

(
1

2
a2

1 + 1

4
a2

2 + 1

6
a2

3 + 2

3
a1a2 + 1

2
a1a3 + 2

5
a2a3

)
. (A2)

The results with corresponding swirl ratios and coefficients a1, a2, and a3 are shown in Table III.
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TABLE III. Values of ξ associated with the swirl ratio and velocity profile coefficients.

G a1 a2 a3 ξ

0.1168 1.54 2.86 −4.40 0.1620
0.2660 2.425 1.035 −3.46 0.2082
0.4020 6.20 −12.00 5.80 0.2278
0.535 6.04 −10.84 4.80 0.2486

As can be seen, the value of ξ is between 0.16 and 0.25 with a swirl ratio ranging from 0.11 to
0.54. Hence, the value of ξ in this study (0.2) is in the reasonable range and can be regarded as a
small parameter for the perturbation method.
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